Potential Role of the Eastern Mosquitofish (Gambusia holbrooki) in the Spread of the Harmful Fish Parasite, Asian Tapeworm Schyzocotyle (Bothriocephalus) acheilognathi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Sites
2.3. Sampling
2.4. DNA Extraction, Amplification, and Phylogenetic Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huffaker, C.B. Theory and Practice of Biological Control; Elsevier: Amsterdam, The Netherlands, 2012; 810p. [Google Scholar]
- Heimpel, G.E.; Mills, N.J. Biological Control: Ecology and Applications; Cambridge University Press: Cambridge, UK, 2017; 380p. [Google Scholar]
- Lodge, D.M. Biological invasions: Lessons for ecology. Trends Ecol. Evol. 1993, 8, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Simberloff, D.; Martin, J.-L.; Genovesi, P.; Maris, V.; Wardle, D.A.; Aronson, J.; Courchamp, F.; Galil, B.; García-Berthou, E.; Pascal, M. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 2013, 28, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Walton, W.E.; Henke, J.A.; Why, A.M. Gambusia affinis (Baird and Girard) and Gambusia holbrooki Girard (Mosquitofish). In A Handbook of Global Freshwater Invasive Species; Earthscan: London, UK, 2012; pp. 261–273. [Google Scholar]
- Reshetnikov, A.N.; Zibrova, M.G.; Dgebuadze, Y.Y. Gambusia holbrooki (Girard, 1859). In The Most Dangerous Invasive Species of Russia (TOP-100); Dgebuadze, Y.Y., Petrosyan, V.G., Khlyap, L.A., Eds.; KMK: Moscow, Russia, 2018; pp. 538–545. [Google Scholar]
- Reznik, P.A. About introduction of mosquitofish on Northern Causasus (Voroshilovsk town). Priroda 1938, 5, 97–99. [Google Scholar]
- Miura, T.; Takahashi, R.M.; Wilder, W.H. Impact of the mosquitofish (Gambusia affinis) on a rice field ecosystem when used as a mosquito control agent. Mosq. News 1984, 44, 510–517. [Google Scholar]
- White, A.; Pyke, G. World War II and the rise of the plague minnow Gambusia holbrooki (Girard, 1859) in Australia. Aust. Zool. 2011, 35, 1024–1032. [Google Scholar] [CrossRef]
- Tuniyev, B.S.; Shagarov, L.M.; Arribas, O.J. Podarcis siculus (Reptilia: Sauria: Lacertidae), a new alien species for Russian fauna. Proc. Zool. Inst. Russ. Acad. Sci. 2020, 324, 364–370. [Google Scholar] [CrossRef]
- Karabanov, D.P.; Kodukhova, Y.V.; Pashkov, A.N.; Reshetnikov, A.N.; Makhrov, A.A. “Journey to the West”: Three phylogenetic lineages contributed to the invasion of Stone Moroko, Pseudorasbora parva (Actinopterygii: Cyprinidae). Russ. J. Biol. Invasions 2021, 12, 67–78. [Google Scholar] [CrossRef]
- Makhrov, A.A.; Artamonova, V.S.; Sun, Y.-H.; Fang, Y.; Pashkov, A.N.; Reshetnikov, A.N. New Records of the Alien Chinese Ricefish (Oryzias sinensis) and Its Dispersal History across Eurasia. Diversity 2023, 15, 317. [Google Scholar] [CrossRef]
- Reshetnikov, A.N.; Zibrova, M.G.; Ayaz, D.; Bhattarai, S.; Borodin, O.V.; Borzée, A.; Brejcha, J.; Çiçek, K.; Dimaki, M.; Doronin, I.V.; et al. Rarely naturalized, but widespread and even invasive: The paradox of a popular pet terrapin expansion in Eurasia. NeoBiota 2023, 81, 91–127. [Google Scholar] [CrossRef]
- Zabaluev, I.A.; Bieńkowski, A.O.; Orlova-Bienkowskaja, M.J. First record of potential cabbage pest Aulacobaris cuprirostris (Coleoptera, Curculionidae) in Russia. Russ. J. Biol. Invasions 2020, 11, 314–317. [Google Scholar] [CrossRef]
- Fedorova, M.V.; Shvez, O.G.; Patraman, I.V.; Medyanik, I.M.; Otstavnova, A.D.; Lenshin, S.V.; Vyshemirskij, O.I. Invasive mosquito species of the Black sea coast of the Caucasus: Current ranges. Med. Parasitol. Parasit. Dis. 2019, 1, 47–55. [Google Scholar]
- Krivosheina, M.G.; Khlyap, L.A. Cydalima perspectalis (Walker, 1859). In The Most Dangerous Invasive Species of Russia (TOP-100); Dgebuadze, Y.Y., Petrosyan, V.G., Khlyap, L.A., Eds.; KMK: Moscow, Russia, 2018; pp. 472–477. [Google Scholar]
