Volatile Organic Compounds in Dactylorhiza Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Analysis of Volatile Organic Compounds
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klinge, J. Dactylorchids, orchids subgeneris, monographiae prodromus. Acta Horti Petropol. 1898, 17, 145–201. [Google Scholar]
- Vermeulen, P. Studies on Dactylorchids; Schotanus & Jens: Utrecht, The Netherlands, 1947. [Google Scholar]
- Soó, R. Synopsis generis Dactylorhiza (Dactylorchis). Ann. Univ. Sci. Bp. Biol. 1960, 3, 335–357. [Google Scholar]
- Senghas, K. Taxonomische Übersicht der Gattung Dactylorhiza Necker ex Nevski. Jahresber. Naturwiss. Ver. Wupp. 1968, 21–22, 32–67. [Google Scholar]
- Nelson, E. Monographie und Ikonographie der Orchidaceen-Gattung Dactylorhiza; Speich: Zürich, Switzerland, 1976. [Google Scholar]
- Averyanov, L.V. A review of the genus Dactylorhiza. In Orchid Biology. Reviews and Perspectives; Arditti, J., Ed.; Timber Press: Portland, OR, USA, 1990; pp. 159–206. [Google Scholar]
- Pedersen, H.Æ. Species concept and guidelines for infraspecific taxonomic ranking in Dactylorhiza (Orchidaceae). Nord. J. Bot. 1998, 18, 289–311. [Google Scholar] [CrossRef]
- Hedrén, M. Systematics of the Dactylorhiza euxina/incarnata/maculata polyploid complex (Orchidaceae) in Turkey: Evidence from allozyme data. Plant Syst. Evol. 2001, 229, 23–44. [Google Scholar] [CrossRef]
- Delforge, P. Guide des Orchidees d’Europe, d’Afrique du Nord et du Proche-Orient, 2nd ed.; Delachaux et Niestle: Lausanne, Switzerland, 2001. [Google Scholar]
- Efimov, P.G.; Philippov, E.G.; Krivenko, D.A. Allopolyploid speciation in Siberian Dactylorhiza (Orchidaceae, Orchidoideae). Phytotaxa 2016, 258, 101–120. [Google Scholar] [CrossRef]
- Eccarius, W. Die Orchideengattung Dactylorhiza; Eisenach: Bürgel, Germany, 2016. [Google Scholar]
- Bateman, R.M.; Pridgeon, A.M.; Chase, M.W. Phylogenetics of subtribe Orchidinae (Orchidoideae, Orchidaceae) based on nuclear ITS sequences. 2. Infrageneric relationships and taxonomic revision to achieve monophyly of Orchis sensu stricto. Lindleyana 1997, 12, 113–141. [Google Scholar]
- Cribb, P.J.; Chase, M.W. Proposal to conserve the name Dactylorhiza Necker ex Nevski over Coeloglossum Hartm. (Orchidaceae). Taxon 2001, 50, 581–582. [Google Scholar] [CrossRef]
- Dusak, F.; Pernot, P. Les Orchidées Sauvages d’Île-de-France; Biotope: Mèze, Germany, 2002. [Google Scholar]
- Jacquet, P.; Scappaticci, G. Une Répartition des Orchidées Sauvages de France, 3rd ed.; Société Francaise d’Orchidophilie: Paris, France, 2003. [Google Scholar]
- Foley, M.; Clarke, S. Orchids of the British Isles; Griffin Press: Cheltenham, UK, 2005. [Google Scholar]
- Rossi, W.; Eldredge Maury, A. Iconography of Italian Orchids; Istituto Nazionale per la Fauna Selvatica ‘Alessandro Ghigi’: Bologna, Italy, 2002. [Google Scholar]
- Delforge, P. Guide des Orchidées d’Europe, d’Afrique du Nordiska et du Proche-Orient, 3rd ed.; Delachaux et Niestlé: Lausanne, Switzerland, 2005. [Google Scholar]
