From Intact to Highly Degraded Mitochondrial Genes in Trypanosoma vivax: New Insights into Introduction from Africa and Adaptation to Exclusive Mechanical Transmission in South America
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trypanosoma vivax Isolates and DNA Preparation
2.2. PCR-Amplification of DNA Sequences Encoding ND7 and COIII Mitochondrial Genes
2.3. Sequencing of ND7 and COIII Mitochondrial Genes from T. vivax Isolates and Phylogenetic Analysis
2.4. Analyses of ND7/COIII Transcripts from African and South American T. vivax
3. Results
3.1. Variability in Length of PCR-Amplified ND7/COIII Genes: From Absence to Highly Variable Deletions in South American T. vivax from Diverse Geographical Origin
3.2. The ND7 and COIII Genes Range from Intact to a Degree of Mutations in South American T. vivax
3.3. Only Intact ND7/COIII Sequences Detected in West and East African Isolates of T. vivax
3.4. Phylogenetic Inferences Based on Mitochondrial Sequences Corroborated the Lineages TVL (East and Central Africa) and TVV (All Isolates from South America and West Africa Plus One Isolate from East Africa)
3.5. Differences Between ND7 and COIII Transcripts of African and South American Isolates of T. vivax
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ginja, C.; Penedo, M.C.; Melucci, L.; Quiroz, J.; Martínez López, O.R.; Revidatti, M.A.; Martínez-Martínez, A.; Delgado, J.V.; Gama, L.T. Origins and genetic diversity of New World Creole cattle: Inferences from mitochondrial and Y chromosome polymorphisms. Anim. Genet. 2010, 41, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.M.; Gama, L.T.; Cañón, J.; Ginja, C.; Delgado, J.V.; Dunner, S.; Landi, V.; Martín-Burriel, I.; Penedo, M.C.; Rodellar, C.; et al. Genetic footprints of Iberian cattle in America 500 years after the arrival of Columbus. PLoS ONE 2012, 7, e49066. [Google Scholar] [CrossRef] [PubMed]
- Gonzatti, M.I.; González-Baradat, B.; Aso, P.M.; Reyna-Bello, A. Trypanosoma (Duttonella) vivax and typanosomosis in Latin America: Secadera/Huequera/Cacho Hueco. In Trypanosomes and Trypanosomiasis; Magez, S., Radwanska, M., Eds.; Springer: Vienna, Austria, 2014; pp. 261–285. [Google Scholar] [CrossRef]
- Batista, J.S.; Riet-Correa, F.; Teixeira, M.M.G.; Madruga, C.R.; Simões, S.D.; Maia, T.F. Trypanosomiasis by Trypanosoma vivax in cattle in the Brazilian semiarid: Description of an outbreak and lesions in the nervous system. Vet. Parasitol. 2007, 143, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Galiza, G.J.; Garcia, H.A.; Assis, A.C.; Oliveira, D.M.; Pimentel, L.A.; Dantas, A.F.; Simões, S.V.; Teixeira, M.M.G.; Riet-Correa, F. High mortality and lesions of the central nervous system in trypanosomosis by Trypanosoma vivax in Brazilian hair sheep. Vet. Parasitol. 2011, 182, 359–363. [Google Scholar] [CrossRef]