- Cabrera, M.B.; Bogan, S.; Posadas, P.; Somoza, G.M.; Montoya-Burgos, J.I.; Cardoso, Y.P. Risks associated with introduction of poeciliids for control of mosquito larvae: First record of the non-native Gambusia holbrooki in Argentina. J. Fish Biol. 2017, 91, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Veenvliet, P. Species identity of Gambusia (Pisces: Poeciliidae) introduced to Slovenia. Nat. Slov. 2007, 9, 43–46. [Google Scholar] [CrossRef]
- Bykhovskaya-Pavlovskaya, I.E. Fish Parasites. Study Guide; Nauka: Leningrad, Russia, 1985; 121p. [Google Scholar]
- Moravec, F. Parasitic Nematodes of Freshwater Fishes of Europe; Springer: Berlin/Heidelberg, Germany, 1994; 470p. [Google Scholar]
- Vismanis, K.O.; Lomakin, V.V.; Roitman, V.A.; Semenova, M.K.; Trofimenko, V.Y. Nemathehelminthes. In Key to the Parasites of Freshwater Fishes of the Fauna of the USSR. Part 2; Bauer, O.N., Ed.; Nauka: Leningrad, Russia, 1987. [Google Scholar]
- Protasova, E.N. Botryocephalates-Tapeworm Helminths of Fishes; Fundamentals of Cestodology; Nauka: Leningrad, Russia, 1977; Volume 8, 290p. [Google Scholar]
- World Register of Marine Species: WoRMS. Available online: https://www.marinespecies.org (accessed on 1 July 2024).
- Bush, A.O.; Lafferty, K.D.; Lotz, J.M.; Shostak, A.W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 1997, 83, 575–583. [Google Scholar] [CrossRef]
- Joyce, S.A.; Reid, A.P.; Driver, F.; Curran, J. Application of polymerase chain reaction (PCR) methods to the identification of entomopathogenic nematodes. In Proceedings of the Symposium & Workshop, St. Patrick’s College, Maynooth, County Kildare, Ireland; Burnell, A.M., Ehlers, R.-U., Masson, J.P., Eds.; European Commission: Luxembourg, 1994; pp. 178–187. [Google Scholar]
- Scholz, T.; Hanzelová, V.; Škeříková, A.; Shimazu, T.; Rolbiecki, L. An annotated list of species of the Proteocephalus Weinland, 1858 aggregate sensu de Chambrier et al. (2004) (Cestoda: Proteocephalidea), parasites of fishes in the Palaearctic Region, their phylogenetic relationships and a key to their identification. Syst. Parasitol. 2007, 67, 139–156. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree v1.4. Molecular Evolution, Phylogenetics and Epidemiology. Available online: https://github.com/rambaut/figtree/releases (accessed on 1 July 2024).
- Leis, E.; Easy, R.; Cone, D. Report of the potential fish pathogen Pseudocapillaria (Pseudocapillaria) tomentosa (Dujardin, 1843) (Nematoda) from red Shiner (Cyprinella lutrensis) shipped from Missouri to Wisconsin. Comp. Parasitol. 2016, 83, 275–278. [Google Scholar] [CrossRef]
- Brabec, J.; Kuchta, R.; Scholz, T.; Littlewood, D.T.J. Paralogues of nuclear ribosomal genes conceal phylogenetic signals within the invasive Asian fish tapeworm lineage: Evidence from next generation sequencing data. Int. J. Parasitol. 2016, 46, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Yera, H.; Kuchta, R.; Brabec, J.; Peyron, F.; Dupouy-Camet, J. First identification of eggs of the Asian fish tapeworm Bothriocephalus acheilognathi (Cestoda: Bothriocephalidea) in human stool. Parasitol. Int. 2013, 62, 268–271. [Google Scholar] [CrossRef]
- Mejía-Madrid, H.H.; Domínguez-Domínguez, O.; de León, G.P.-P. Adult endohelminth parasites of Goodeinae (Cyprinodontiformes: Goodeidae) from Mexico with biogeographical considerations. Comp. Parasitol. 2005, 72, 200–211. [Google Scholar] [CrossRef]
- Gaevskaya, A.V. Parasites and Diseases of Fishes of Black and Azov Seas V.2; EKOSI-Gidrofizika: Sevastopol, Ukraine, 2013; 354p. [Google Scholar]
- Reshetnikov, S.I.; Pashkov, A.N. Ecosystems of Small Rivers of Black Sea Coast of North-West Caucasus; Biotekh-Youg: Krasnodar, Russia, 2009; 152p. [Google Scholar]
