Transmission Modelling for Human Non-Zoonotic Schistosomiasis Incorporating Vaccination: Guiding Decision- and Policymaking
Abstract
:1. Epidemiology, Transmission, and Pathogenicity
2. Parasite and Human Host Responses
3. Treatment and Prevention
4. Transmission Models
AUTHOR(S) Year [Reference] | WOOLHOUSE 1992/1995 [230,231] | CHAN et al., 1996 [236] | CHAN et al., 1997 [239] | STYLIANOU et al., 2017 [113] | ALSALLAQ et al., 2017 [248] | KURA et al., 2019/2020 [130,228] |
---|---|---|---|---|---|---|
SPECIES | S. haematobium/S. mansoni (other species) | Not stated | S. mansoni (other species) | S. mansoni | S. haematobium | S. mansoni (other species) |
TARGET POPULATION | Small-scale (trial) population | Pre-school children vs. total age-structured population | Pre-school children aged 1 yr and 7 yrs (at-random administration) | Infants aged 1 yr (at-birth strategy, homogeneous population) | Total population age-stratified (≤4, 5–14, 15–24 and ≥25 yrs) | Total population age-stratified (≤4, 5–14 and ≥15yrs; constant number of deaths and births) |
SETTING | Endemic | Endemic | Endemic | Low (R0 1.0–1.4), medium (R0 1.5–2.5), high (R0 > 2.5), endemicity | High endemicity | Low (<10%), medium (10–50%), high (≥50%) endemicity as per WHO’s classification |
MODEL DESCRIPTION | Phase II trial model | Compartmental cohort vs. transmission model | Differential compartmental density-dependent model | Simple deterministic compartmental model | Simple deterministic truncated compartmental model | Individual-based stochastic transmission model |
MODEL DURATION | 30 yrs | ≥10 yrs | 20 and 50 yrs | 50 yrs | 30 yrs | 15 yrs |
VARIABLES (e.g., larval infection, worm burden, mating, egg shedding) |
| Not stated |
|
|
|
|
VACCINATION |
Notes
|
|
Notes
|
Notes
|
Notes
|
Notes
|
MDA/PZQ | Not administered | Single administration prior to vaccination considerable |
| Not administered | 75% instant per capita worm reduction over 28 days and 80% coverage | Varying species-dependent instant per capita worm reduction and age-related coverage |
PREDICTIONS/ FINDINGS |
|
|
|
|
|
|
WEAKNESSES |
|
|
|
|
|
|
STRENGTHS |
|
|
|
|
|
|
5. Model Considerations
6. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- World Health Organization. Neglected Tropical Diseases. 2022. Available online: https://www.who.int/news-room/questions-and-answers/item/neglected-tropical-diseases (accessed on 30 January 2024).
- Tendler, M.; Almeida, M.; Simpson, A. Development of the Brazilian Anti Schistosomiasis Vaccine Based on the Recombinant Fatty Acid Binding Protein Sm14 Plus GLA-SE Adjuvant. Front. Immunol. 2015, 6, 218. [Google Scholar] [CrossRef]
- Nelwan, M.L. Schistosomiasis: Life Cycle, Diagnosis, and Control. Curr. Ther. Res. Clin. Exp. 2019, 91, 5–9. [Google Scholar] [CrossRef]
- Webster, J.P.; Neves, M.I.; Webster, B.L.; Pennance, T.; Rabone, M.; Gouvras, A.N.; Allan, F.; Walker, M.; Rollinson, D. Parasite Population Genetic Contributions to the Schistosomiasis Consortium for Operational Research and Evaluation within Sub-Saharan Africa. Am. J. Trop. Med. Hyg. 2020, 103, 80. [Google Scholar] [CrossRef]
- Colley, D.G.; Bustinduy, A.L.; Secor, W.E.; King, C.H. Human schistosomiasis. Lancet 2014, 383, 2253–2264. [Google Scholar] [CrossRef]
- Molehin, A.J. Schistosomiasis vaccine development: Update on human clinical trials. J. Biomed. Sci. 2020, 27, 28. [Google Scholar] [CrossRef]
- Gray, D.J.; McManus, D.P.; Li, Y.; Williams, G.M.; Bergquist, R.; Ross, A.G. Schistosomiasis elimination: Lessons from the past guide the future. Lancet Infect. Dis. 2010, 10, 733–736. [Google Scholar] [CrossRef]
- Tendler, M.; Almeida, M.S.; Vilar, M.M.; Pinto, P.M.; Limaverde-Sousa, G. Current Status of the Sm14/GLA-SE Schistosomiasis Vaccine: Overcoming Barriers and Paradigms towards the First Anti-Parasitic Human(itarian) Vaccine. Trop. Med. Infect. Dis. 2018, 3, 121. [Google Scholar] [CrossRef]
- Molehin, A.J.; Rojo, J.U.; Siddiqui, S.Z.; Gray, S.A.; Carter, D.; Siddiqui, A.A. Development of a schistosomiasis vaccine. Expert Rev. Vaccines 2016, 15, 619–627. [Google Scholar] [CrossRef]
- Siddiqui, A.A.; Siddiqui, S.Z. Sm-p80-Based Schistosomiasis Vaccine: Preparation for Human Clinical Trials. Trends Parasitol. 2017, 33, 194–201. [Google Scholar] [CrossRef]
- Colley, D.G.; Secor, W.E. Immunology of human schistosomiasis. Parasite Immunol. 2014, 36, 347–357. [Google Scholar] [CrossRef]
- Zhang, P.; Feng, Z.; Milner, F. A schistosomiasis model with an age-structure in human hosts and its application to treatment strategies. Math. Biosci. 2007, 205, 83–107. [Google Scholar] [CrossRef]
- Galvani, A.P. Age-dependent epidemiological patterns and strain diversity in helminth parasites. J. Parasitol. 2005, 91, 24–30. [Google Scholar] [CrossRef]
- Kura, K.; Hardwick, R.J.; Truscott, J.E.; Anderson, R.M. What is the impact of acquired immunity on the transmission of schistosomiasis and the efficacy of current and planned mass drug administration programmes? PLoS Negl. Trop. Dis. 2021, 15, e0009946. [Google Scholar] [CrossRef]
- Hairston, N.G. An analysis of age-prevalence data by catalytic models. A contribution to the study of bilharziasis. Bull. World Health Organ. 1965, 33, 163–175. [Google Scholar]
- Driciru, E.; Koopman, J.P.R.; Cose, S.; Siddiqui, A.A.; Yazdanbakhsh, M.; Elliott, A.M.; Roestenberg, M. Immunological Considerations for Schistosoma Vaccine Development: Transitioning to Endemic Settings. Front. Immunol. 2021, 12, 635985. [Google Scholar] [CrossRef]
- Keeling, M.; Tildesley, M.; House, T.; Danon, L. The Mathematics of Vaccination. 2013. Available online: https://www.semanticscholar.org/paper/The-Mathematics-of-Vaccination-Keeling-Tildesley/886d59bf0388ebfba90dbb01480e9958582a0471 (accessed on 15 January 2024).