- Bastos, T.S.A.; Faria, A.M.; Couto, L.F.M.; Nicaretta, J.E.; Cavalcante, A.S.A.; Zapa, D.M.B.; Ferreira, L.L.; Heller, L.M.; Madrid, D.M.C.; Cruvinel, L.B.; et al. Epidemiological and molecular identification of Trypanosoma vivax diagnosed in cattle during outbreaks in central Brazil. Parasitology 2020, 147, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Florentin, A.S.; Garcia Perez, H.A.; Rodrigues, C.M.F.; Dubois, E.F.; Monzón, C.M.; Teixeira, M.M.G. Molecular epidemiological insights into Trypanosoma vivax in Argentina: From the endemic Gran Chaco to outbreaks in the Pampas. Transbound. Emerg. Dis. 2022, 69, 1364–1374. [Google Scholar] [CrossRef] [PubMed]
- Couto, L.F.M.; Heller, L.M.; Zapa, D.M.B.; de Moura, M.I.; Costa, G.L.; de Assis Cavalcante, A.S.; Ribeiro, N.B.; Bastos, T.S.A.; Ferreira, L.L.; Soares, V.E.; et al. Presence of Trypanosoma vivax DNA in cattle semen and reproductive tissues and related changes in sperm parameters. Vet. Parasitol. 2022, 309, 109761. [Google Scholar] [CrossRef] [PubMed]
- Couto, L.F.M.; Bastos, T.S.A.; Morais, I.M.L.; Salvador, V.F.; Leal, L.L.L.L.; Falavigna, R.B.; Spricigo, J.F.W.; Mota, R.A.; Cruz, B.C.; Colli, M.H.A.; et al. Reproductive, productive and financial consequences of chronic Trypanosoma vivax infection in a dairy cattle herd in a region without a cyclic vector. Vet. Parasitol. 2024, 330, 110221. [Google Scholar] [CrossRef] [PubMed]
- Cadioli, F.A.; Barnabé, P.A.; Machado, R.Z.; Teixeira, M.C.; André, M.R.; Sampaio, P.H.; Fidélis Junior, O.L.; Teixeira, M.M.G.; Marques, L.C. First report of Trypanosoma vivax outbreak in dairy cattle in São Paulo state, Brazil. Rev. Bras. Parasitol. Vet. 2012, 21, 118–124. [Google Scholar] [CrossRef]
- Garcia, H.A.; Ramírez, O.J.; Rodrigues, C.M.; Sánchez, R.G.; Bethencourt, A.M.; Del Mar, P.G.; Minervino, A.H.; Rodrigues, A.C.; Teixeira, M.M.G. Trypanosoma vivax in water buffalo of the Venezuelan Llanos: An unusual outbreak of wasting disease in an endemic area of typically asymptomatic infections. Vet. Parasitol. 2016, 230, 49–55. [Google Scholar] [CrossRef]
- Chávez-Larrea, M.A.; Medina-Pozo, M.L.; Cholota-Iza, C.E.; Jumbo-Moreira, J.R.; Saegerman, C.; Proaño-Pérez, F.; Ron-Román, J.; Reyna-Bello, A. First report and molecular identification of Trypanosoma (Duttonella) vivax outbreak in cattle population from Ecuador. Transbound. Emerg. Dis. 2021, 68, 2422–2428. [Google Scholar] [CrossRef] [PubMed]
- Fetene, E.; Leta, S.; Regassa, F.; Büscher, P. Global distribution, host range and prevalence of Trypanosoma vivax: A systematic review and meta-analysis. Parasites Vectors 2021, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- Albadrani, B. Trypanosomosis in ruminants of Mosul-Iraq. In Proceedings of the Annual Meeting of the Non-TSETSE Transmitted Animal Trypanosomoses (NTTAT) Group, Paris, France, 26 May 2013. ANNEX XXVIII. [Google Scholar] [CrossRef]
- Asghari, M.M.; Rassouli, M. First identification of Trypanosoma vivax among camels (Camelus dromedarius) in Yazd, central Iran, jointly with Trypanosoma evansi. Parasitol. Int. 2022, 86, 102450. [Google Scholar] [CrossRef] [PubMed]