- Baumann, H.; Blatt, H.; Dierssen, K.; Dietrich, H.; Dostmann, H.; Eccarius, W.; Kretzschmar, H.; Kühn, H.-D.; Möller, O.; Paulus, H.F.; et al. Die Orchideen Deutschlands; Arbeitskreise Heimische Orchideen: Uhlstädt-Kirchhasel, Germany, 2005. [Google Scholar]
- Bateman, R.M.; Hollingsworth, P.M.; Preston, J.; Yi-Bo, L.; Pridgeon, A.M.; Chase, M.W. Molecular phylogenetics and evolution of Orchidinae and selected Habenariinae (Orchidaceae). Bot. J. Linn. Soc. 2003, 142, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Shipunov, A.B.; Fay, M.F.; Pillon, Y.; Bateman, R.M.; Chase, M.W. Dactylorhiza (Orchidaceae) in European Russia: Combined molecular and morphological analysis. Am. J. Bot. 2004, 91, 1419–1426. [Google Scholar] [CrossRef]
- Devos, N.; Raspé, O.; Oh, S.H.; Tyteca, D.; Jacquemart, A.L. The evolution of Dactylorhiza (Orchidaceae) allotetraploid complex: Insights from nrDNA sequences and cpDNA PCR-RFLP data. Mol. Phylogenet. Evol. 2006, 38, 767–778. [Google Scholar] [CrossRef]
- Pillon, Y.; Fay, M.F.; Hedrén, M.; Bateman, R.M.; Devey, D.S.; Shipunov, A.B.; Van Ver Bank, M.; Chase, M.W. Evolution and temporal diversification of western European polyploid species complexes in Dactylorhiza (Orchidaceae). Taxon 2007, 56, 1185–1208. [Google Scholar] [CrossRef] [Green Version]
- Inda, L.A.; Pimentel, M.; Chase, M.W. Chalcone synthase variation and phylogenetic relationships in Dactylorhiza (Orchidaceae). Bot. J. Linn. Soc. 2010, 163, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Balao, F.; Trucchi, E.; Wolfe, T.M.; Hao, B.-H.; Lorenzo, M.T.; Baar, J.; Sedman, L.; Kosiol, C.; Amman, F.; Chase, M.W.; et al. Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (Dactylorhiza) with distinct ecological optima. Mol. Ecol. 2017, 26, 3649–3662. [Google Scholar] [CrossRef] [Green Version]
- Givnish, T.J.; Spalink, D.; Ames, M.; Lyon, S.P.; Hunter, S.J.; Zuluaga, A.; Iles, W.J.D.; Clements, M.A.; Arroyo, M.T.K.; Leebens-Mack, J.; et al. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151553. [Google Scholar] [CrossRef]
- Bateman, R.M.; Rudall, P.J. Clarified relationship between Dactylorhiza viridis and Dactylorhiza iberica renders obsolete the former genus Coeloglossum (Orchidaceae: Orchidinae). Kew Bull. 2018, 73, 4. [Google Scholar] [CrossRef] [Green Version]
- Bateman, R.M.; Murphy, A.R.; Hollingsworth, P.M.; Hart, M.L.; Denholm, I.; Rudall, P.J. Molecular and morphological phylogenetics of the digitate-tubered clade within subtribe Orchidinae ss (Orchidaceae: Orchideae). Kew Bull. 2018, 73, 54. [Google Scholar] [CrossRef] [Green Version]
- Kaki, A.; Vafaee, Y.; Khadivi, A. Genetic variation of Anacamptis coriophora, Dactylorhiza umbrosa, Himantoglossum affine, Orchis mascula, and Ophrys schulzei in the western parts of Iran. Ind. Crops Prod. 2020, 156, 112854. [Google Scholar] [CrossRef]
- Brandrud, M.K.; Baar, J.; Lorenzo, M.T.; Bateman, R.M.; Chase, M.W.; Hedrén, M.; Paun, O. Phylogenomic relationships of diploids and the origins of allotetraploids in Dactylorhiza (Orchidaceae): RADseq data track reticulate evolution. Syst. Biol. 2019, 69, 91–109. [Google Scholar] [CrossRef]