- Tweyongyere, R.; Mawa, P.A.; Kihembo, M.; Jones, F.M.; Webb, E.L.; Cose, S.; Dunne, D.W.; Vennervald, B.J.; Elliott, A.M. Effect of praziquantel treatment of Schistosoma mansoni during pregnancy on immune responses to schistosome antigens among the offspring: Results of a randomised, placebo-controlled trial. BMC Infect. Dis. 2011, 11, 234. [Google Scholar] [CrossRef]
- Santos, P.; Lorena, V.M.; Fernandes Ede, S.; Sales, I.R.; Nascimento, W.R.; Gomes Yde, M.; Albuquerque, M.C.; Costa, V.M.; Souza, V.M. Gestation and breastfeeding in schistosomotic mothers differently modulate the immune response of adult offspring to postnatal Schistosoma mansoni infection. Mem. Inst. Oswaldo Cruz 2016, 111, 83–92. [Google Scholar] [CrossRef]
- Cortes-Selva, D.; Gibbs, L.; Ready, A.; Ekiz, H.A.; O’Connell, R.; Rajwa, B.; Fairfax, K.C. Maternal schistosomiasis impairs offspring Interleukin-4 production and B cell expansion. PLoS Pathog. 2021, 17, e1009260. [Google Scholar] [CrossRef]
- Novato-Silva, E.; Gazzinelli, G.; Colley, D.G. Immune responses during human schistosomiasis mansoni. XVIII. Immunologic status of pregnant women and their neonates. Scand. J. Immunol. 1992, 35, 429–437. [Google Scholar] [CrossRef]
- Avendano, C.; Patarroyo, M.A. Loop-Mediated Isothermal Amplification as Point-of-Care Diagnosis for Neglected Parasitic Infections. Int. J. Mol. Sci. 2020, 21, 7981. [Google Scholar] [CrossRef]
- Garcia-Bernalt Diego, J.; Fernandez-Soto, P.; Febrer-Sendra, B.; Crego-Vicente, B.; Muro, A. Loop-Mediated Isothermal Amplification in Schistosomiasis. J. Clin. Med. 2021, 10, 511. [Google Scholar] [CrossRef]
- Boatin, B.A.; Basanez, M.G.; Prichard, R.K.; Awadzi, K.; Barakat, R.M.; Garcia, H.H.; Gazzinelli, A.; Grant, W.N.; McCarthy, J.S.; N’Goran, E.K.; et al. A research agenda for helminth diseases of humans: Towards control and elimination. PLoS Negl. Trop. Dis. 2012, 6, e1547. [Google Scholar] [CrossRef]
- Gurarie, D.; King, C.H.; Yoon, N.; Li, E. Refined stratified-worm-burden models that incorporate specific biological features of human and snail hosts provide better estimates of Schistosoma diagnosis, transmission, and control. Parasit. Vectors 2016, 9, 428. [Google Scholar] [CrossRef]
- Panzner, U.; Boissier, J. Natural intra- and intercalde human hybrid schostosomes in Africa with considerations on prevention through vaccination. Microorganisms 2021, 9, 1465. [Google Scholar] [CrossRef]
- Hu, H.; Gong, P.; Xu, B. Spatially explicit agent-based modelling for schistosomiasis transmission: Human-environment interaction simulation and control strategy assessment. Epidemics 2010, 2, 49–65. [Google Scholar] [CrossRef]
- Adekiya, T.A.; Aruleba, R.T.; Oyinloye, B.E.; Okosun, K.O.; Kappo, A.P. The Effect of Climate Change and the Snail-Schistosome Cycle in Transmission and Bio-Control of Schistosomiasis in Sub-Saharan Africa. Int. J. Environ. Res. Public Health 2019, 17, 181. [Google Scholar] [CrossRef]
- Borlase, A.; Webster, J.P.; Rudge, J.W. Opportunities and challenges for modelling epidemiological and evolutionary dynamics in a multihost, multiparasite system: Zoonotic hybrid schistosomiasis in West Africa. Evol. Appl. 2018, 11, 501–515. [Google Scholar] [CrossRef]
- Morand, S.; Southgate, V.R.; Jourdane, J. A model to explain the replacement of Schistosoma intercalatum by Schistosoma haematobium and the hybrid S. intercalatum x S. haematobium in areas of sympatry. Parasitology 2002, 124, 401–408. [Google Scholar] [CrossRef]
- Mone, H.; Minguez, S.; Ibikounle, M.; Allienne, J.F.; Massougbodji, A.; Mouahid, G. Natural Interactions between S. haematobium and S. guineensis in the Republic of Benin. Sci. World J. 2012, 2012, 793420. [Google Scholar] [CrossRef]
- Webster, B.L.; Tchuem Tchuente, L.A.; Southgate, V.R. A single-strand conformation polymorphism (SSCP) approach for investigating genetic interactions of Schistosoma haematobium and Schistosoma guineensis in Loum, Cameroon. Parasitol. Res. 2007, 100, 739–745. [Google Scholar] [CrossRef]
- Steinauer, M.L.; Hanelt, B.; Mwangi, I.N.; Maina, G.M.; Agola, L.E.; Kinuthia, J.M.; Mutuku, M.W.; Mungai, B.N.; Wilson, W.D.; Mkoji, G.M.; et al. Introgressive hybridization of human and rodent schistosome parasites in western Kenya. Mol. Ecol. 2008, 17, 5062–5074. [Google Scholar] [CrossRef]
- Huyse, T.; Webster, B.L.; Geldof, S.; Stothard, J.R.; Diaw, O.T.; Polman, K.; Rollinson, D. Bidirectional introgressive hybridization between a cattle and human schistosome species. PLoS Pathog. 2009, 5, e1000571. [Google Scholar] [CrossRef]
- Leger, E.; Webster, J.P. Hybridizations within the Genus Schistosoma: Implications for evolution, epidemiology and control. Parasitology 2017, 144, 65–80. [Google Scholar] [CrossRef]
- Steinauer, M.L.; Blouin, M.S.; Criscione, C.D. Applying evolutionary genetics to schistosome epidemiology. Infect. Genet. Evol. 2010, 10, 433–443. [Google Scholar] [CrossRef]
- Rollinson, D. Biochemical genetics in the study of schistosomes and their intermediate hosts. Parassitologia 1985, 27, 123–139. [Google Scholar]
- Wright, C.A.; Ross, G.C. Hybrids between Schistosoma haematobium and S. mattheei and their identification by isoelectric focusing of enzymes. Trans. R. Soc. Trop. Med. Hyg. 1980, 74, 326–332. [Google Scholar] [CrossRef]
- Catalano, S.; Sene, M.; Diouf, N.D.; Fall, C.B.; Borlase, A.; Leger, E.; Ba, K.; Webster, J.P. Rodents as Natural Hosts of Zoonotic Schistosoma Species and Hybrids: An Epidemiological and Evolutionary Perspective From West Africa. J. Infect. Dis. 2018, 218, 429–433. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, X.Q.; Cai, X. Gene Duplication Analysis Reveals No Ancient Whole Genome Duplication but Extensive Small-Scale Duplications during Genome Evolution and Adaptation of Schistosoma mansoni. Front. Cell Infect. Microbiol. 2017, 7, 412. [Google Scholar] [CrossRef]
- Rey, O.; Toulza, E.; Chaparro, C.; Allienne, J.F.; Kincaid-Smith, J.; Mathieu-Begne, E.; Allan, F.; Rollinson, D.; Webster, B.L.; Boissier, J. Diverging patterns of introgression from Schistosoma bovis across S. haematobium African lineages. PLoS Pathog. 2021, 17, e1009313. [Google Scholar] [CrossRef] [PubMed]
- Panzner, U. Clinical Applications of Isothermal Diagnosis for Human Schistosomiasis. Encyclopedia 2022, 2, 690–704. [Google Scholar] [CrossRef]
- Farrell, S.H.; Anderson, R.M. Helminth lifespan interacts with non-compliance in reducing the effectiveness of anthelmintic treatment. Parasit. Vectors 2018, 11, 66. [Google Scholar] [CrossRef] [PubMed]
- Panzner, U.; Excler, J.L.; Kim, J.H.; Marks, F.; Carter, D.; Siddiqui, A.A. Recent advances and methodological considerations on vaccine candidates for human schistosomiasis. Front. Trop. Dis. 2021, 2, 719369. [Google Scholar] [CrossRef]
- May, R.M.; Woolhouse, M.E. Biased sex ratios and parasite mating probabilities. Parasitology 1993, 107 Pt 3, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Beltran, S.; Boissier, J. Schistosome monogamy: Who, how, and why? Trends Parasitol. 2008, 24, 386–391. [Google Scholar] [CrossRef]
- Stothard, J.R.; Kayuni, S.A.; Al-Harbi, M.H.; Musaya, J.; Webster, B.L. Future schistosome hybridizations: Will all Schistosoma haematobium hybrids please stand-up! PLoS Negl. Trop. Dis. 2020, 14, e0008201. [Google Scholar] [CrossRef] [PubMed]
- Pearce, E.J.; MacDonald, A.S. The immunobiology of schistosomiasis. Nat. Rev. Immunol. 2002, 2, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Loker, E.S.; Brant, S.V. Diversification, dioecy and dimorphism in schistosomes. Trends Parasitol. 2006, 22, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, F.A.; Griffin, M.; Thomas, J.D. A model of schistosomiasis incorporating the searching capacity of the miracidium. Parasitology 1981, 82, 111–120. [Google Scholar] [CrossRef]
- Yang, Y.; Feng, Z.; Xu, D.; Sandland, G.J.; Minchella, D.J. Evolution of host resistance to parasite infection in the snail-schistosome-human system. J. Math. Biol. 2012, 65, 201–236. [Google Scholar] [CrossRef]
- Koopman, J.P.R.; Driciru, E.; Roestenberg, M. Controlled human infection models to evaluate schistosomiasis and hookworm vaccines: Where are we now? Expert Rev. Vaccines 2021, 20, 1369–1371. [Google Scholar] [CrossRef]
- Keating, J.H.; Wilson, R.A.; Skelly, P.J. No overt cellular inflammation around intravascular schistosomes in vivo. J. Parasitol. 2006, 92, 1365–1369. [Google Scholar] [CrossRef]
- Patwary, K.F.; Archer, J.; Sturt, A.; Webb, E.; van Lieshout, L.; Webster, B.; Bustinduy, A. Female Genital Schistosomiasis: Diagnostic Validation for Recombinant DNA-Polymerase-Amplification Assay using Cervicovaginal Lavage. Int. J. Obstet. Gynaecol. 2021, 128 (Suppl. S2), 248. [Google Scholar]
- Le, L.; Hsieh, M.H. Diagnosing Urogenital Schistosomiasis: Dealing with Diminishing Returns. Trends Parasitol. 2017, 33, 378–387. [Google Scholar] [CrossRef]
- Gandasegui, J.; Fernandez-Soto, P.; Carranza-Rodriguez, C.; Perez-Arellano, J.L.; Vicente, B.; Lopez-Aban, J.; Muro, A. The Rapid-Heat LAMPellet Method: A Potential Diagnostic Method for Human Urogenital Schistosomiasis. PLoS Negl. Trop. Dis. 2015, 9, e0003963. [Google Scholar] [CrossRef]
- Rosser, A.; Rollinson, D.; Forrest, M.; Webster, B.L. Isothermal Recombinase Polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection. Parasit. Vectors 2015, 8, 446. [Google Scholar] [CrossRef]
