Effect of Anthelmintic Treatment on the Agreement Between Real-Time Polymerase Chain Reaction (RT-PCR) and Kato–Katz Microscopic Technique in the Diagnosis of Soil-Transmitted Helminth Infections
Abstract
:1. Background
2. Methods
2.1. Study Site
2.2. Study Population and Study Design
2.3. Stool Sample Collection
2.4. Kato–Katz Test
2.5. Nucleic Acid Isolation
2.6. Parasite DNA Detection by RT-PCR Triplex
2.7. Statistical Considerations
2.8. Ethical Consideration
3. Results
3.1. Study Population Characteristics
3.2. Distribution of the Proportion of STH Infections Using Microscopy and RT-PCR Triplex
3.3. Cure Rate (CR) Assessment Using Microscopy and RT-PCR)
3.4. Association between Egg Load by Microscopy (Log EPG) and RT-PCR Ct-Values
3.5. Agreement Between Microscopy and RT-PCR Test Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Soil-Transmitted Helminth Infections. Available online: https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections (accessed on 18 January 2023).
- Partners for Parasite Control; World Health Organization; Strategy Development and Monitoring for Parasitic Diseases and Vector Control Team. Deworming for Health and Development: Report of the Third Global Meeting of the Partners for Parasite Control; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- World Health Organization Team (WHO Team). Guideline: Preventive Chemotherapy to Control Soil-Transmitted Helminth Infections At-Risk Population Groups. In Control of Neglected Tropical Diseases; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Becker, S.L.; Liwanag, H.J.; Snyder, J.S.; Akoung, O.; Belazario, V., Jr.; Freeman, M.C.; Gyorkos, T.W.; Imtiaz, R.; Kesier, J.; Krolewiecki, A.; et al. Toward the 2020 goal of soil-transmitted helminthiasis control and elimination. PLoS Neglected Trop. Dis. 2018, 12, e0006606. [Google Scholar] [CrossRef] [PubMed]
- Barda, B.D.; Keiser, J.; Albonico, M. Human Trichuriasis: Diagnostics Update. Curr. Trop. Med. Rep. 2015, 2, 201–208. [Google Scholar] [CrossRef]
- Kaisar, M.M.M.; Brienen, E.A.T.; Djuardi, Y.; Sartono, E.; Yazdanbakhsh, M.; Verweij, J.J.; Supali, T.; van Lieshout, L. Improved diagnosis of Trichuris trichiura by using a bead-beating procedure on ethanol preserved stool samples before DNA isolation and the performance of multiplex real-time PCR for intestinal parasites. Parasitology 2017, 144, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Schär, F.; Odermatt, P.; Khieu, V.; Panning, M.; Duong, S.; Muth, S.; Marti, H.; Kramme, S. Evaluation of real-time PCR for Strongyloides stercoralis and hookworm as diagnostic tool in asymptomatic schoolchildren in Cambodia. Acta Trop. 2013, 126, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Gandasegui, J.; Martínez-Valladares, M.; Grau-Pujol, B.; Krolewiecki, A.J.; Balaña-Fouce, R.; Gelaye, W.; van Lieshout, L.; Kepha, S.; Mandomando, I.; Muñoz, J.; et al. Role of DNA-detection-based tools for monitoring the soil-transmitted helminth treatment response in drug-efficacy trials. PLoS Neglected Trop. Dis. 2020, 14, e0007931. [Google Scholar] [CrossRef] [PubMed]