- Morrison, L.J.; Vezza, L.; Rowan, T.; Hope, J.C. Animal African Trypanosomiasis: Time to increase focus on clinically relevant parasite and host species. Trends Parasitol. 2016, 32, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Morrison, L.J.; Steketee, P.C.; Tettey, M.D.; Matthews, K.R. Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts. Virulence. 2023, 14, 2150445. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, P.R.; Wilson, A.J. Trypanosoma (Duttonella) vivax. Parasitol. Today 1987, 3, 49–52. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, F.; Gouteux, J.P.; Le Gall, F.; Cuisance, D. Are stable flies (Diptera: Stomoxyinae) vectors of Trypanosoma vivax in the Central African Republic? Vet. Res. 1996, 27, 161–170. [Google Scholar]
- Desquesnes, M.; Dia, M.L. Trypanosoma vivax: Mechanical transmission in cattle by one of the most common African tabanids, Atylotus agrestis. Exp. Parasitol. 2003, 103, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Dagnachew, S.; Terefe, G.; Abebe, G.; Sirak, A.; Bollo, E.; Barry, D.; Goddeeris, B. Comparative clinico-pathological observations in young Zebu (Bos indicus) cattle experimentally infected with Trypanosoma vivax isolates from tsetse infested and non-tsetse areas of Northwest Ethiopia. BMC Vet. Res. 2015, 11, 307. [Google Scholar] [CrossRef] [PubMed]
- Lendzele, S.S.; Abah, S.; Nguetoum, C.; Burinyuy, K.A.; Koumba, A.A.; Mavoungou, J.F. Tabanid-transmitted animal trypanosomiasis in Cameroon: Evidence from a study in the tsetse free pastoral zone of Galim. Parasite Epidemiol. Control. 2022, 18, e00253. [Google Scholar] [CrossRef]
- de Melo Junior, R.D.; Azeredo Bastos, T.S.; Heller, L.M.; Couto, L.F.M.; Zapa, D.M.B.; de Assis Cavalcante, A.S.; Cruvinel, L.B.; Nicaretta, J.E.; Iuasse, H.V.; Ferreira, L.L.; et al. How many cattle can be infected by Trypanosoma vivax by reusing the same needle and syringe, and what is the viability time of this protozoan in injectable veterinary products? Parasitology 2022, 149, 270–282. [Google Scholar] [CrossRef]
- Rodrigues, A.C.; Neves, L.; Garcia, H.A.; Viola, L.B.; Marcili, A.; Da Silva, F.M.; Sigauque, I.; Batista, J.S.; Paiva, F.; Teixeira, M.M.G. Phylogenetic analysis of Trypanosoma vivax supports the separation of South American/West African from East African isolates and a new T. vivax-like genotype infecting a nyala antelope from Mozambique. Parasitology 2008, 135, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.M.; Garcia, H.A.; Rodrigues, A.C.; Costa-Martins, A.G.; Pereira, C.L.; Pereira, D.L.; Bengaly, Z.; Neves, L.; Camargo, E.P.; Hamilton, P.B.; et al. New insights from Gorongosa National Park and Niassa National Reserve of Mozambique increasing the genetic diversity of Trypanosoma vivax and Trypanosoma vivax-like in tsetse flies, wild ungulates and livestock from East Africa. Parasites Vectors 2017, 10, 337. [Google Scholar] [CrossRef] [PubMed]
- Adams, E.R.; Hamilton, P.B.; Rodrigues, A.C.; Malele, I.I.; Delespaux, V.; Teixeira, M.M.G.; Gibson, W. New Trypanosoma (Duttonella) vivax genotypes from tsetse flies in East Africa. Parasitology 2010, 137, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Nakayima, J.; Nakao, R.; Alhassan, A.; Hayashida, K.; Namangala, B.; Mahama, C.; Afakye, K.; Sugimoto, C. Genetic diversity among Trypanosoma (Duttonella) vivax strains from Zambia and Ghana, based on cathepsin L-like gene. Parasite 2013, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Ebhodaghe, F.I.; Bastos, A.D.S.; Kidambasi, K.O.; Kalayou, S.; Masiga, D.K.; Okal, M.N. Molecular characterization of Trypanosoma vivax in tsetse flies confirms the presence of the virulent Tvv4 genotype in Kenya: Potential implications for the control of trypanosomiasis in Shimba Hills. Infect. Genet. Evol. 2021, 93, 104953. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Hayashida, K.; Delesalle, V.; Qiu, Y.; Omori, R.; Simuunza, M.; Sugimoto, C.; Namangala, B.; Yamagishi, J. Genetic diversity of African trypanosomes in tsetse flies and cattle from the Kafue Ecosystem. Front. Vet. Sci. 2021, 8, 599815. [Google Scholar] [CrossRef]
- Silva Pereira, S.; de Almeida Castilho Neto, K.J.G.; Duffy, C.W.; Richards, P.; Noyes, H.; Ogugo, M.; Rogério André, M.; Bengaly, Z.; Kemp, S.; Teixeira, M.M.G.; et al. Variant antigen diversity in Trypanosoma vivax is not driven by recombination. Nat. Commun. 2020, 11, 844. [Google Scholar] [CrossRef]
- Odeniran, P.O.; Macleod, E.T.; Ademola, I.O.; Welburn, S.C. Molecular identification of bloodmeal sources and trypanosomes in Glossina spp., Tabanus spp. and Stomoxys spp. trapped on cattle farm settlements in southwest Nigeria. Med. Vet. Entomol. 2019, 33, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Moloo, S.K.; Gray, M.A. New observations on cyclical development of Trypanosoma vivax in Glossina. Acta Trop. 1989, 46, 167–172. [Google Scholar] [CrossRef]
- Ooi, C.P.; Schuster, S.; Cren-Travaillé, C.; Bertiaux, E.; Cosson, A.; Goyard, S.; Perrot, S.; Rotureau, B. The cyclical development of Trypanosoma vivax in the tsetse fly involves an asymmetric division. Front. Cell. Infect. Microbiol. 2016, 6, 115. [Google Scholar] [CrossRef] [PubMed]
- Schnaufer, A.; Domingo, G.J.; Stuart, K. Natural and induced dyskinetoplastic trypanosomatids: How to live without mitochondrial DNA. Int. J. Parasitol. 2002, 32, 1071–1084. [Google Scholar] [CrossRef] [PubMed]
- Stuart, K.D.; Schnaufer, A.; Ernst, N.L.; Panigrahi, A.K. Complex management: RNA editing in trypanosomes. Trends Biochem. Sci. 2005, 30, 97–105. [Google Scholar] [CrossRef]
- Borst, P.; Fase-Fowler, F.; Weijers, P.J.; Barry, J.D.; Tetley, L.; Vickerman, K. Kinetoplast DNA from Trypanosoma vivax and T. congolense. Mol. Biochem. Parasitol. 1985, 15, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Greif, G.; Rodriguez, M.; Reyna-Bello, A.; Robello, C.; Alvarez-Valin, F. Kinetoplast adaptations in American strains from Trypanosoma vivax. Mutat. Res. 2015, 773, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Greif, G.; Rodriguez, M.; Bontempi, I.; Robello, C.; Alvarez-Valin, F. Different kinetoplast degradation patterns in American Trypanosoma vivax strains: Multiple independent origins or fast evolution? Genomics 2021, 113, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Menna-Barreto, R.F.; de Castro, S.L. The double-edged sword in pathogenic trypanosomatids: The pivotal role of mitochondria in oxidative stress and bioenergetics. Biomed Res. Int. 2014, 2014, 614014. [Google Scholar] [CrossRef] [PubMed]