- Archer, J.; Barksby, R.; Pennance, T.; Rostron, P.; Bakar, F.; Knopp, S.; Allan, F.; Kabole, F.; Ali, S.M.; Ame, S.M.; et al. Analytical and Clinical Assessment of a Portable, Isothermal Recombinase Polymerase Amplification (RPA) Assay for the Molecular Diagnosis of Urogenital Schistosomiasis. Molecules 2020, 25, 4175. [Google Scholar] [CrossRef] [PubMed]
- Bayoumi, A.; Al-Refai, S.A.; Badr, M.S.; Abd El-Aal, A.A.; El Akkad, D.M.H.; Saad, N.; Elesaily, K.M.; Abdel Aziz, I.Z. Loop-Mediated Isothermal Amplification (Lamp): Sensitive and Rapid Detection of Schistosoma Haematobium DNA in Urine Samples of Egyptian Suspected Cases. J. Egypt Soc. Parasitol. 2016, 46, 299–308. [Google Scholar] [PubMed]
- Siddiqui, A.J.; Bhardwaj, J.; Saxena, J.; Jahan, S.; Snoussi, M.; Bardakci, F.; Badraoui, R.; Adnan, M. A Critical Review on Human Malaria and Schistosomiasis Vaccines: Current State, Recent Advancements, and Developments. Vaccines 2023, 11, 792. [Google Scholar] [CrossRef]
- Mo, A.X.; Agosti, J.M.; Walson, J.L.; Hall, B.F.; Gordon, L. Schistosomiasis elimination strategies and potential role of a vaccine in achieving global health goals. Am. J. Trop. Med. Hyg. 2014, 90, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, C.T.; Braz Figueiredo Carvalho, G.; Carvalho Alves, C.; de Melo, T.T. Schistosoma tegument proteins in vaccine and diagnosis development: An update. J. Parasitol. Res. 2012, 2012, 541268. [Google Scholar] [CrossRef]
- Fulford, A.J.; Butterworth, A.E.; Ouma, J.H.; Sturrock, R.F. A statistical approach to schistosome population dynamics and estimation of the life-span of Schistosoma mansoni in man. Parasitology 1995, 110 Pt 3, 307–316. [Google Scholar] [CrossRef]
- Meurs, L.; Mbow, M.; Vereecken, K.; Menten, J.; Mboup, S.; Polman, K. Epidemiology of mixed Schistosoma mansoni and Schistosoma haematobium infections in northern Senegal. Int. J. Parasitol. 2012, 42, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Skelly, P.J.; Alan Wilson, R. Making sense of the schistosome surface. Adv. Parasitol. 2006, 63, 185–284. [Google Scholar] [CrossRef] [PubMed]
- Van Hellemond, J.J.; Retra, K.; Brouwers, J.F.; van Balkom, B.W.; Yazdanbakhsh, M.; Shoemaker, C.B.; Tielens, A.G. Functions of the tegument of schistosomes: Clues from the proteome and lipidome. Int. J. Parasitol. 2006, 36, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Loukas, A.; Tran, M.; Pearson, M.S. Schistosome membrane proteins as vaccines. Int. J. Parasitol. 2007, 37, 257–263. [Google Scholar] [CrossRef] [PubMed]
- El Ridi, R.; Tallima, H.; Mahana, N.; Dalton, J.P. Innate immunogenicity and in vitro protective potential of Schistosoma mansoni lung schistosomula excretory–secretory candidate vaccine antigens. Microbes Infect. 2010, 12, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, K.M.; Mutapi, F.; Savill, N.J.; Woolhouse, M.E. Protective immunity to Schistosoma haematobium infection is primarily an anti-fecundity response stimulated by the death of adult worms. Proc. Natl. Acad. Sci. USA 2012, 109, 13347–13352. [Google Scholar] [CrossRef] [PubMed]
- Civitello, D.J.; Rohr, J.R. Disentangling the effects of exposure and susceptibility on transmission of the zoonotic parasite Schistosoma mansoni. J. Anim. Ecol. 2014, 83, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Spear, R.C. Exploring the impact of infection-induced immunity on the transmission of Schistosoma japonicum in hilly and mountainous environments in China. Acta Trop. 2014, 133, 8–14. [Google Scholar] [CrossRef]
- Fukushige, M.; Mutapi, F.; Woolhouse, M.E.J. Population level changes in schistosome-specific antibody levels following chemotherapy. Parasite Immunol. 2019, 41, e12604. [Google Scholar] [CrossRef]
- McManus, D.P.; Bergquist, R.; Cai, P.; Ranasinghe, S.; Tebeje, B.M.; You, H. Schistosomiasis-from immunopathology to vaccines. Semin. Immunopathol. 2020, 42, 355–371. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Tian, S.; Cui, J.A.; Wang, T. Multiple infection leads to backward bifurcation for a schistosomiasis model. Math. Biosci. Eng. 2019, 16, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Petney, T.N.; Andrews, R.H. Multiparasite communities in animals and humans: Frequency, structure and pathogenic significance. Int. J. Parasitol. 1998, 28, 377–393. [Google Scholar] [CrossRef] [PubMed]
- Attallah, A.M.; Ghanem, G.E.; Ismail, H.; El Waseef, A.M. Placental and oral delivery of Schistosoma mansoni antigen from infected mothers to their newborns and children. Am. J. Trop. Med. Hyg. 2003, 68, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Al-Naseri, A.; Al-Absi, S.; El Ridi, R.; Mahana, N. A comprehensive and critical overview of schistosomiasis vaccine candidates. J. Parasit. Dis. 2021, 45, 557–580. [Google Scholar] [CrossRef] [PubMed]
- da Paz, V.R.F.; Sequeira, D.; Pyrrho, A. Infection by Schistosoma mansoni during pregnancy: Effects on offspring immunity. Life Sci. 2017, 185, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A.; Hoffmann, K.F. Defining a schistosomiasis vaccination strategy-is it really Th1 versus Th2? Parasitol. Today 2000, 16, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Stadecker, M.J.; Asahi, H.; Finger, E.; Hernandez, H.J.; Rutitzky, L.I.; Sun, J. The immunobiology of Th1 polarization in high-pathology schistosomiasis. Immunol. Rev. 2004, 201, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Kalantari, P.; Bunnell, S.C.; Stadecker, M.J. The C-type Lectin Receptor-Driven, Th17 Cell-Mediated Severe Pathology in Schistosomiasis: Not All Immune Responses to Helminth Parasites Are Th2 Dominated. Front. Immunol. 2019, 10, 26. [Google Scholar] [CrossRef]
- Ahmad, G.; Zhang, W.; Torben, W.; Haskins, C.; Diggs, S.; Noor, Z.; Le, L.; Siddiqui, A.A. Prime-boost and recombinant protein vaccination strategies using Sm-p80 protects against Schistosoma mansoni infection in the mouse model to levels previously attainable only by the irradiated cercarial vaccine. Parasitol. Res. 2009, 105, 1767–1777. [Google Scholar] [CrossRef]
- Wilson, M.S.; Mentink-Kane, M.M.; Pesce, J.T.; Ramalingam, T.R.; Thompson, R.; Wynn, T.A. Immunopathology of schistosomiasis. Immunol. Cell Biol. 2007, 85, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Fairfax, K.; Nascimento, M.; Huang, S.C.; Everts, B.; Pearce, E.J. Th2 responses in schistosomiasis. Semin. Immunopathol. 2012, 34, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Hotez, P.J.; Bethony, J.M.; Diemert, D.J.; Pearson, M.; Loukas, A. Developing vaccines to combat hookworm infection and intestinal schistosomiasis. Nat. Rev. Microbiol. 2010, 8, 814–826. [Google Scholar] [CrossRef] [PubMed]
- Negrao-Correa, D.; Fittipaldi, J.F.; Lambertucci, J.R.; Teixeira, M.M.; Antunes, C.M.; Carneiro, M. Association of Schistosoma mansoni-specific IgG and IgE antibody production and clinical schistosomiasis status in a rural area of Minas Gerais, Brazil. PLoS ONE 2014, 9, e88042. [Google Scholar] [CrossRef] [PubMed]
- Vereecken, K.; Naus, C.W.; Polman, K.; Scott, J.T.; Diop, M.; Gryseels, B.; Kestens, L. Associations between specific antibody responses and resistance to reinfection in a Senegalese population recently exposed to Schistosoma mansoni. Trop. Med. Int. Health 2007, 12, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Garraud, O.; Perraut, R.; Riveau, G.; Nutman, T.B. Class and subclass selection in parasite-specific antibody responses. Trends Parasitol. 2003, 19, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, G.; Zhang, W.; Torben, W.; Ahrorov, A.; Damian, R.T.; Wolf, R.F.; White, G.L.; Carey, D.W.; Mwinzi, P.N.; Ganley-Leal, L.; et al. Preclinical prophylactic efficacy testing of Sm-p80-based vaccine in a nonhuman primate model of Schistosoma mansoni infection and immunoglobulin G and E responses to Sm-p80 in human serum samples from an area where schistosomiasis is endemic. J. Infect. Dis. 2011, 204, 1437–1449. [Google Scholar] [CrossRef] [PubMed]
- Eloi-Santos, S.M.; Novato-Silva, E.; Maselli, V.M.; Gazzinelli, G.; Colley, D.G.; Correa-Oliveira, R. Idiotypic sensitization in utero of children born to mothers with schistosomiasis or Chagas’ disease. J. Clin. Investig. 1989, 84, 1028–1031. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, I.; LaBeaud, A.D.; Morris, N.; McKibben, M.; Mungai, P.; Muchiri, E.; King, C.L.; King, C.H. Cord Blood Antiparasite Interleukin 10 as a Risk Marker for Compromised Vaccine Immunogenicity in Early Childhood. J. Infect. Dis. 2018, 217, 1426–1434. [Google Scholar] [CrossRef]
- Dauby, N.; Goetghebuer, T.; Kollmann, T.R.; Levy, J.; Marchant, A. Uninfected but not unaffected: Chronic maternal infections during pregnancy, fetal immunity, and susceptibility to postnatal infections. Lancet Infect. Dis. 2012, 12, 330–340. [Google Scholar] [CrossRef]
- Elliott, A.M.; Ndibazza, J.; Mpairwe, H.; Muhangi, L.; Webb, E.L.; Kizito, D.; Mawa, P.; Tweyongyere, R.; Muwanga, M.; Entebbe, M.; et al. Treatment with anthelminthics during pregnancy: What gains and what risks for the mother and child? Parasitology 2011, 138, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, I.; Ouma, J.; Wamachi, A.; Kioko, J.; Mungai, P.; Omollo, A.; Elson, L.; Koech, D.; Kazura, J.W.; King, C.L. In utero exposure to helminth and mycobacterial antigens generates cytokine responses similar to that observed in adults. J. Clin. Investig. 1997, 99, 1759–1766. [Google Scholar] [CrossRef] [PubMed]