- Salzmann, C.C.; Schiestl, F.P. Odour and colour polymorphism in the food deceptive orchid Dactylorhiza romana. Plant Syst. Evol. 2007, 267, 37–45. [Google Scholar] [CrossRef]
- Jersáková, J.; Johnson, S.D.; Jürgens, A. Deceptive behaviour in plants. II. Food deception by plants: From generalized systems to specialized floral mimicry. In Plant–Environment Interactions; Baluska, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 223–246. [Google Scholar]
- Walsh, R.P.; Michaels, H.J. When it pays to cheat: Examining how generalized food deception increases male and female fitness in a terrestrial orchid. PLoS ONE 2017, 12, e0171286. [Google Scholar] [CrossRef] [Green Version]
- Chittka, L.; Raine, N.E. Recognition of flowers by pollinators. Curr. Opin. Plant Biol. 2006, 9, 428–435. [Google Scholar] [CrossRef]
- Sun, M.; Schlüter, P.M.; Gross, K.; Schiestl, F.P. Floral isolation is the major reproductive barrier between a pair of rewarding orchid sister species. J. Evol. Biol. 2015, 28, 117–129. [Google Scholar] [CrossRef]
- Valenta, K.; Nevo, O.; Martel, C.; Chapman, C.A. Plant attractants: Integrating insights from seed dispersal and pollination ecology. Evol. Ecol. 2017, 31, 249–267. [Google Scholar] [CrossRef]
- Dicke, M. Chemical ecology: From genes to communities. In Chemical Ecology: From Genes to Ecosystem; Dicke, M., Taken, W., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 175–189. [Google Scholar]
- Raguso, R.A. Wake up and smell the roses: The ecology and evolution of floral scent. Ann. Rev. Ecol. Evol. Syst. 2008, 39, 549–569. [Google Scholar] [CrossRef]
- Raguso, R.A. Start making scents: The challenge of integrating chemistry into pollination ecology. Entomol. Exp. Appl. 2008, 128, 196–207. [Google Scholar] [CrossRef]
- Whitehead, M.R.; Peakall, R. Integrating floral scent, pollination ecology and population genetics. Funct. Ecol. 2009, 23, 863–874. [Google Scholar] [CrossRef]
- Raguso, R.A.; Levin, R.A.; Fooze, S.E.; Holmberg, M.W.; McDade, L.A. Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry 2003, 63, 265–284. [Google Scholar] [CrossRef]
- Hoballah, M.E.; Stuurman, J.; Turlings, T.C.J.; Guerin, P.M.; Connétable, S.; Kuhlemeier, C. The composition and timing of flower odour emission by wild Petunia axillaris coincide with the antennal perception and nocturnal activity of the pollinator Manduca sexta. Planta 2005, 222, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, J.T.; Eriksson, R.; Gershenzon, J.; Stahl, B. Diversity and distribution of floral scent. Bot. Rev. 2006, 72, 1–120. [Google Scholar] [CrossRef]
- Theis, N.; Lerdau, M.; Raguso, R.A. The challenge of attracting pollinators while evading floral herbivores: Patterns of fragrance emission in Cirsium arvense and Cirsium repandum (Asteraceae). Int. J. Plant. Sci. 2007, 168, 587–601. [Google Scholar] [CrossRef] [Green Version]
- Dötterl, S.; Jareiß, K.; Salma Jhumur, U.; Jürgens, A. Temporal variation of flower scent in Silene otitis (Caryophyllaceae): A species with a mixed pollination system. Bot. J. Linn. Soc. 2012, 169, 447–460. [Google Scholar] [CrossRef]