- Wargnies, M.; Bertiaux, E.; Cahoreau, E.; Ziebart, N.; Crouzols, A.; Morand, P.; Biran, M.; Allmann, S.; Hubert, J.; Villafraz, O.; et al. Gluconeogenesis is essential for trypanosome development in the tsetse fly vector. PLoS Pathog. 2018, 14, e1007502. [Google Scholar] [CrossRef]
- Ventura, R.M.; Takata, C.S.; Silva, R.A.; Nunes, V.L.; Takeda, G.F.; Teixeira, M.M.G. Molecular and morphological studies of Brazilian Trypanosoma evansi stocks: The total absence of kDNA in trypanosomes from both laboratory stocks and naturally infected domestic and wild mammals. J. Parasitol. 2000, 86, 1289–1298. [Google Scholar] [CrossRef]
- Lai, D.H.; Hashimi, H.; Lun, Z.R.; Ayala, F.J.; Lukeš, J. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc. Natl. Acad. Sci. USA 2008, 105, 1999–2004. [Google Scholar] [CrossRef] [PubMed]
- Schnaufer, A. Evolution of dyskinetoplastic trypanosomes: How, and how often? Trends Parasitol. 2010, 26, 557–558. [Google Scholar] [CrossRef] [PubMed]
- Garcia, H.A.; Rodrigues, C.M.F.; Pivat, I.H.V.; Fuzato, A.C.R.; Camargo, E.P.; Minervino, A.H.H.; Teixeira, M.M.G. High Trypanosoma vivax infection rates in water buffalo and cattle in the Brazilian Lower Amazon. Parasitol. Int. 2020, 79, 102162. [Google Scholar] [CrossRef] [PubMed]
- Garcia, H.A.; Rodrigues, A.C.; Rodrigues, C.M.; Bengaly, Z.; Minervino, A.H.; Riet-Correa, F.; Machado, R.Z.; Paiva, F.; Batista, J.S.; Neves, L.; et al. Microsatellite analysis supports clonal propagation and reduced divergence of Trypanosoma vivax from asymptomatic to fatally infected livestock in South America compared to West Africa. Parasites Vectors 2014, 7, 210. [Google Scholar] [CrossRef]
- Gibson, W. The origins of the trypanosome genome strains Trypanosoma brucei brucei TREU 927, T. b. gambiense DAL 972, T. vivax Y486 and T. congolense IL3000. Parasites Vectors 2012, 5, 71. [Google Scholar] [CrossRef]
- Rodrigues, C.M.F.; Garcia, H.A.; Sheferaw, D.; Rodrigues, A.C.; Pereira, C.L.; Camargo, E.P.; Teixeira, M.M.G. Genetic diversity of trypanosomes pathogenic to livestock in tsetse flies from the Nech Sar National Park in Ethiopia: A concern for tsetse suppressed area in Southern Rift Valley? Infect. Genet. Evol. 2019, 69, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Cortez, A.P.; Ventura, R.M.; Rodrigues, A.C.; Batista, J.S.; Paiva, F.; Añez, N.; Machado, R.Z.; Gibson, W.C.; Teixeira, M.M.G. The taxonomic and phylogenetic relationships of Trypanosoma vivax from South America and Africa. Parasitology 2006, 133, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
- Bringaud, F.; Rivière, L.; Coustou, V. Energy metabolism of trypanosomatids: Adaptation to available carbon sources. Mol. Biochem. Parasitol. 2006, 149, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lun, Z.R.; Lai, D.H.; Li, F.J.; Lukeš, J.; Ayala, F.J. Trypanosoma brucei: Two steps to spread out from Africa. Trends Parasitol. 2010, 26, 424–427. [Google Scholar] [CrossRef]
- Da Silva, A.S.; Garcia Perez, H.A.; Costa, M.M.; França, R.T.; De Gasperi, D.; Zanette, R.A.; Amado, J.A.; Lopes, S.T.; Teixeira, M.M.G.; Monteiro, S.G. Horses naturally infected by Trypanosoma vivax in southern Brazil. Parasitol. Res. 2011, 108, 23–30. [Google Scholar] [CrossRef]