- Basuni, M.; Muhi, J.; Othman, N.; Verweij, J.J.; Ahmad, M.; Miswan, N.; Rahumatullah, A.; Aziz, F.A.; Zainudin, N.S.; Noordin, R. A pentaplex real-time polymerase chain reaction assay for detection of four species of soil-transmitted helminths. Am. J. Trop. Med. Hyg. 2011, 84, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Taniuchi, M.; Verweij, J.J.; Noor, Z.; Sobuz, S.U.; van Lieshout, L.; Petri, W.A., Jr.; Haque, R.; Houpt, E.R. High throughput multiplex PCR and probe-based detection with Luminex beads for seven intestinal parasites. Am. J. Trop. Med. Hyg. 2011, 84, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Keller, L.; Patel, C.; Welsche, S.; Schindler, T.; Hürlimann, E.; Keiser, J. Performance of the Kato—Katz method and real time polymerase chain reaction for the diagnosis of soil-transmitted helminthiasis in the framework of a randomised controlled trial: Treatment efficacy and day-to-day variation. Parasites Vectors 2020, 13, 517. [Google Scholar] [CrossRef] [PubMed]
- Verweij, J.J.; Brienen, E.A.; Ziem, J.; Yelifari, L.; Polderman, A.M.; Van Lieshout, L. Simultaneous detection and quantification of Ancylostoma duodenale, Necator americanus, and Oesophagostomum bifurcum in fecal samples using multiplex real-time PCR. Am. J. Trop. Med. Hyg. 2007, 77, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Ramharter, M.; Agnandji, S.T.; Adegnika, A.A.; Lell, B.; Mombo-Ngoma, G.; Grobusch, M.P.; McCall, M.; Muranaka, R.; Kreidenweiss, A.; Velavan, T.P.; et al. Development of sustainable research excellence with a global perspective on infectious diseases: Centre de Recherches Médicales de Lambaréné (CERMEL), Gabon. Wien. Klin. Wochenschr. 2021, 133, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Dejon-Agobé, J.C.; Honkpehedji, Y.J.; Zinsou, J.F.; Edoa, J.R.; Adégbitè, B.R.; Mangaboula, A.; Agnandji, S.T.; Mombo-Ngoma, G.; Ramharter, M.; Kremsner, P.G.; et al. Epidemiology of Schistosomiasis and Soil-Transmitted Helminth Coinfections among Schoolchildren Living in Lambaréné, Gabon. Am. J. Trop. Med. Hyg. 2020, 103, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Genchi, M.; Potters, I.; Kaminsky, R.G.; Montresor, A.; Magnino, S. Bench Aids for the Diagnosis of Intestinal Parasites, 2nd ed.; World Health Organization: Geneva, Switzerland, 2019; Available online: https://iris.who.int/bitstream/handle/10665/324883/9789241515344-eng.pdf?sequence=1&isAllowed=y (accessed on 23 May 2019).
- Mbong Ngwese, M.; Prince Manouana, G.; Nguema Moure, P.A.; Ramharter, M.; Esen, M.; Adégnika, A.A. Diagnostic Techniques of Soil-Trensmitted Helminths: Impact on Control Mesures. Trop. Med. Infect. Dis. 2020, 5, 93. [Google Scholar] [CrossRef]
- World Health Organization. Assessing the Efficacy of Anthelminthic Drugs against Schistosomiasis and Soil-Transmitted Helminthiases; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Maylasari, R.; Wulandhary, S.; Supali, T.; Abinawanto, A. Detection of Submicroscopic Soil-Transmitted Helminth Infections from Fecal Samples in Nangapanda, Ende, Using Real-Time Polymerase Chain Reaction. Makara J. Sci. 2014, 18, 3. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 978-0-8058-0283-2. [Google Scholar]
- Intra Cerebral Brain Haemorrhage, Harmonisation for Better Health. Available online: https://www.ich.org/home.htm. (accessed on 24 April 2020).
- World Medical Association. The 2022 Declaration of Helsinki-Ethical Principles for Medical Research Involving Human Subjects. Available online: https://www.wma.net/fr/policies-post/declaration-dhelsinki-de-lamm-principes-ethiques-applicables-a-la-recherche-medicale-impliquant-des-etres-humains (accessed on 15 March 2022).