- Lewert, R.M.; Mandlowitz, S. Schistosomiasis: Prenatal induction of tolerance to antigens. Nature 1969, 224, 1029–1030. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, A.D. Helminth infection during pregnancy: Insights from evolutionary ecology. Int. J. Womens Health 2016, 8, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Lacorcia, M.; Bhattacharjee, S.; Laubhahn, K.; Alhamdan, F.; Ram, M.; Muschaweckh, A.; Potaczek, D.P.; Kosinska, A.; Garn, H.; Protzer, U.; et al. Fetomaternal immune cross talk modifies T-cell priming through sustained changes to DC function. J. Allergy Clin. Immunol. 2021, 148, 843–857.e846. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, E.; Harder, J.; Lacorcia, M.; Honkpehedji, Y.J.; Nouatin, O.P.; van Dam, G.J.; Corstjens, P.; Sartono, E.; Esen, M.; Lobmaier, S.M.; et al. Placental gene expression and antibody levels of mother-neonate pairs reveal an enhanced risk for inflammation in a helminth endemic country. Sci. Rep. 2019, 9, 15776. [Google Scholar] [CrossRef]
- Seydel, L.S.; Petelski, A.; van Dam, G.J.; van der Kleij, D.; Kruize-Hoeksma, Y.C.; Luty, A.J.; Yazdanbakhsh, M.; Kremsner, P.G. Association of in utero sensitization to Schistosoma haematobium with enhanced cord blood IgE and increased frequencies of CD5- B cells in African newborns. Am. J. Trop. Med. Hyg. 2012, 86, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Freer, J.B.; Bourke, C.D.; Durhuus, G.H.; Kjetland, E.F.; Prendergast, A.J. Schistosomiasis in the first 1000 days. Lancet Infect. Dis. 2018, 18, e193–e203. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, I.; Mungai, P.; Wamachi, A.; Kioko, J.; Ouma, J.H.; Kazura, J.W.; King, C.L. Helminth- and Bacillus Calmette-Guerin-induced immunity in children sensitized in utero to filariasis and schistosomiasis. J. Immunol. 1999, 162, 6843–6848. [Google Scholar] [CrossRef]
- Ondigo, B.N.; Muok, E.M.O.; Oguso, J.K.; Njenga, S.M.; Kanyi, H.M.; Ndombi, E.M.; Priest, J.W.; Kittur, N.; Secor, W.E.; Karanja, D.M.S.; et al. Impact of Mothers’ Schistosomiasis Status During Gestation on Children’s IgG Antibody Responses to Routine Vaccines 2 Years Later and Anti-Schistosome and Anti-Malarial Responses by Neonates in Western Kenya. Front. Immunol. 2018, 9, 1402. [Google Scholar] [CrossRef] [PubMed]
- Tweyongyere, R.; Naniima, P.; Mawa, P.A.; Jones, F.M.; Webb, E.L.; Cose, S.; Dunne, D.W.; Elliott, A.M. Effect of maternal Schistosoma mansoni infection and praziquantel treatment during pregnancy on Schistosoma mansoni infection and immune responsiveness among offspring at age five years. PLoS Negl. Trop. Dis. 2013, 7, e2501. [Google Scholar] [CrossRef]
- Vlas, S.J.; Van Oortmarssen, G.J.; Gryseels, B.; Polderman, A.M.; Plaisier, A.P.; Habbema, J.D. SCHISTOSIM: A microsimulation model for the epidemiology and control of schistosomiasis. Am. J. Trop. Med. Hyg. 1996, 55, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Flugge, J.; Adegnika, A.A.; Honkpehedji, Y.J.; Sandri, T.L.; Askani, E.; Manouana, G.P.; Massinga Loembe, M.; Bruckner, S.; Duali, M.; Strunk, J.; et al. Impact of Helminth Infections during Pregnancy on Vaccine Immunogenicity in Gabonese Infants. Vaccines 2020, 8, 381. [Google Scholar] [CrossRef] [PubMed]
- Vale, N.; Gouveia, M.J.; Rinaldi, G.; Brindley, P.J.; Gartner, F.; Correia da Costa, J.M. Praziquantel for Schistosomiasis: Single-Drug Metabolism Revisited, Mode of Action, and Resistance. Antimicrob. Agents Chemother. 2017, 61, e02582-16. [Google Scholar] [CrossRef] [PubMed]
- Ogongo, P.; Nyakundi, R.K.; Chege, G.K.; Ochola, L. The Road to Elimination: Current State of Schistosomiasis Research and Progress Towards the End Game. Front. Immunol. 2022, 13, 846108. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Report of the WHO Informal Consultation on the Use of Praziquantel during Pregnancy/Lactation and Albendazole/Menendazole in Children under 24 Months. 2002. Available online: https://www.who.int/publications/i/item/WHO-CDS-CPE-PVC-2002.4 (accessed on 10 January 2024).
- Cioli, D.; Pica-Mattoccia, L.; Basso, A.; Guidi, A. Schistosomiasis control: Praziquantel forever? Mol. Biochem. Parasitol. 2014, 195, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Schneeberger, P.H.H.; Coulibaly, J.T.; Panic, G.; Daubenberger, C.; Gueuning, M.; Frey, J.E.; Keiser, J. Investigations on the interplays between Schistosoma mansoni, praziquantel and the gut microbiome. Parasit. Vectors 2018, 11, 168. [Google Scholar] [CrossRef]
- Mutapi, F.; Maizels, R.; Fenwick, A.; Woolhouse, M. Human schistosomiasis in the post mass drug administration era. Lancet Infect. Dis. 2017, 17, e42–e48. [Google Scholar] [CrossRef] [PubMed]
- Eyoh, E.; McCallum, P.; Killick, J.; Amanfo, S.; Mutapi, F.; Astier, A.L. The anthelmintic drug praziquantel promotes human Tr1 differentiation. Immunol. Cell Biol. 2019, 97, 512–518. [Google Scholar] [CrossRef]
- Stylianou, A.; Hadjichrysanthou, C.; Truscott, J.E.; Anderson, R.M. Developing a mathematical model for the evaluation of the potential impact of a partially efficacious vaccine on the transmission dynamics of Schistosoma mansoni in human communities. Parasit. Vectors 2017, 10, 294. [Google Scholar] [CrossRef]
- Chisango, T.J.; Ndlovu, B.; Vengesai, A.; Nhidza, A.F.; Sibanda, E.P.; Zhou, D.; Mutapi, F.; Mduluza, T. Benefits of annual chemotherapeutic control of schistosomiasis on the development of protective immunity. BMC Infect. Dis. 2019, 19, 219. [Google Scholar] [CrossRef] [PubMed]
- Kabuyaya, M.; Chimbari, M.J.; Mukaratirwa, S. Efficacy of praziquantel treatment regimens in pre-school and school aged children infected with schistosomiasis in sub-Saharan Africa: A systematic review. Infect. Dis. Poverty 2018, 7, 73. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, K.M.; Mutapi, F.; Mduluza, T.; Midzi, N.; Savill, N.J.; Woolhouse, M.E. Predicted impact of mass drug administration on the development of protective immunity against Schistosoma haematobium. PLoS Negl. Trop. Dis. 2014, 8, e3059. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.S. The consequences of uncertainty for the prediction of the effects of schistosomiasis control programmes. Epidemiol. Infect. 1996, 117, 537–550. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.H.; Hu, J.; Song, K.Y.; Lin, D.D.; Zhang, J.; Cao, C.L.; Xu, J.; Li, D.; Jiang, W.S. The role of health education and health promotion in the control of schistosomiasis: Experiences from a 12-year intervention study in the Poyang Lake area. Acta Trop. 2005, 96, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Chen, H.; Ishikawa, H. A mathematical model for the transmission of Schistosoma japonicum in consideration of seasonal water level fluctuations of Poyang Lake in Jiangxi, China. Parasitol. Int. 2013, 62, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Gray, D.J.; Williams, G.M.; Li, Y.; McManus, D.P. Transmission dynamics of Schistosoma japonicum in the lakes and marshlands of China. PLoS ONE 2008, 3, e4058. [Google Scholar] [CrossRef] [PubMed]
- McManus, D.P. Prospects for development of a transmission blocking vaccine against Schistosoma japonicum. Parasite Immunol. 2005, 27, 297–308. [Google Scholar] [CrossRef]
- Molehin, A.J.; McManus, D.P.; You, H. Vaccines for Human Schistosomiasis: Recent Progress, New Developments and Future Prospects. Int. J. Mol. Sci. 2022, 23, 2255. [Google Scholar] [CrossRef]
- Churcher, T.S.; Basanez, M.G. Density dependence and the spread of anthelmintic resistance. Evolution 2008, 62, 528–537. [Google Scholar] [CrossRef]
- Munisi, D.Z.; Buza, J.; Mpolya, E.A.; Angelo, T.; Kinung’hi, S.M. The Efficacy of Single-Dose versus Double-Dose Praziquantel Treatments on Schistosoma mansoni Infections: Its Implication on Undernutrition and Anaemia among Primary Schoolchildren in Two On-Shore Communities, Northwestern Tanzania. Biomed. Res. Int. 2017, 2017, 7035025. [Google Scholar] [CrossRef] [PubMed]
- Crellen, T.; Walker, M.; Lamberton, P.H.; Kabatereine, N.B.; Tukahebwa, E.M.; Cotton, J.A.; Webster, J.P. Reduced Efficacy of Praziquantel against Schistosoma mansoni Is Associated with Multiple Rounds of Mass Drug Administration. Clin. Infect. Dis. 2016, 63, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.M.; Timson, D.J. The Mechanism of Action of Praziquantel: Six Hypotheses. Curr. Top. Med. Chem. 2018, 18, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- Knowles, S.C.; Webster, B.L.; Garba, A.; Sacko, M.; Diaw, O.T.; Fenwick, A.; Rollinson, D.; Webster, J.P. Epidemiological Interactions between Urogenital and Intestinal Human Schistosomiasis in the Context of Praziquantel Treatment across Three West African Countries. PLoS Negl. Trop. Dis. 2015, 9, e0004019. [Google Scholar] [CrossRef] [PubMed]
- Fenwick, A. Praziquantel: Do we need another antischistosoma treatment? Future Med. Chem. 2015, 7, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Lamberton, P.H.; Crellen, T.; Cotton, J.A.; Webster, J.P. Modelling the effects of mass drug administration on the molecular epidemiology of schistosomes. Adv. Parasitol. 2015, 87, 293–327. [Google Scholar] [CrossRef]
- Kura, K.; Truscott, J.E.; Toor, J.; Anderson, R.M. Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination. PLoS Negl. Trop. Dis. 2019, 13, e0007349. [Google Scholar] [CrossRef]
- Hollingsworth, T.D. Counting Down the 2020 Goals for 9 Neglected Tropical Diseases: What Have We Learned From Quantitative Analysis and Transmission Modeling? Clin. Infect. Dis. 2018, 66, S237–S244. [Google Scholar] [CrossRef]