- Chunchukova, M.; Kuzmanova, D.; Kirin, D. Biodiversity of the helminth communities of Carassius gibelio (Bloch, 1782) from Maritsa river, Bulgaria. Sci. Papers Ser. D Anim. Sci. 2023, 66, 532–537. [Google Scholar]
- Moravec, F.; Konečný, R.; Baska, F.; Rydlo, M.; Scholz, T.; Molnár, K.; Schiemer, F. Endohelminth Fauna of Barbel, Barbus Barbus (L.), Under Ecological Conditions of the Danube Basin in Central Europe; Academia: Praha, Czech Republic, 1997; 98p. [Google Scholar]
- Choudhury, A.; Cole, R. Bothriocephalus acheilognathi Yamaguti (Asian tapeworm). In A Handbook of Global Freshwater Invasive Species; Francis, R.A., Ed.; Earthscan: London, UK, 2012; pp. 385–400. [Google Scholar]
- Kuchta, R.; Choudhury, A.; Scholz, T. Asian fish tapeworm: The most successful invasive parasite in freshwaters. Trends Parasitol. 2018, 34, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Maldonado, G.; Pineda-López, R.F. The Asian fish tapeworm Bothriocephalus acheilognathi: A potential threat to native freshwater fish species in Mexico. Biol. Invasions 2003, 5, 261–268. [Google Scholar] [CrossRef]
- Kline, J.; Archdeacon, T.; Iles, A.C.; Bonar, S.A. Factors influencing distribution of introduced Asian tapeworm and effects on selected southwestern fishes (Yaqui topminnow and Yaqui chub). In Heritage Program, Arizona Game and Fish Department, Phoenix; USGS: Yuma, AZ, USA, 2007; 55p. [Google Scholar]
- Andreev, M.E.; Voronova, A.N.; Vainutis, K.S. Features of the parasite fauna of the Luchegorsk reservoir in the autumn period. In Proceedings of the All-Russian Scientific Conference with International Participation, Dedicated to the 300th Anniversary of the Russian Academy of Sciences, 55th Anniversary of the Institute of Water and Ecology Problems, FEB RAS, and 60th Anniversary of Nature Reserves in Priamurye, Khabarovsk, Russia, 3–6 October 2023; IWEP FEB RAS: Khabarovsk, Russia, 2023. [Google Scholar]
- Chaudhary, A.; Chiary, H.R.; Sharma, B.; Singh, H.S. First molecular identification of invasive tapeworm, Bothriocephalus acheilognathi Yamaguti, 1934 (Cestoda: Bothriocephalidea) in India. Bioinvasions Rec. 2015, 4, 269–276. [Google Scholar] [CrossRef]
- Hansen, H.; Alarcon, M. First record of the Asian fish tapeworm Schyzocotyle (Bothriocephalus) acheilognathi (Yamaguti, 1934) in Scandinavia. Bioinvasions Rec. 2019, 9, 437–441. [Google Scholar] [CrossRef]
- Bychkova, E.I.; Yakovich, M.M.; Degtyarik, S.M. Alien species of fish helminths of Belarus. Russ. J. Biol. Invasions 2022, 13, 15–21. [Google Scholar] [CrossRef]
- Dove, A.D.M.; Fletcher, A.S. The distribution of the introduced tapeworm Bothriocephalus acheilognathi in Australian freshwater fishes. J. Helminthol. 2000, 74, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Hovhannisyan, R.L.; Rukhkyan, M.Y.; Harutyunova, L.D.; Magomedova, M.Z.; Magomedova, P.D. The fish helminth fauna of Lake Sevan during a period of water level change. South Russ. Ecol. Dev. 2023, 18, 50–59. [Google Scholar] [CrossRef]
- Pofuk, M. Non-Indigenous parasites of fish in inland waters of Croatia. Croat. J. Fish. 2021, 79, 187–204. [Google Scholar] [CrossRef]
- Riggs, M.R.; Esch, G.W. The suprapopulation dynamics of Bothriocephalus acheilognathi in a North Carolina reservoir: Abundance, dispersion, and prevalence. J. Parasitol. 1987, 73, 877–892. [Google Scholar] [CrossRef]
- Öztürk, T.; Özer, A. Comparative invasive Asian tapeworm Bothriocephalus acheilognathi infections on the Lower Kizilirmak delta fishes. J. Acad. Doc. Fish. Aquac. 2014, 1, 1–7. [Google Scholar]
- Prigli, M. The role of aquatic birds in spreading Bothriocephalus gowkongensis Yeh, 1955 (Cestoda). Parasitol. Hung. 1975, 8, 61–62. [Google Scholar]
- Maceda-Veiga, A.; Cano-Rocabayera, O.; de Sostoa, A.; Cable, J. Low parasite prevalence in the invasive fish Gambusia holbroki in riverine and stagnant waters in north-eastern Spain. Bull. Eur. Assoc. Fish Pathol. 2019, 39, 70–76. [Google Scholar]