- Parachnowitsch, A.L.; Raguso, R.A.; Kessler, A. Phenotypic selection to increase floral scent emission, but not flower size or colour in bee-pollinated Penstemon digitalis. New Phytol. 2012, 195, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Delle Vedove, R.; Schatz, B.; Dufay, M. Understanding intraspecific variation of floral scent in light of evolutionary ecology. Ann. Bot. 2017, 120, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Salzmann, C.C.; Cozzolino, S.; Schiestl, F.P. Floral scent in food deceptive orchids: Species specificity and sources of variability. Plant Biol. 2007, 9, 720–729. [Google Scholar] [CrossRef]
- Salzmann, C.C.; Nardella, A.M.; Cozzolino, S.; Schiestl, F.P. Variability in floral scent in rewarding and deceptive orchids: The signature of pollinator-imposed selection? Ann. Bot. 2007, 100, 757–765. [Google Scholar] [CrossRef] [Green Version]
- Galizia, C.G.; Kunze, J.; Gumbert, A.; Borg-Karlson, A.K.; Sachse, S.; Markl, C.; Menzel, R. Relationship of visual and olfactory signal parameters in a food-deceptive flower mimicry system. Behav. Ecol. 2005, 16, 159–168. [Google Scholar] [CrossRef]
- Stökl, J.; Twele, R.; Erdmann, D.; Francke, W.; Ayasse, M. Comparison of the flower scent of the sexually deceptive orchid Ophrys iricolor and the female sex pheromone of its pollinator Andrena morio. Chemoecology 2007, 17, 231–233. [Google Scholar] [CrossRef]
- Dodson, C.H.; Dressler, R.L.; Hills, H.G.; Adams, R.M.; Williams, N.H. Biologically active compounds in orchid fragrances. Science 1969, 164, 1243–1249. [Google Scholar] [CrossRef]
- Ayasse, M.; Schiestl, F.P.; Paulus, H.F.; Ibarra, F.; Francke, W. Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals. Proc. R. Soc. B 2003, 270, 517–522. [Google Scholar] [CrossRef] [Green Version]
- Jersáková, J.; Jurgens, A.; Smilauer, P.; Johnson, S.D. The evolution of floral mimicry: Identifying traits that visually attract pollinators. Funct. Ecol. 2012, 26, 1381–1389. [Google Scholar] [CrossRef]
- Peter, C.I.; Johnson, S.D. A pollinator shift explains floral divergence in an orchid species complex in South Africa. Ann. Bot. 2014, 113, 277–288. [Google Scholar] [CrossRef]
- Dafni, A. Mimicry and deception in pollination. Ann. Rev. Ecol. Syst. 1984, 15, 259–278. [Google Scholar] [CrossRef]
- Nilsson, L.A. Anthecology of Orchis morio (Orchidaceae) at its outpost in the north. Nova Acta Regiae Soc. Sci. Ups. 1984, 5, 166–179. [Google Scholar]
- Van Der Cingel, N.A. An Atlas of Orchid Pollination: European Orchids; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Cozzolino, S.; Schiestl, F.; Müller, A.; De Castro, O.; Nardella, A.M.; Widmer, A. Evidence for pollinator sharing in Mediterranean nectar mimic orchids: Absence of premating barriers? Proc. R. Soc. B 2005, 272, 1271–1278. [Google Scholar] [CrossRef] [Green Version]
- Schiestl, F.P. On the success of a swindle: Pollination by deception in orchids. Naturwissenschaften 2005, 92, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Peter, C. Pollination, Floral Deception and Evolutionary Processes in Eulophia (Orchidaceae) and Its Allies. Ph.D. Thesis, University of KwaZulu-Natal, Durban, South Africa, 2009. [Google Scholar]