- King, C.H. The evolving schistosomiasis agenda 2007-2017-Why we are moving beyond morbidity control toward elimination of transmission. PLoS Negl. Trop. Dis. 2017, 11, e0005517. [Google Scholar] [CrossRef]
- Toor, J.; Truscott, J.E.; Werkman, M.; Turner, H.C.; Phillips, A.E.; King, C.H.; Medley, G.F.; Anderson, R.M. Determining post-treatment surveillance criteria for predicting the elimination of Schistosoma mansoni transmission. Parasit. Vectors 2019, 12, 437. [Google Scholar] [CrossRef]
- Anderson, R.M.; Turner, H.C.; Farrell, S.H.; Truscott, J.E. Studies of the Transmission Dynamics, Mathematical Model Development and the Control of Schistosome Parasites by Mass Drug Administration in Human Communities. Adv. Parasitol. 2016, 94, 199–246. [Google Scholar] [CrossRef] [PubMed]
- Zwang, J.; Olliaro, P.L. Clinical efficacy and tolerability of praziquantel for intestinal and urinary schistosomiasis-a meta-analysis of comparative and non-comparative clinical trials. PLoS Negl. Trop. Dis. 2014, 8, e3286. [Google Scholar] [CrossRef] [PubMed]
- Toor, J.; Alsallaq, R.; Truscott, J.E.; Turner, H.C.; Werkman, M.; Gurarie, D.; King, C.H.; Anderson, R.M. Are We on Our Way to Achieving the 2020 Goals for Schistosomiasis Morbidity Control Using Current World Health Organization Guidelines? Clin. Infect. Dis. 2018, 66, S245–S252. [Google Scholar] [CrossRef] [PubMed]
- Gurarie, D.; King, C.H. Heterogeneous model of schistosomiasis transmission and long-term control: The combined influence of spatial variation and age-dependent factors on optimal allocation of drug therapy. Parasitology 2005, 130, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, G. The dynamics of helminth infections, with special reference to schistosomes. Trans. R. Soc. Trop. Med. Hyg. 1965, 59, 489–506. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, K.; Phompida, S.; Insisiengmay, S.; Kirinoki, M.; Chigusa, Y.; Nakamura, S.; Matsuda, H.; Ishikawa, H. Analysis of the effectiveness of control measures against Schistosoma mekongi using an intra- and inter-village model in Champasak Province, Lao PDR. Parasitol. Int. 2011, 60, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Seto, E.Y.; Remais, J.V.; Zhong, B.; Yang, C.; Hubbard, A.; Davis, G.M.; Gu, X.; Qiu, D.; Spear, R.C. Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China. Proc. Natl. Acad. Sci. USA 2007, 104, 7110–7115. [Google Scholar] [CrossRef]
- Ishikawa, H.; Ohmae, H.; Pangilinan, R.; Redulla, A.; Matsuda, H. Modeling the dynamics and control of Schistosoma japonicum transmission on Bohol island, the Philippines. Parasitol. Int. 2006, 55, 23–29. [Google Scholar] [CrossRef]
- Remais, J. Modelling environmentally-mediated infectious diseases of humans: Transmission dynamics of schistosomiasis in China. Adv. Exp. Med. Biol. 2010, 673, 79–98. [Google Scholar] [CrossRef]
- Sokolow, S.H.; Wood, C.L.; Jones, I.J.; Lafferty, K.D.; Kuris, A.M.; Hsieh, M.H.; De Leo, G.A. To Reduce the Global Burden of Human Schistosomiasis, Use ‘Old Fashioned’ Snail Control. Trends Parasitol. 2018, 34, 23–40. [Google Scholar] [CrossRef]
- Hollingsworth, T.D.; Adams, E.R.; Anderson, R.M.; Atkins, K.; Bartsch, S.; Basanez, M.G.; Behrend, M.; Blok, D.J.; Chapman, L.A.; Coffeng, L.; et al. Quantitative analyses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases. Parasit. Vectors 2015, 8, 630. [Google Scholar] [CrossRef] [PubMed]
- Coura, J.R. Control of schistosomiasis in Brazil: Perspectives and proposals. Mem. Inst. Oswaldo Cruz 1995, 90, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Lo, N.C.; Gurarie, D.; Yoon, N.; Coulibaly, J.T.; Bendavid, E.; Andrews, J.R.; King, C.H. Impact and cost-effectiveness of snail control to achieve disease control targets for schistosomiasis. Proc. Natl. Acad. Sci. USA 2018, 115, E584–E591. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.P.; Molyneux, D.H.; Hotez, P.J.; Fenwick, A. The contribution of mass drug administration to global health: Past, present and future. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130434. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, G. Dynamic models in tropical hygiene. Proc. R. Soc. Med. 1968, 61, 456. [Google Scholar] [PubMed]
- Rosenfield, P.L.; Smith, R.A.; Wolman, M.G. Development and verification of a schistosomiasis transmission model. Am. J. Trop. Med. Hyg. 1977, 26, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Rudge, J.W.; Webster, J.P.; Lu, D.B.; Wang, T.P.; Fang, G.R.; Basanez, M.G. Identifying host species driving transmission of schistosomiasis japonica, a multihost parasite system, in China. Proc. Natl. Acad. Sci. USA 2013, 110, 11457–11462. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zou, L.; Shen, D.; Zhang, W.; Ruan, S. Mathematical modelling and control of schistosomiasis in Hubei Province, China. Acta Trop. 2010, 115, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.M.; Sleigh, A.C.; Li, Y.; Feng, Z.; Davis, G.M.; Chen, H.; Ross, A.G.; Bergquist, R.; McManus, D.P. Mathematical modelling of schistosomiasis japonica: Comparison of control strategies in the People’s Republic of China. Acta Trop. 2002, 82, 253–262. [Google Scholar] [CrossRef]
- Da’dara, A.A.; Li, Y.S.; Xiong, T.; Zhou, J.; Williams, G.M.; McManus, D.P.; Feng, Z.; Yu, X.L.; Gray, D.J.; Harn, D.A. DNA-based vaccines protect against zoonotic schistosomiasis in water buffalo. Vaccine 2008, 26, 3617–3625. [Google Scholar] [CrossRef]
- Gray, D.J.; Li, Y.S.; Williams, G.M.; Zhao, Z.Y.; Harn, D.A.; Li, S.M.; Ren, M.Y.; Feng, Z.; Guo, F.Y.; Guo, J.G.; et al. A multi-component integrated approach for the elimination of schistosomiasis in the People’s Republic of China: Design and baseline results of a 4-year cluster-randomised intervention trial. Int. J. Parasitol. 2014, 44, 659–668. [Google Scholar] [CrossRef]
- Williams, G.M.; Li, Y.S.; Gray, D.J.; Zhao, Z.Y.; Harn, D.A.; Shollenberger, L.M.; Li, S.M.; Yu, X.; Feng, Z.; Guo, J.G.; et al. Field Testing Integrated Interventions for Schistosomiasis Elimination in the People’s Republic of China: Outcomes of a Multifactorial Cluster-Randomized Controlled Trial. Front. Immunol. 2019, 10, 645. [Google Scholar] [CrossRef] [PubMed]
- McManus, D.P.; Gray, D.J.; Li, Y.; Feng, Z.; Williams, G.M.; Stewart, D.; Rey-Ladino, J.; Ross, A.G. Schistosomiasis in the People’s Republic of China: The era of the Three Gorges Dam. Clin. Microbiol. Rev. 2010, 23, 442–466. [Google Scholar] [CrossRef]
- Li, Y.; Teng, Z.; Ruan, S.; Li, M.; Feng, X. A mathematical model for the seasonal transmission of schistosomiasis in the lake and marshland regions of China. Math. Biosci. Eng. 2017, 14, 1279–1299. [Google Scholar] [CrossRef]
- Zhou, Y.B.; Liang, S.; Chen, G.X.; Rea, C.; He, Z.G.; Zhang, Z.J.; Wei, J.G.; Zhao, G.M.; Jiang, Q.W. An integrated strategy for transmission control of Schistosoma japonicum in a marshland area of China: Findings from a five-year longitudinal survey and mathematical modeling. Am. J. Trop. Med. Hyg. 2011, 85, 83–88. [Google Scholar] [CrossRef]
- Hisakane, N.; Kirinoki, M.; Chigusa, Y.; Sinuon, M.; Socheat, D.; Matsuda, H.; Ishikawa, H. The evaluation of control measures against Schistosoma mekongi in Cambodia by a mathematical model. Parasitol. Int. 2008, 57, 379–385. [Google Scholar] [CrossRef]
- El Ridi, R.; Tallima, H. Why the radiation-attenuated cercarial immunization studies failed to guide the road for an effective schistosomiasis vaccine: A review. J. Adv. Res. 2015, 6, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Hewitson, J.P.; Hamblin, P.A.; Mountford, A.P. Immunity induced by the radiation-attenuated schistosome vaccine. Parasite Immunol. 2005, 27, 271–280. [Google Scholar] [CrossRef]
- McManus, D.P. The Search for a Schistosomiasis Vaccine: Australia’s Contribution. Vaccines 2021, 9, 872. [Google Scholar] [CrossRef] [PubMed]
- Nash, S.; Mentzer, A.J.; Lule, S.A.; Kizito, D.; Smits, G.; van der Klis, F.R.; Elliott, A.M. The impact of prenatal exposure to parasitic infections and to anthelminthic treatment on antibody responses to routine immunisations given in infancy: Secondary analysis of a randomised controlled trial. PLoS Negl. Trop. Dis. 2017, 11, e0005213. [Google Scholar] [CrossRef]
- Kura, K.; Ayabina, D.; Hollingsworth, T.D.; Anderson, R.M. Determining the optimal strategies to achieve elimination of transmission for Schistosoma mansoni. Parasit. Vectors 2022, 15, 55. [Google Scholar] [CrossRef] [PubMed]
- Hotez, P.J.; Bottazzi, M.E. Human Schistosomiasis Vaccines as Next Generation Control Tools. Trop. Med. Infect. Dis. 2023, 8, 170. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Lopes, D.; de Oliveira, F.M.; do Vale Coelho, I.E.; de Oliveira Santana, K.T.; Mendonca, F.C.; Taranto, A.G.; dos Santos, L.L.; Miyoshi, A.; de Carvalho Azevedo, V.A.; Comar, M., Jr. Identification of a vaccine against schistosomiasis using bioinformatics and molecular modeling tools. Infect. Genet. Evol. 2013, 20, 83–95. [Google Scholar] [CrossRef] [PubMed]
- U.S. National Library of Medicine. ClinicalTrials.gov. Safety and Immunogenicity Evaluation of the Vaccine Candidate Sm14 in Combination with the Adjuvant Glucopyranosyl Lipid A (GLA-SE) in Adults Living in Endemic Regions for S. Mansoni and S. Haematobium in Senegal. A Comparative, Randomized, Open-Label Trial [NCT03041766]. 2016. Available online: https://clinicaltrials.gov/ct2/show/NCT03041766?term=Sm14&cond=Schistosomiasis&rank=3 (accessed on 11 March 2024).