- Benejam, L.; Alcaraz, C.; Sasal, P.; Simon-Levert, G.; García-Berthou, E. Life history and parasites of the invasive mosquitofish (Gambusia holbrooki) along a latitudinal gradient. Biol. Invasions 2009, 11, 2265–2277. [Google Scholar] [CrossRef]
- Suleymanova, A.V. Parasites and main parasitoses of fishes of Absheron fish farm in Azerbaijan. In Biodiversity and Ecology of Parasites of Terrestrial and AQUATIC cenoses. Proceedings of the International Conference Dedicated to the 130th Anniversary of Academician K.I. Skryabin, Moscow, Russia, December 9–11; Movsesyan, S.O., Beer, S.A., Zinovieva, S.V., Pelgunov, A.N., Spiridonov, S.E., Eds.; IPEE RAS: Moscow, Russia, 2008. [Google Scholar]
- Özer, A.; Çankaya, E.; Öztürk, T. Assessment of endemic tooth-carp (Aphanius danfordii) and invasive mosquitofish (Gambusia holbrooki) health by means of relative condition factor under the coinfection of different parasite groups and revelation of the effects on their competitive interactions. In Proceedings of the International Conference on Parasitology, Philadelphia, PA, USA, 24–26 August 2015; OMICS International Conferences: Philadelphia, PA, USA, 2015. [Google Scholar]
- Sokolov, S.G.; Protasova, E.N.; Reshetnikov, A.N.; Voropaeva, E.L. Interactions of the introduced rotan Perccottus glenii Dybowski, 1877 (Osteichthyes, Odontobutidae) with aboriginal fish species: The parasitological aspect. Biol. Bull. 2012, 39, 829–833. [Google Scholar] [CrossRef]
- Gaither, M.R.; Aeby, G.; Vignon, M.; Meguro, Y.-I.; Rigby, M.; Runyon, C.; Toonen, R.J.; Wood, C.L.; Bowen, B.W. An invasive fish and the time-lagged spread of its parasite across the Hawaiian archipelago. PLoS ONE 2013, 8, e56940. [Google Scholar] [CrossRef]
- Palermo, C.J.; Morgan, D.L.; Beatty, S.J.; Elliot, A.; Greay, T.L. The Asian fish tapeworm (Schyzocotyle acheilognathi) discovered in Western Australia may pose a threat to the health of endemic native fishes. J. Helminthol. 2021, 95, e60. [Google Scholar] [CrossRef]
Water Body | n (Females/Males), ind. | TL (Range), mm | ||
---|---|---|---|---|
Spring | Autumn | Spring | Autumn | |
1 | 24 (20/4) | 70 (47/23) | 26 ± 0 (21–31) | 24 ± 0 (20–30) |
2 | 29 (23/6) | 15 (10/5) | 34 ± 1 (26–46) | 30 ± 1 (20–35) |
3 | 30 (22/8) | 15 (9/6) | 31 ± 1 (23–48) | 30 ± 2 (20–45) |
4 | - | 15 (9/6) | - | 30 ± 1 (25–40) |
Total | 83 | 115 | 21–48 | 20–45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebedeva, D.I.; Petrovskiy, A.B.; Reshetnikov, A.N. Potential Role of the Eastern Mosquitofish (Gambusia holbrooki) in the Spread of the Harmful Fish Parasite, Asian Tapeworm Schyzocotyle (Bothriocephalus) acheilognathi. Parasitologia 2024, 4, 358-368. https://doi.org/10.3390/parasitologia4040031
Lebedeva DI, Petrovskiy AB, Reshetnikov AN. Potential Role of the Eastern Mosquitofish (Gambusia holbrooki) in the Spread of the Harmful Fish Parasite, Asian Tapeworm Schyzocotyle (Bothriocephalus) acheilognathi. Parasitologia. 2024; 4(4):358-368. https://doi.org/10.3390/parasitologia4040031
Chicago/Turabian StyleLebedeva, Daria I., Andrey B. Petrovskiy, and Andrey N. Reshetnikov. 2024. "Potential Role of the Eastern Mosquitofish (Gambusia holbrooki) in the Spread of the Harmful Fish Parasite, Asian Tapeworm Schyzocotyle (Bothriocephalus) acheilognathi" Parasitologia 4, no. 4: 358-368. https://doi.org/10.3390/parasitologia4040031
APA StyleLebedeva, D. I., Petrovskiy, A. B., & Reshetnikov, A. N. (2024). Potential Role of the Eastern Mosquitofish (Gambusia holbrooki) in the Spread of the Harmful Fish Parasite, Asian Tapeworm Schyzocotyle (Bothriocephalus) acheilognathi. Parasitologia, 4(4), 358-368. https://doi.org/10.3390/parasitologia4040031