- Dirie, M.F.; Otte, M.J.; Thatthi, R.; Gardiner, P.R. Comparative studies of Trypanosoma (Duttonella) vivax isolates from Colombia. Parasitology 1993, 106, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Fikru, R.; Matetovici, I.; Rogé, S.; Merga, B.; Goddeeris, B.M.; Büscher, P.; Van Reet, N. Ribosomal DNA analysis of tsetse and non-tsetse transmitted Ethiopian Trypanosoma vivax strains in view of improved molecular diagnosis. Vet. Parasitol. 2016, 220, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Jahel, C.; Lenormand, M.; Seck, I.; Apolloni, A.; Toure, I.; Faye, C.; Sall, B.; Lo, M.; Diaw, C.S.; Lancelot, R.; et al. Mapping livestock movements in Sahelian Africa. Sci. Rep. 2020, 10, 8339. [Google Scholar] [CrossRef] [PubMed]
- Fasogbon, A.I.; Knowles, G.; Gardiner, P.R. A comparison of the isoenzymes of Trypanosoma (Duttonella) vivax isolates from East and West Africa. Int. J. Parasitol. 1990, 20, 389–394. [Google Scholar] [CrossRef] [PubMed]
T. vivax Isolates | Host Species | Origin | Date of Isolation | Clinical Signs | Ref. | ND7/COIII Genes (kb) # | Mitochon Profile $ |
---|---|---|---|---|---|---|---|
Brazil | |||||||
TviBrPA20 | buffalo | PA | 2009 | asymptomatic | [45] | ∼1.1 | TviMit-0 |
TviBrPA24 | buffalo | PA | 2009 | asymptomatic | [45] | ∼1.1 | TviMit-0 |
TviBrPA28 | buffalo | PA | 2009 | asymptomatic | [45] | ∼1.1 | TviMit-0 |
TviBrPA48 | buffalo | PA | 2009 | asymptomatic | [45] | ∼1.1 | TviMit-0 |
TviBrPB27 | sheep | PB | 2008 | high parasitemia low PCV/NS-Fatal | [5,45] | ∼1.1 | TviMit-0 |
TviBrPB28 | sheep | PB | 2008 | high parasitemia low PCV/NS-Fatal | [5,45] | ∼1.1 | TviMit-0 |
TviBrPB30 | sheep | PB | 2008 | high parasitemia low PCV/NS-Fatal | [5,45] | ∼1.1 | TviMit-0 |
TviBrPB47 | sheep | PB | 2008 | high parasitemia low PCV/NS-Fatal | [5,45] | ∼1.1 | TviMit-0 |
TviBrPB50 | sheep | PB | 2009 | asymptomatic | [5,45] | ∼1.1 | TviMit-0 |
TviBrPB52 | sheep | PB | 2009 | asymptomatic | [5,45] | ∼1.1 | TviMit-0 |
TviLinsSP | cattle | SP | 2008 | high parasitemia low PCV/NS-Fatal | [10,24,45] | ∼0.9 | TviMit-1 |
TviBrCa | cattle | PB | 2007 | high parasitemia low PCV/NS-Fatal | [10,24,45] | ∼0.9 | TviMit-1 |
TviBrMi | cattle | MS | 2000 | asymptomatic | [10,24,45] | ∼0.9 | TviMit-1 |
Argentina | |||||||
TviArSF119 | cattle | SF | 2017 | high parasitemia low PCV/Fatal | [7] | ∼0.9 | TviMit-1 |
TviArSF126 | cattle | SF | 2017 | high parasitemia low PCV/Fatal | [7] | ∼0.9 | TviMit-1 |
TviArSF135 | cattle | SF | 2017 | high parasitemia low PCV/Fatal | [7] | ∼0.9 | TviMit-1 |
TvArFs08 | cattle | Fs | 2017 | high parasitemia low PCV/Fatal | [7] | ∼0.9 | TviMit-1 |
IB | cattle | -- | 2020 | - | [38] | ∼0.9 | TviMit-1 |
Colombia | |||||||
TviCoBoy01 | cattle | Boy | 2016 | asymptomatic | -- | ∼0.9 | TviMit-2 |
Venezuela | |||||||
TviVzAp10 | buffalo | Apu | 2015 | high parasitemia low PCV/Fatal | [11] | ∼0.9 | TviMit-2 |
TviVzAp11 | buffalo | Apu | 2015 | high parasitemia low PCV/Fatal | [11] | ∼0.9 | TviMit-2 |
TviVzAp5 | sheep | Apu | 2006 | moderate parasitemia low PCV | [11,45] | ∼0.30 | TviMit-3 |