- U.S. National Library of Medicine. ClinicalTrials.gov. Safety and Immunogenicity Evaluation of the Vaccine Candidate Sm14 against Schistosomiasis in Senegalese School Children Healthy or Infected with S. Mansoni and/or S. Haematobium. A Comparative, Randomized, Controlled, Open-label Trial [NCT03799510]. 2018. Available online: https://clinicaltrials.gov/ct2/show/NCT03799510?term=Sm14&cond=Schistosomiasis&rank=2 (accessed on 11 March 2024).
- U.S. National Library of Medicine. ClinicalTrials.gov. Anti-Schistosomiasis Sm14-Vaccine in Senegal [NCT05658614]. 2022. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05658614?term=SM14&draw=2&rank=2 (accessed on 12 March 2024).
- U.S. National Library of Medicine. ClinicalTrials.gov. Sm-TSP-2 Schistosomiasis Vaccine in Healthy Ugandan Adults [NCT03910972]. 2019. Available online: https://clinicaltrials.gov/ct2/show/NCT03910972?term=TSP&cond=Schistosomiasis&rank=2 (accessed on 12 March 2024).
- U.S. National Library of Medicine. ClinicalTrials.gov. A Phase Ib Study of the Safety, Reactogenicity, and Immunogenicity of Sm-TSP-2/Alhydrogel)(R) with or without AP 10-701 for Intestinal Schistosomiasis in Healthy Exposed Adults [NCT03110757]. 2017–2019. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT03110757?term=NCT03110757&draw=2&rank=1 (accessed on 12 March 2024).
- U.S. National Library of Medicine. ClinicalTrials.gov. A Phase I Study of the Safety, Reactogenicity, and Immunogenicity of Sm-TSP-2/Alhydrogel® with or without GLA-AF for Intestinal Schistosomiasis in Healthy Adults [NCT02337855]. 2017. Available online: https://clinicaltrials.gov/ct2/show/NCT02337855?term=TSP&cond=Schistosomiasis&rank=1 (accessed on 12 March 2024).
- Keitel, W.A.; Potter, G.E.; Diemert, D.; Bethony, J.; El Sahly, H.M.; Kennedy, J.K.; Patel, S.M.; Plieskatt, J.L.; Jones, W.; Deye, G.; et al. A phase 1 study of the safety, reactogenicity, and immunogenicity of a Schistosoma mansoni vaccine with or without glucopyranosyl lipid A aqueous formulation (GLA-AF) in healthy adults from a non-endemic area. Vaccine 2019, 37, 6500–6509. [Google Scholar] [CrossRef]
- Diemert, D.J.; Correa-Oliveira, R.; Fraga, C.G.; Talles, F.; Silva, M.R.; Patel, S.M.; Galbiati, S.; Kennedy, J.K.; Lundeen, J.S.; Gazzinelli, M.F.; et al. A randomized, controlled Phase 1b trial of the Sm-TSP-2 Vaccine for intestinal schistosomiasis in healthy Brazilian adults living in an endemic area. PLoS Negl. Trop. Dis. 2023, 17, e0011236. [Google Scholar] [CrossRef] [PubMed]
- U.S. National Library of Medicine. ClinicalTrials.gov. Safety, Tolerability, and Immunogenicity Study of Sm-p80 + GLA-SE (SchistoShield(R)) Vaccine in Healthy Adults [NCT05292391]. 2022. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05292391?term=SchistoShield&draw=2&rank=1 (accessed on 14 March 2024).
- U.S. National Library of Medicine. ClinicalTrials.gov. A Study to Evaluate the Safety, Tolerability, and Immunogenicity of the Sm-p80 + GLA-SE (SchistoShield®) Candidate Vaccine in Healthy Adults in Burkina Faso and Madagascar [NCT05762393]. 2023. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05762393?term=SchistoShield&draw=2&rank=2 (accessed on 14 March 2024).
- U.S. National Library of Medicine. ClinicalTrials.gov. Sm-p80 Schistosomiasis Challenge Study [NCT05999825]. 2023. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05999825?term=SchistoShield&draw=2&rank=3 (accessed on 15 March 2024).
- Tebeje, B.M.; Harvie, M.; You, H.; Loukas, A.; McManus, D.P. Schistosomiasis vaccines: Where do we stand? Parasit. Vectors 2016, 9, 528. [Google Scholar] [CrossRef] [PubMed]
- Anisuzzaman; Tsuji, N. Schistosomiasis and hookworm infection in humans: Disease burden, pathobiology and anthelmintic vaccines. Parasitol. Int. 2020, 75, 102051. [Google Scholar] [CrossRef] [PubMed]
- Merrifield, M.; Hotez, P.J.; Beaumier, C.M.; Gillespie, P.; Strych, U.; Hayward, T.; Bottazzi, M.E. Advancing a vaccine to prevent human schistosomiasis. Vaccine 2016, 34, 2988–2991. [Google Scholar] [CrossRef]
- U.S. National Library of Medicine. ClinicalTrials.gov. Efficacy and Safety Evaluation of the Therapeutic Vaccine Candidate Sh28GST in Association With Praziquantel (PZQ) for Prevention of Clinical and Parasitological Recurrences of S. Haematobium Infection in Children [NCT00870649]. 2012. Available online: https://clinicaltrials.gov/ct2/show/NCT00870649?term=sh28GST&cond=Schistosomiasis&draw=2&rank=1 (accessed on 14 March 2004).