- Srirungruang, S.; Mahajindawong, B.; Nimitpanya, P.; Bunkasem, U.; Ayuyoe, P.; Nuchprayoon, S.; Sanprasert, V. Comparative Study of DNA Extraction Methods for the PCR Detection of Intestinal Parasites in Human Stool Samples. Diagnostics 2022, 12, 2588. [Google Scholar] [CrossRef] [PubMed]
- Boonyong, S.; Hunnangkul, S.; Vijit, S.; Wattano, S.; Tantayapirak, P.; Loymek, S.; Wongkamchai, S. High-throughput detection of parasites and ova in stool using the fully automatic digital feces analyzer, orienter model fa280. Parasites Vectors 2024, 17, 13. [Google Scholar] [CrossRef] [PubMed]
- Khurana, S.; Sethi, S. Laboratory diagnosis of soil transmitted helminthiasis. Trop. Parasitol. 2017, 7, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Lamberton, P.H.; Jourdan, P.M. Human Ascariasis: Diagnostics Update. Curr. Trop. Med. Rep. 2015, 2, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Mugo, R.M.; Rausch, S.; Musimbi, Z.D.; Strube, C.; Raulf, M.K.; Landt, O.; Gichuki, P.M.; Ebner, F.; Mwacharo, J.; Odiere, M.R.; et al. Evaluation of copromicroscopy, multiplex-qPCR and antibody serology for monitoring of human ascariasis in endemic settings. PLoS Neglected Trop. Dis. 2024, 18, e0012279. [Google Scholar] [CrossRef] [PubMed]
- Nguema Moure, P.A.; Nzamba Maloum, M.; Manouana, G.P.; Laclong Lontchi, R.-A.; Mbong Ngwese, M.; Edoa, J.R.; Fréjus Zinsou, J.; Meulah, B.; Mahmoudou, S.; N’noh Dansou, E.M.; et al. A randomized assessors-blind clinical trial to evaluate the safety and the efficacy of albendazole alone and in combination with mebendazole or pyrantel for the treatment of Trichuris trichiura infection in school-aged children in Lambaréné and surroundings. Antimicrob. Agents Chemother. 2024, 68, e0121123. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Team (WHO Team). Prevention and Control of Intestinal Parasitic Infections: WHO Technical Report Series N°749. Available online: https://www.who.int/publications/i/item/WHO-TRS-749 (accessed on 8 May 2024).
- Wiria, A.E.; Prasetyani, M.A.; Hamid, F.; Wammes, L.J.; Lell, B.; Ariawan, I.; Uh, H.W.; Wibowo, H.; Djuardi, Y.; Wahyuni, S.; et al. Does treatment of intestinal helminth infections influence malaria? Background and methodology of a longitudinal study of clinical, parasitological and immunological parameters in Nangapanda, Flores, Indonesia (ImmunoSPIN Study). BMC Infect. Dis. 2010, 10, 77. [Google Scholar]
- Liu, J.; Gratz, J.; Amour, C.; Nshama, R.; Walongo, T.; Maro, A.; Mduma, E.; Platts-Mills, J.; Boisen, N.; Nataro, J.; et al. Optimization of quantitative PCR methods for enteropathogen detection. PLoS ONE 2016, 11, e0158199. [Google Scholar]
- Niesters, H.G.M. Clinical virology in real time. J. Clin. Virol. 2002, 25, 3–12. [Google Scholar]
Variables | Baseline | 3 Weeks Post-Treatment | 6 Weeks Post-Treatment | |||
---|---|---|---|---|---|---|
N | % | N | % | N | % | |
Total (N) | 280 | - | 211 | - | 165 | - |
Sex | ||||||
Female | 140 | 50.0 | 106 | 50.2 | 81 | 40.0 |
Male | 140 | 50.0 | 105 | 49.7 | 84 | 50.9 |
Female-to-male sex ratio | 1.0 | - | 1.0 | - | 0.9 | - |
Mean age (SD) | 7.7 (3.5) | - | 7.5 (3.4) | - | 7.5 (3.2) | - |
Age group (in years) | ||||||
2–5 | 95 | 33.9 | 72 | 34.1 | 54 | 36.2 |