- D’Auria, M.; Lorenz, R.; Racioppi, R.; Romano, V.A. Fragrance components of Platanthera bifolia subsp. osca. Nat. Prod. Res. 2017, 31, 1612–1619. [Google Scholar] [CrossRef]
- D’Auria, M.; Lorenz, R.; Mecca, M.; Racioppi, R.; Romano, V.A.; Viggiani, L. Fragrance components of Platanthera bifolia subsp. osca and Platanthera chlorantha collected in several sites in Italy. Nat. Prod. Res. 2020, 34, 2857–3861. [Google Scholar] [CrossRef]
- D’Auria, M.; Fascetti, S.; Racioppi, R.; Romano, V.A.; Rosati, L. Orchids from Basilicata: The Scent. In Orchids Phytochemistry, Biology and Horticulture; Merillon, J.-M., Kodja, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 627–648. [Google Scholar]
- D’Auria, M.; Lorenz, R.; Mecca, M.; Racioppi, R.; Romano, V.A. Aroma components of Cephalanthera orchids. Nat. Prod. Res. 2021, 35, 174–177. [Google Scholar] [CrossRef]
- Mecca, M.; Racioppi, R.; Romano, V.A.; Viggiani, L.; Lorenz, R.; D’Auria, M. Volatile organic compounds from Orchis species found in Basilicata (Southern Italy). Compounds 2021, 1, 83–93. [Google Scholar] [CrossRef]
- D’Auria, M.; Lorenz, R.; Mecca, M.; Racioppi, R.; Romano, V.A. The composition of the aroma of Serapias orchids in Basilicata (Southern Italy). Nat. Prod. Res. 2021, 35, 4068–4072. [Google Scholar] [CrossRef]
- Mecca, M.; Racioppi, R.; Romano, V.A.; Viggiani, L.; Lorenz, R.; D’Auria, M. The scent of Himantoglossum species found in Basilicata (Southern Italy). Compounds 2021, 1, 164–173. [Google Scholar] [CrossRef]
- Romano, V.A.; Rosati, L.; Fascetti, S.; Cittadini, A.M.R.; Racioppi, R.; Lorenz, R.; D’Auria, M. Spatial and temporal Variability of the floral scent emitted by Barlia robertiana (Loisel.) Greuter, a Mediterranean food-deceptive orchid. Compounds 2022, 2, 37–53. [Google Scholar] [CrossRef]
- Nilsson, L.A. The pollination ecology of Dactylorhiza sambucina (Orchidaceae). Bot. Not. 1980, 133, 367–385. [Google Scholar]
- Naczk, A.M.; Kowalkowska, A.K.; Wisniewska, N.; Halinski, D.P.; Kapusta, M.; Czerwicka, M. Floral anatomy, ultrastructure and chemical analysis in Dactylorhiza incarnata/maculate complex (Orchidaceae). Bot. J. Linn. Soc. 2018, 187, 512–536. [Google Scholar] [CrossRef]
- Wróblewska, A.; Szczepaniak, L.; Bajguz, A.; Jedrzejczyk, I.; Talalaj, I.; Ostrowiecka, B.; Brzosko, E.; Jermakowicz, E.; Mirski, P. Deceptice strategy in Dactylorhiza orchids: Multidirectional evolution of floral chemistry. Ann. Bot. 2019, 123, 1005–1016. [Google Scholar] [CrossRef]
Compound | r.t. (a) (min.) | KI (b) | D. viridis | D. romana | D. incarnata | D. saccifera | D. sambucina |
---|---|---|---|---|---|---|---|
Area % ± 0.03 | |||||||
Mesityl oxide | 4.94 | 782 | 2.03 | ||||
α-Pinene | 7.78 | 933 | 0.20 | 0.30 | |||
Sabinene | 8.77 | 972 | 2.27 | 2.44 | |||
β-Pinene | 8.86 | 979 | 0.79 | ||||
β-Myrcene | 9.12 | 989 | 2.42 | ||||
2,2,4,6,6-pentamethyl-3-heptene | 9.29 | 1018 | 0.60 | ||||
Limonene | 9.79 | 1028 | 1.88 | ||||
Eucalyptol | 10.00 | 1032 | 2.65 | ||||