TviVzAnz1 | cattle | Anz | 2006 | asymptomatic | [11,45] | ∼0.30 | TviMit-3 |
TviVzAnz3 | cattle | Anz | 2006 | asymptomatic | [11,45] | ∼0.30 | TviMit-3 |
TviVzCojEX | buffalo | Coj | 2006 | asymptomatic | [11,45] | ∼0.30 | TviMit-3 |
MT1 | cattle | Mon | 2007 | severe anemia, fever, lymphadenopathy | [37] | ∼0.30 | TviMit-3 |
LIEM176 | cattle | Tru | 2002 | unknown (parasitemic) | [37] | ∼0.30 | TviMit-3 |
Ecuador | |||||||
TviEc01 | cattle | Man | 2018 | pale mucosa, fever, weakness | [12] | ∼0.9 | TviMit-1/Mit-2 |
Africa | |||||||
TviEthG65 | tsetse | Eth | 2016 | - | [47] | ∼1.1 | TviMit-0 |
TviEthG106 | tsetse | Eth | 2016 | - | [47] | ∼1.1 | TviMit-0 |
TviEthG79 | tsetse | Eth | 2016 | - | [47] | ∼1.1 | TviMit-0 |
TviMzNy | Nyala | Mz | 2008 | asymptomatic | [24] | ∼1.1 | TviMit-0 |
TviUgG34 | tsetse | Ug | 2016 | - | [47] | ∼1.1 | TviMit-0 |
TviUgG36 | tsetse | Ug | 2016 | - | [47] | ∼1.1 | TviMit-0 |
TviMzG13 | tsetse | Mz | 2014 | - | [25] | ∼1.1 | TviMit-0 |
TviMzG52 | tsetse | Mz | 2014 | - | [25] | ∼1.1 | TviMit-0 |
TviMzG70 | tsetse | Mz | 2014 | - | [25] | ∼1.1 | TviMit-0 |
Y486 | cattle | Nig | 1976 | - | [46] | ∼1.1 | TviMit-0 |
TviBfL445 | cattle | Bf | 2008 | - | [45,48] | ∼1.1 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, H.A.; Rodrigues, A.C.; Rodrigues, C.M.F.; Florentin, A.S.; Bethencourt, A.M.; Reyna-Bello, A.; Chávez-Larrea, M.A.; Pereira, C.L.; Bengaly, Z.; Sheferaw, D.; et al. From Intact to Highly Degraded Mitochondrial Genes in Trypanosoma vivax: New Insights into Introduction from Africa and Adaptation to Exclusive Mechanical Transmission in South America. Parasitologia 2024, 4, 390-404. https://doi.org/10.3390/parasitologia4040035
Garcia HA, Rodrigues AC, Rodrigues CMF, Florentin AS, Bethencourt AM, Reyna-Bello A, Chávez-Larrea MA, Pereira CL, Bengaly Z, Sheferaw D, et al. From Intact to Highly Degraded Mitochondrial Genes in Trypanosoma vivax: New Insights into Introduction from Africa and Adaptation to Exclusive Mechanical Transmission in South America. Parasitologia. 2024; 4(4):390-404. https://doi.org/10.3390/parasitologia4040035
Chicago/Turabian StyleGarcia, Herakles A., Adriana C. Rodrigues, Carla M. F. Rodrigues, Andrea S. Florentin, Angélica M. Bethencourt, Armando Reyna-Bello, María Augusta Chávez-Larrea, Carlos L. Pereira, Zacharia Bengaly, Desie Sheferaw, and et al. 2024. "From Intact to Highly Degraded Mitochondrial Genes in Trypanosoma vivax: New Insights into Introduction from Africa and Adaptation to Exclusive Mechanical Transmission in South America" Parasitologia 4, no. 4: 390-404. https://doi.org/10.3390/parasitologia4040035
APA StyleGarcia, H. A., Rodrigues, A. C., Rodrigues, C. M. F., Florentin, A. S., Bethencourt, A. M., Reyna-Bello, A., Chávez-Larrea, M. A., Pereira, C. L., Bengaly, Z., Sheferaw, D., Kato, A. B., Paiva, F., Camargo, E. F. P., & Teixeira, M. M. G. (2024). From Intact to Highly Degraded Mitochondrial Genes in Trypanosoma vivax: New Insights into Introduction from Africa and Adaptation to Exclusive Mechanical Transmission in South America. Parasitologia, 4(4), 390-404. https://doi.org/10.3390/parasitologia4040035