- Riveau, G.; Schacht, A.M.; Dompnier, J.P.; Deplanque, D.; Seck, M.; Waucquier, N.; Senghor, S.; Delcroix-Genete, D.; Hermann, E.; Idris-Khodja, N.; et al. Safety and efficacy of the rSh28GST urinary schistosomiasis vaccine: A phase 3 randomized, controlled trial in Senegalese children. PLoS Negl. Trop. Dis. 2018, 12, e0006968. [Google Scholar] [CrossRef]
- Moser, D.; Tendler, M.; Griffiths, G.; Klinkert, M.Q. A 14-kDa Schistosoma mansoni polypeptide is homologous to a gene family of fatty acid binding proteins. J. Biol. Chem. 1991, 266, 8447–8454. [Google Scholar] [CrossRef]
- Becker, M.M.; Kalinna, B.H.; Waine, G.J.; McManus, D.P. Gene cloning, overproduction and purification of a functionally active cytoplasmic fatty acid-binding protein (Sj-FABPC) from the human blood fluke Schistosoma japonicum. Gene 1994, 148, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Esteves, A.; Joseph, L.; Paulino, M.; Ehrlich, R. Remarks on the phylogeny and structure of fatty acid binding proteins from parasitic platyhelminths. Int. J. Parasitol. 1997, 27, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Tendler, M.; Brito, C.A.; Vilar, M.M.; Serra-Freire, N.; Diogo, C.M.; Almeida, M.S.; Delbem, A.C.; Da Silva, J.F.; Savino, W.; Garratt, R.C.; et al. A Schistosoma mansoni fatty acid-binding protein, Sm14, is the potential basis of a dual-purpose anti-helminth vaccine. Proc. Natl. Acad. Sci. USA 1996, 93, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Vilar, M.M.; Barrientos, F.; Almeida, M.; Thaumaturgo, N.; Simpson, A.; Garratt, R.; Tendler, M. An experimental bivalent peptide vaccine against schistosomiasis and fascioliasis. Vaccine 2003, 22, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Santini-Oliveira, M.; Machado Pinto, P.; Santos, T.D.; Vilar, M.M.; Grinsztejn, B.; Veloso, V.; Paes-de-Almeida, E.C.; Amaral, M.A.Z.; Ramos, C.R.; Marroquin-Quelopana, M.; et al. Development of the Sm14/GLA-SE Schistosomiasis Vaccine Candidate: An Open, Non-Placebo-Controlled, Standardized-Dose Immunization Phase Ib Clinical Trial Targeting Healthy Young Women. Vaccines 2022, 10, 1724. [Google Scholar] [CrossRef]
- Charrin, S.; Jouannet, S.; Boucheix, C.; Rubinstein, E. Tetraspanins at a glance. J. Cell Sci. 2014, 127, 3641–3648. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.H.; Pearson, M.S.; Bethony, J.M.; Smyth, D.J.; Jones, M.K.; Duke, M.; Don, T.A.; McManus, D.P.; Correa-Oliveira, R.; Loukas, A. Tetraspanins on the surface of Schistosoma mansoni are protective antigens against schistosomiasis. Nat. Med. 2006, 12, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, J.; Duke, M.; Jones, M.K.; Kuang, L.; Zhang, J.; Blair, D.; Li, Y.; McManus, D.P. Inconsistent protective efficacy and marked polymorphism limits the value of Schistosoma japonicum tetraspanin-2 as a vaccine target. PLoS Negl. Trop. Dis. 2011, 5, e1166. [Google Scholar] [CrossRef] [PubMed]
- Cupit, P.M.; Steinauer, M.L.; Tonnessen, B.W.; Eric Agola, L.; Kinuthia, J.M.; Mwangi, I.N.; Mutuku, M.W.; Mkoji, G.M.; Loker, E.S.; Cunningham, C. Polymorphism associated with the Schistosoma mansoni tetraspanin-2 gene. Int. J. Parasitol. 2011, 41, 1249–1252. [Google Scholar] [CrossRef]
- Jia, X.; Schulte, L.; Loukas, A.; Pickering, D.; Pearson, M.; Mobli, M.; Jones, A.; Rosengren, K.J.; Daly, N.L.; Gobert, G.N.; et al. Solution structure, membrane interactions, and protein binding partners of the tetraspanin Sm-TSP-2, a vaccine antigen from the human blood fluke Schistosoma mansoni. J. Biol. Chem. 2014, 289, 7151–7163. [Google Scholar] [CrossRef]
- Croall, D.E.; Ersfeld, K. The calpains: Modular designs and functional diversity. Genome Biol. 2007, 8, 218. [Google Scholar] [CrossRef] [PubMed]
- Karcz, S.R.; Podesta, R.B.; Siddiqui, A.A.; Dekaban, G.A.; Strejan, G.H.; Clarke, M.W. Molecular cloning and sequence analysis of a calcium-activated neutral protease (calpain) from Schistosoma mansoni. Mol. Biochem. Parasitol. 1991, 49, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Suzuki, T.; Takahashi, S.; Yoshida, A.; Kawaguchi, H.; Maruyama, H.; Yabu, Y.; Fu, J.; Shirai, T.; Ohta, N. Cloning and molecular characterization of calpain, a calcium-activated neutral proteinase, from different strains of Schistosoma japonicum. Parasitol. Int. 2000, 48, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.A.; Angelucci, F.; Bellelli, A.; Herve, M.; Fontaine, J.; Tsernoglou, D.; Capron, A.; Trottein, F.; Brunori, M. Crystal structure of the 28 kDa glutathione S-transferase from Schistosoma haematobium. Biochemistry 2003, 42, 10084–10094. [Google Scholar] [CrossRef] [PubMed]
- Trottein, F.; Godin, C.; Pierce, R.J.; Sellin, B.; Taylor, M.G.; Gorillot, I.; Silva, M.S.; Lecocq, J.P.; Capron, A. Inter-species variation of schistosome 28-kDa glutathione S-transferases. Mol. Biochem. Parasitol. 1992, 54, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Dumont, M.; Mone, H.; Mouahid, G.; Idris, M.A.; Shaban, M.; Boissier, J. Influence of pattern of exposure, parasite genetic diversity and sex on the degree of protection against reinfection with Schistosoma mansoni. Parasitol. Res. 2007, 101, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Leonardo, L.; Bergquist, R.; Olveda, R.; Satrija, F.; Sripa, B.; Sayasone, S.; Khieu, V.; Willingham, A.L.; Utzinger, J.; Zhou, X.N. From country control programmes to translational research. Adv. Parasitol. 2019, 105, 69–93. [Google Scholar] [CrossRef] [PubMed]
- Scherer, A.; McLean, A. Mathematical models of vaccination. Br. Med. Bull. 2002, 62, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.J.; Cao, H.H.; He, Y.Y.; Liu, Y.J.; Zhang, X.Y.; Yang, G.J.; Zhou, X.N. The basic reproductive ratio of Barbour’s two-host schistosomiasis model with seasonal fluctuations. Parasit. Vectors 2017, 10, 42. [Google Scholar] [CrossRef]
- Barbour, A.D. Macdonald’s model and the transmission of bilharzia. Trans. R. Soc. Trop. Med. Hyg. 1978, 72, 6–15. [Google Scholar] [CrossRef]
- Bichara, D.M.; Guiro, A.; Iggidr, A.; Ngom, D. State and parameter estimation for a class of schistosomiasis models. Math. Biosci. 2019, 315, 108226. [Google Scholar] [CrossRef] [PubMed]
- Goddard, M.J. On Macdonald’s model for schistosomiasis. Trans. R. Soc. Trop. Med. Hyg. 1978, 72, 123–131. [Google Scholar] [CrossRef]
- Nasell, I. On transmission and control of schistosomiasis, with comments on Macdonald’s model. Theor. Popul. Biol. 1977, 12, 335–365. [Google Scholar] [CrossRef]
- Mari, L.; Ciddio, M.; Casagrandi, R.; Perez-Saez, J.; Bertuzzo, E.; Rinaldo, A.; Sokolow, S.H.; De Leo, G.A.; Gatto, M. Heterogeneity in schistosomiasis transmission dynamics. J. Theor. Biol. 2017, 432, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.J.; He, Y.Y.; Liu, Y.J.; Yang, G.J.; Zhou, X.N. Field transmission intensity of Schistosoma japonicum measured by basic reproduction ratio from modified Barbour’s model. Parasit. Vectors 2013, 6, 141. [Google Scholar] [CrossRef]
- Qi, L.X.; Tang, Y.; Tian, S.J. Parameter estimation of modeling schistosomiasis transmission for four provinces in China. Math. Biosci. Eng. 2019, 16, 1005–1020. [Google Scholar] [CrossRef]
- Barbour, A.D. Modeling the transmission of schistosomiasis: An introductory view. Am. J. Trop. Med. Hyg. 1996, 55, 135–143. [Google Scholar] [CrossRef]
- Barbour, A.D.; Kafetzaki, M. A host-parasite model yielding heterogeneous parasite loads. J. Math. Biol. 1993, 31, 157–176. [Google Scholar] [CrossRef] [PubMed]
- Gandon, S.; Day, T.; Metcalf, C.J.E.; Grenfell, B.T. Forecasting Epidemiological and Evolutionary Dynamics of Infectious Diseases. Trends Ecol. Evol. 2016, 31, 776–788. [Google Scholar] [CrossRef]
- Grassly, N.C.; Fraser, C. Mathematical models of infectious disease transmission. Nat. Rev. Microbiol. 2008, 6, 477–487. [Google Scholar] [CrossRef]
- Wallinga, J. Modelling the impact of vaccination strategies. Neth. J. Med. 2002, 60, 67–75, discussion 76–77. [Google Scholar] [PubMed]
- Spear, R.C.; Hubbard, A. Parameter estimation and site-specific calibration of disease transmission models. Adv. Exp. Med. Biol. 2010, 673, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Chavez, C.; Feng, Z.; Xu, D. A schistosomiasis model with mating structure and time delay. Math. Biosci. 2008, 211, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Gurarie, D.; Seto, E.Y. Connectivity sustains disease transmission in environments with low potential for endemicity: Modelling schistosomiasis with hydrologic and social connectivities. J. R. Soc. Interface 2009, 6, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Turner, H.C.; Walker, M.; French, M.D.; Blake, I.M.; Churcher, T.S.; Basanez, M.G. Neglected tools for neglected diseases: Mathematical models in economic evaluations. Trends Parasitol. 2014, 30, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Bailey, N.T. The case for mathematical modelling of schistosomiasis. Parasitol. Today 1986, 2, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Gurarie, D.; Lo, N.C.; Ndeffo-Mbah, M.L.; Durham, D.P.; King, C.H. The human-snail transmission environment shapes long term schistosomiasis control outcomes: Implications for improving the accuracy of predictive modeling. PLoS Negl. Trop. Dis. 2018, 12, e0006514. [Google Scholar] [CrossRef]
- Woolhouse, M.E. On the application of mathematical models of schistosome transmission dynamics. I. Natural transmission. Acta Trop. 1991, 49, 241–270. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.E. On the application of mathematical models of schistosome transmission dynamics. II. Control. Acta Trop. 1992, 50, 189–204. [Google Scholar] [CrossRef]
- Chan, M.S.; Guyatt, H.L.; Bundy, D.A.; Medley, G.F. The development and validation of an age-structured model for the evaluation of disease control strategies for intestinal helminths. Parasitology 1994, 109 Pt 3, 389–396. [Google Scholar] [CrossRef]