β-Ocimene | 10.33 | 1044 | 18.69 | ||||
β-Terpineol | 10.74 | 1085 | 9.48 | ||||
Linalool | 11.22 | 1100 | 0.85 | ||||
Lilac aldehyde A | 12.09 | 1145 | 0.20 | ||||
Lilac aldehyde B | 12.25 | 1154 | 0.90 | ||||
Dodecane | 13.08 | 1200 | 0.45 | ||||
α-Terpineol | 13.16 | 1209 | 2.07 | ||||
Lilac alcohol A | 13.52 | 1221 | 2.08 | ||||
Verbenone | 13.55 | 1223 | 28.86 | ||||
Lilac alcohol B | 13.84 | 1235 | 4.00 | ||||
Citral | 14.55 | 1265 | 4.21 | ||||
Tridecane | 14.88 | 1300 | 2.88 | 0.85 | |||
2,4,4,6,6,8,8-Heptamethyl-2-nonene | 16.02 | 1343 | 1.48 | ||||
α-Cubebene | 16.42 | 1360 | 11.48 | 0.34 | |||
Tetradecane | 16.64 | 1400 | 11.07 | 3.90 | 2.13 | ||
β-Elemene | 16.69 | 1403 | |||||
Caryophyllene | 17.22 | 1420 | 25.67 | 17.38 | 12.90 | ||
Methyl 2-phenylcyclopropanecarboxylate | 17.31 | 1435 | 0.90 | ||||
cis-α-Bergamotene | 17.38 | 1440 | 7.61 | ||||
β-Farnesene | 17.48 | 1458 | 0.68 | ||||
Geranylacetone | 17.61 | 1468 | 6.62 | ||||
Humulene | 17.76 | 1473 | 0.42 | ||||
4,5-Di-epi-aristolochene | 18.23 | 1485 | 10.18 | ||||
Pentadecane | 18.25 | 1500 | 2.09 | 18.40 | 28.40 | 6.43 | |
β-Selinene | 18.40 | 1511 | 1.28 | ||||
α-Farnesene | 18.45 | 1518 | 14.65 | 3.30 | |||
β-Bisabolene | 18.50 | 1523 | 2.64 | ||||
δ-Cadinene | 18.78 | 1530 | 6.94 | ||||
7-Hexadecenal | 18.64 | 1555 | 1.00 | ||||
β-Sesquiphellandrene | 18.76 | 1557 | 32.16 | ||||
Elemicin | 19.07 | 1566 | 3.30 | ||||
Hexadecane | 19.71 | 1600 | 19.53 | 6.13 | 1.06 | ||
Methyl dihydrojasmonate | 20.32 | 1650 | 2.55 | 1.23 | |||
Cyclotetradecane | 20.47 | 1673 | 1.58 | ||||
Heptadecane | 21.14 | 1700 | 17.33 | 5.08 | 0.64 | ||
3,5-Di-t-butyl-4-hydroxybenzaldehyde | 22.13 | 1772 | 4.38 | ||||
Octadecane | 22.48 | 1800 | 8.24 | 3.40 | 0.25 | ||
Phytone | 23.14 | 1848 | 0.58 | ||||
Nonadecane | 23.70 | 1900 | 2.93 | ||||
Isopropyl 14-methylpentadecanoate | 25.35 | 1915 | 14.32 | 1.94 | |||
7,9-Di-t-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione | 24.11 | 1929 | 1.88 | ||||
Eicosane | 24.93 | 2000 | 1.83 | ||||
13-epi-Manoyl oxide | 25.49 | 2015 | 3.42 | ||||
Docosane | 27.22 | 2200 | 1.93 | ||||
Tricosane | 28.31 | 2300 | 2.28 | ||||
Bis(1-phenylethyl)phenol | 30.98 | 2426 | 2.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mecca, M.; Racioppi, R.; Romano, V.A.; Viggiani, L.; Lorenz, R.; D’Auria, M. Volatile Organic Compounds in Dactylorhiza Species. Compounds 2022, 2, 121-130. https://doi.org/10.3390/compounds2020009
Mecca M, Racioppi R, Romano VA, Viggiani L, Lorenz R, D’Auria M. Volatile Organic Compounds in Dactylorhiza Species. Compounds. 2022; 2(2):121-130. https://doi.org/10.3390/compounds2020009
Chicago/Turabian StyleMecca, Marisabel, Rocco Racioppi, Vito Antonio Romano, Licia Viggiani, Richard Lorenz, and Maurizio D’Auria. 2022. "Volatile Organic Compounds in Dactylorhiza Species" Compounds 2, no. 2: 121-130. https://doi.org/10.3390/compounds2020009
APA StyleMecca, M., Racioppi, R., Romano, V. A., Viggiani, L., Lorenz, R., & D’Auria, M. (2022). Volatile Organic Compounds in Dactylorhiza Species. Compounds, 2(2), 121-130. https://doi.org/10.3390/compounds2020009