6–10 | 112 | 40.0 | 88 | 41.7 | 74 | 49.6 |
11–17 | 73 | 26.0 | 51 | 24.1 | 37 | 24.6 |
Locality | ||||||
Semi-urban | 8 | 2.8 | 5 | 2.3 | 6 | 4.0 |
Rural area 1 | 122 | 43.5 | 97 | 45.9 | 79 | 47.8 |
Rural area 2 | 150 | 53.3 | 109 | 51.6 | 80 | 48.4 |
Baseline | Three Weeks Post-Treatment | Six Weeks Post-Treatment | ||||
---|---|---|---|---|---|---|
n | % | n | % | n | % | |
Total (N) | 280 | 211 | 165 | |||
STH species distribution and infection intensity using microscopy | ||||||
Ascaris lumbricoïdes | 144 | 51.4 | 6 | 2.8 | 4 | 2.4 |
Eggs per gram (mean) | (15,025.5) | - | (6.9) | - | (15.4) | |
Light | 59 | 41.0 | 6 | 100 | 4 | 100 |
Moderate | 60 | 41.7 | - | - | - | - |
Heavy | 25 | 17.4 | - | - | - | - |
T. trichiura | 213 | 76.1 | 65 | 30.8 | 62 | 37.6 |
Eggs per gram | (518.5) | - | (45.7) | - | (152.8) | - |
Light | 176 | 82.6 | 64 | 98.5 | 57 | 91.9 |
Moderate | 36 | 16.9 | 1 | 1.5 | 5 | 8.1 |
Heavy | 1 | 0.5 | - | - | - | - |
Hookworms | 57 | 26.8 | 2 | 0.9 | 0 | 0.0 |
Eggs per gram (mean) | (63.8) | - | (0.30) | - | (0.0) | - |
Light | 55 | 96.5 | 4 | 100 | - | - |
Moderate | 2 | 3.5 | - | - | - | - |
Heavy | - | - | - | - | - | - |
STH species distribution and infection intensity using RT-PCR | ||||||
A. lumbricoïdes | 197 | 70.4 | 61 | 28.9 | 49 | 30.0 |
Ct value (mean) | (29.3) | - | (34.6) | - | (35.1) | |
Low | 29 | 14.7 | 28 | 45.9 | 24 | 49.0 |
Moderate | 61 | 31.0 | 27 | 44.3 | 22 | 44.9 |
High | 107 | 54.3 | 6 | 9.8 | 3 | 6.1 |
T. trichiura | 222 | 79.3 | 97 | 46.0 | 81 | 49.1 |
Ct value (mean) | (32.0) | (35.6) | - | (36.5) | - | |
Low | 57 | 25.7 | 54 | 55.7 | 57 | 70.4 |
Moderate | 85 | 38.3 | 36 | 37.1 | 20 | 24.7 |
High | 80 | 36.0 | 7 | 7.2 | 4 | 4.9 |
Hookworms | 58 | 20.7 | 5 | 2.4 | 8 | 4.8 |
Ct value (mean) | (35.2) | - | (34.6) | - | (38.9) | |
Low | 22 | 37.9 | 1 | 20.0 | 8 | 100.0 |
Moderate | 23 | 39.6 | 4 | 80.0 | - | - |
High | 13 | 22.4 | - | - | - | - |
Three Weeks Post-Treatment | Six Weeks Post-Treatment | |||||||
---|---|---|---|---|---|---|---|---|
N | n | CR in % | 95% CI (CR) | N | n | CR in % | 95% CI (CR) | |
Microscopy method | ||||||||
A. lumbricoides | 102 | 99 | 97.0 | 91.7–98.9 | 87 | 84 | 96.5 | 90.3–98.8 |
T. trichiura | 165 | 105 | 63.6 | 56.0–70.5 | 130 | 70 | 53.8 | 45.2–62.1 |
Hookworm | 42 | 39 | 92.8 | 80.9–97.5 | 29 | 29 | 100.0 | 88.3–100.0 |
RT-PCR method | ||||||||
A. lumbricoides | 146 | 111 | 76.0 | 68.4–82.2 | 118 | 87 | 73.8 | 65.1–80.8 |
T. trichiura | 170 | 99 | 58.2 | 50.7–65.2 | 135 | 56 | 41.4 | 33.5–49.9 |
Hookworm | 42 | 39 | 92.8 | 80.9–97.5 | 31 | 29 | 93.5 | 79.2–98.2 |
RT-PCR Triplex | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Baseline (N = 280) | Three Weeks Post-Treatment (N = 211) | Six Weeks Post-Treatment (N = 149) | ||||||||||
Microscopy (Kato–Katz) | Positive n, (%) | Negative n, (%) | Total n, (%) | K Statistic, 95% CI (K), p-Value | Positive n, (%) | Negative n, (%) | Total n, (%) | K Statistic, 95% CI (K), p-Value | Positive n, (%) | Negative n, (%) | Total n, (%) | K Statistic, 95% CI (K), p-Value |
A. lumbricoides | ||||||||||||
Positive | 133, (47.5) | 11, (3.9) | 144, (51.4) | 0.46, | 6, (2.8) | 0, (0.0) | 6, (2.8) | 0.14, | 4, (2.4) | 0, (0.0) | 4, (2.4) | 0.11 |
Negative | 64, (22.9) | 72, (25.7) | 136, (48.5) | [0.37–0.56] | 54, (26.0) | 151, (72.9) | 205, (97.1) | [0.07–0.20] | 45, (27.2) | 116, (70.3) | 161, (97.5) | [0.06–0.18] |
Total | 197, (70.3) | 83, (29.6) | 280 | p < 0.001 | 60, (21.4) | 151, (70.0) | 211 | p < 0,0001 | 49, (29.6) | 116, (70.3) | 165 | p = 0.002 |
T. trichiura | ||||||||||||
Positive | 193, (68.9) | 20, (7.1) | 213, (76.0) | 0.50, | 57, (27.0) | 8, (3.7) | 65, (30.8) | 0.52, | 54, (32.7) | 8, (4.8) | 62, (37.5) | 0.57, |
Negative | 29, (10.3) | 38, (13.5) | 67, (23.7) | [0.39–0.58] | 41, (19.4) | 105 (49.7) | 146, (69.1) | [0.42–0.61] | 27, (16.3) | 76, (46.0.) | 103, (62.4) | [0.47–0.66] |
Total | 222, (79.2) | 57, (20.7) | 280 | p < 0.001 | 98, (46.4) | 113, (53.5) | 211 | p < 0.001 | 81, (49.0) | 84, (50.9) | 165 | p < 0.001 |
Hookworm | ||||||||||||
Positive | 34, (12.1) | 28, (8.5) | 57, (20.3) | 0.45, | 2, (0.9) | 0, (0.0) | 2, (0.9) | 0.49 | 0, (0) | 0, (0) | 0, (0) | 0.0 |
Negative | 24, (10.0) | 194, (69.2) | 218, (77.8) | [0.34–0.53] | 4, (1.9) | 205, (97.2) | 209, (99.1) | [0.39–0.58] | 8, (2.0%) | 157, (94.6) | 165, (100.0) | [0.00–0.02] |
Total | 58, (20.7) | 222, (79.2) | 280 | p < 0.001 | 6, (2.8) | 205, (97.2) | 211 | p < 0001 | 8, (2.0%) | 157, (94.6) | 165 | p = 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguema-Moure, P.A.; Dejon-Agobé, J.C.; Laclong Lontchi, R.-A.; Manouana, G.P.; Nzamba Maloum, M.; Meulah, B.; Manfoumbi Mabicka, D.C.; Nzame Ngome, M.E.; Kremsner, P.G.; Adegnika, A.A. Effect of Anthelmintic Treatment on the Agreement Between Real-Time Polymerase Chain Reaction (RT-PCR) and Kato–Katz Microscopic Technique in the Diagnosis of Soil-Transmitted Helminth Infections. Parasitologia 2024, 4, 345-357. https://doi.org/10.3390/parasitologia4040030
Nguema-Moure PA, Dejon-Agobé JC, Laclong Lontchi R-A, Manouana GP, Nzamba Maloum M, Meulah B, Manfoumbi Mabicka DC, Nzame Ngome ME, Kremsner PG, Adegnika AA. Effect of Anthelmintic Treatment on the Agreement Between Real-Time Polymerase Chain Reaction (RT-PCR) and Kato–Katz Microscopic Technique in the Diagnosis of Soil-Transmitted Helminth Infections. Parasitologia. 2024; 4(4):345-357. https://doi.org/10.3390/parasitologia4040030
Chicago/Turabian StyleNguema-Moure, Paul Alvyn, Jean Claude Dejon-Agobé, Roméo-Aimé Laclong Lontchi, Gédéon Prince Manouana, Moustapha Nzamba Maloum, Brice Meulah, Danny Carrel Manfoumbi Mabicka, Marguerite Emmanuelle Nzame Ngome, Peter Gottfried Kremsner, and Ayôla Akim Adegnika. 2024. "Effect of Anthelmintic Treatment on the Agreement Between Real-Time Polymerase Chain Reaction (RT-PCR) and Kato–Katz Microscopic Technique in the Diagnosis of Soil-Transmitted Helminth Infections" Parasitologia 4, no. 4: 345-357. https://doi.org/10.3390/parasitologia4040030
APA StyleNguema-Moure, P. A., Dejon-Agobé, J. C., Laclong Lontchi, R.-A., Manouana, G. P., Nzamba Maloum, M., Meulah, B., Manfoumbi Mabicka, D. C., Nzame Ngome, M. E., Kremsner, P. G., & Adegnika, A. A. (2024). Effect of Anthelmintic Treatment on the Agreement Between Real-Time Polymerase Chain Reaction (RT-PCR) and Kato–Katz Microscopic Technique in the Diagnosis of Soil-Transmitted Helminth Infections. Parasitologia, 4(4), 345-357. https://doi.org/10.3390/parasitologia4040030