- Lloyd-Smith, J.O.; George, D.; Pepin, K.M.; Pitzer, V.E.; Pulliam, J.R.; Dobson, A.P.; Hudson, P.J.; Grenfell, B.T. Epidemic dynamics at the human-animal interface. Science 2009, 326, 1362–1367. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.E. Mathematical models of transmission dynamics and control of schistosomiasis. Am. J. Trop. Med. Hyg. 1996, 55, 144–148. [Google Scholar] [CrossRef]
- Seto, E.Y.; Carlton, E.J. Disease transmission models for public health decision-making: Designing intervention strategies for Schistosoma japonicum. Adv. Exp. Med. Biol. 2010, 673, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Truscott, J.E.; Gurarie, D.; Alsallaq, R.; Toor, J.; Yoon, N.; Farrell, S.H.; Turner, H.C.; Phillips, A.E.; Aurelio, H.O.; Ferro, J.; et al. A comparison of two mathematical models of the impact of mass drug administration on the transmission and control of schistosomiasis. Epidemics 2017, 18, 29–37. [Google Scholar] [CrossRef]
- Kura, K.; Collyer, B.S.; Toor, J.; Truscott, J.E.; Hollingsworth, T.D.; Keeling, M.J.; Anderson, R.M. Policy implications of the potential use of a novel vaccine to prevent infection with Schistosoma mansoni with or without mass drug administration. Vaccine 2020, 38, 4379–4386. [Google Scholar] [CrossRef] [PubMed]
- Basanez, M.G.; McCarthy, J.S.; French, M.D.; Yang, G.J.; Walker, M.; Gambhir, M.; Prichard, R.K.; Churcher, T.S. A research agenda for helminth diseases of humans: Modelling for control and elimination. PLoS Negl. Trop. Dis. 2012, 6, e1548. [Google Scholar] [CrossRef]
- Woolhouse, M.E. Human schistosomiasis: Potential consequences of vaccination. Vaccine 1995, 13, 1045–1050. [Google Scholar] [CrossRef]
- Woolhouse, M.E. A theoretical framework for the immunoepidemiology of helminth infection. Parasite Immunol. 1992, 14, 563–578. [Google Scholar] [CrossRef]
- Woolhouse, M.E. A theoretical framework for immune responses and predisposition to helminth infection. Parasite Immunol. 1993, 15, 583–594. [Google Scholar] [CrossRef]
- Chan, M.S.; Anderson, R.M.; Medley, G.F.; Bundy, D.A. Dynamic aspects of morbidity and acquired immunity in schistosomiasis control. Acta Trop. 1996, 62, 105–117. [Google Scholar] [CrossRef]
- Anderson, R.M.; May, R.M. Herd immunity to helminth infection and implications for parasite control. Nature 1985, 315, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.E. Immunoepidemiology of human schistosomes: Taking the theory into the field. Parasitol. Today 1994, 10, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.S.; Guyatt, H.L.; Bundy, D.A.; Medley, G.F. Dynamic models of schistosomiasis morbidity. Am. J. Trop. Med. Hyg. 1996, 55, 52–62. [Google Scholar] [CrossRef]
- Liang, S.; Spear, R.C.; Seto, E.; Hubbard, A.; Qiu, D. A multi-group model of Schistosoma japonicum transmission dynamics and control: Model calibration and control prediction. Trop. Med. Int. Health 2005, 10, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.S.; Hall, B.F.; Bundy, D.A.P. Modelling of potential schistosomiasis vaccination programmes. Parasitology 1996, 12, 4. [Google Scholar] [CrossRef]
- Chan, M.S.; Woolhouse, M.E.; Bundy, D.A. Human schistosomiasis: Potential long-term consequences of vaccination programmes. Vaccine 1997, 15, 1545–1550. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.S.; Guyatt, H.L.; Bundy, D.A.; Booth, M.; Fulford, A.J.; Medley, G.F. The development of an age structured model for schistosomiasis transmission dynamics and control and its validation for Schistosoma mansoni. Epidemiol. Infect. 1995, 115, 325–344. [Google Scholar] [CrossRef]
- Yang, H.M. Comparison between schistosomiasis transmission modelings considering acquired immunity and age-structured contact pattern with infested water. Math. Biosci. 2003, 184, 1–26. [Google Scholar] [CrossRef]
- Yang, H.M.; Coutinho, F.A.; Massad, E. Acquired immunity on a schistosomiasis transmission model-fitting the data. J. Theor. Biol. 1997, 188, 495–506. [Google Scholar] [CrossRef]
- Liu, X.; Takeuchi, Y.; Iwami, S. SVIR epidemic models with vaccination strategies. J. Theor. Biol. 2008, 253, 1–11. [Google Scholar] [CrossRef]
- Yang, H.M.; Yang, A.C. The stabilizing effects of the acquired immunity on the schistosomiasis transmission modeling—The sensitivity analysis. Mem. Inst. Oswaldo Cruz 1998, 93 (Suppl. S1), 63–73. [Google Scholar] [CrossRef] [PubMed]
- Gurarie, D.; King, C.H.; Wang, X. A new approach to modelling schistosomiasis transmission based on stratified worm burden. Parasitology 2010, 137, 1951–1965. [Google Scholar] [CrossRef] [PubMed]
- Gurarie, D.; King, C.H. Population biology of Schistosoma mating, aggregation, and transmission breakpoints: More reliable model analysis for the end-game in communities at risk. PLoS ONE 2014, 9, e115875. [Google Scholar] [CrossRef] [PubMed]
- Luchsinger, C.J. Stochastic models of a parasitic infection, exhibiting three basic reproduction ratios. J. Math. Biol. 2001, 42, 532–554. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.M.; May, R.M. Helminth infections of humans: Mathematical models, population dynamics, and control. Adv. Parasitol. 1985, 24, 1–101. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.M.; May, R.M. Population dynamics of human helminth infections: Control by chemotherapy. Nature 1982, 297, 557–563. [Google Scholar] [CrossRef] [PubMed]
- McManus, D.P.; Wong, J.Y.; Zhou, J.; Cai, C.; Zeng, Q.; Smyth, D.; Li, Y.; Kalinna, B.H.; Duke, M.J.; Yi, X. Recombinant paramyosin (rec-Sj-97) tested for immunogenicity and vaccine efficacy against Schistosoma japonicum in mice and water buffaloes. Vaccine 2001, 20, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Bradley, D.J.; May, R.M. Consequences of helminth aggregation for the dynamics of schistosomiasis. Trans. R. Soc. Trop. Med. Hyg. 1978, 72, 262–273. [Google Scholar] [CrossRef]
- Alsallaq, R.A.; Gurarie, D.; Ndeffo Mbah, M.; Galvani, A.; King, C. Quantitative assessment of the impact of partially protective anti-schistosomiasis vaccines. PLoS Negl. Trop. Dis. 2017, 11, e0005544. [Google Scholar] [CrossRef]
- Collyer, B.S.; Turner, H.C.; Hollingsworth, T.D.; Keeling, M.J. Vaccination or mass drug administration against schistosomiasis: A hypothetical cost-effectiveness modelling comparison. Parasit. Vectors 2019, 12, 499. [Google Scholar] [CrossRef]
- Graham, M.; Ayabina, D.; Lucas, T.C.; Collyer, B.S.; Medley, G.F.; Hollingsworth, T.D.; Toor, J. SCHISTOX: An individual based model for the epidemiology and control of schistosomiasis. Infect. Dis. Model 2021, 6, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Farrell, S.H.; Truscott, J.E.; Anderson, R.M. The importance of patient compliance in repeated rounds of mass drug administration (MDA) for the elimination of intestinal helminth transmission. Parasit. Vectors 2017, 10, 291. [Google Scholar] [CrossRef]
- Anderson, R.M.; Turner, H.C.; Farrell, S.H.; Yang, J.; Truscott, J.E. What is required in terms of mass drug administration to interrupt the transmission of schistosome parasites in regions of endemic infection? Parasit. Vectors 2015, 8, 553. [Google Scholar] [CrossRef] [PubMed]
- Gurarie, D.; Yoon, N.; Li, E.; Ndeffo-Mbah, M.; Durham, D.; Phillips, A.E.; Aurelio, H.O.; Ferro, J.; Galvani, A.P.; King, C.H. Modelling control of Schistosoma haematobium infection: Predictions of the long-term impact of mass drug administration in Africa. Parasit. Vectors 2015, 8, 529. [Google Scholar] [CrossRef] [PubMed]
- French, M.D.; Churcher, T.S.; Gambhir, M.; Fenwick, A.; Webster, J.P.; Kabatereine, N.B.; Basanez, M.G. Observed reductions in Schistosoma mansoni transmission from large-scale administration of praziquantel in Uganda: A mathematical modelling study. PLoS Negl. Trop. Dis. 2010, 4, e897. [Google Scholar] [CrossRef] [PubMed]
- Toor, J.; Turner, H.C.; Truscott, J.E.; Werkman, M.; Phillips, A.E.; Alsallaq, R.; Medley, G.F.; King, C.H.; Anderson, R.M. The design of schistosomiasis monitoring and evaluation programmes: The importance of collecting adult data to inform treatment strategies for Schistosoma mansoni. PLoS Negl. Trop. Dis. 2018, 12, e0006717. [Google Scholar] [CrossRef] [PubMed]
- Turner, H.C.; Truscott, J.E.; Bettis, A.A.; Farrell, S.H.; Deol, A.K.; Whitton, J.M.; Fleming, F.M.; Anderson, R.M. Evaluating the variation in the projected benefit of community-wide mass treatment for schistosomiasis: Implications for future economic evaluations. Parasit. Vectors 2017, 10, 213. [Google Scholar] [CrossRef] [PubMed]
- NTD Modelling Consortium Schistosomiasis Group. Insights from quantitative and mathematical modelling on the proposed WHO 2030 goal for schistosomiasis. Gates Open Res. 2019, 3, 1517. [Google Scholar] [CrossRef]
- Chan, M.S.; Bundy, D.A. Modelling the dynamic effects of community chemotherapy on patterns of morbidity due to Schistosoma mansoni. Trans. R. Soc. Trop. Med. Hyg. 1997, 91, 216–220. [Google Scholar] [CrossRef]
- U.S. National Library of Medicine. ClinicalTrials.gov. Phase 1 Study to Evaluate the Safety of the Vaccine Prepared sm14 against Schistosomiasis [NCT01154049]. 2014. Available online: https://clinicaltrials.gov/ct2/show/NCT01154049?term=Sm14&cond=Schistosomiasis&rank=1 (accessed on 1 January 2024).
- Santini-Oliveira, M.; Coler, R.N.; Parra, J.; Veloso, V.; Jayashankar, L.; Pinto, P.M.; Ciol, M.A.; Bergquist, R.; Reed, S.G.; Tendler, M. Schistosomiasis vaccine candidate Sm14/GLA-SE: Phase 1 safety and immunogenicity clinical trial in healthy, male adults. Vaccine 2016, 34, 586–594. [Google Scholar] [CrossRef]
- Riveau, G.; Deplanque, D.; Remoue, F.; Schacht, A.M.; Vodougnon, H.; Capron, M.; Thiry, M.; Martial, J.; Libersa, C.; Capron, A. Safety and immunogenicity of rSh28GST antigen in humans: Phase 1 randomized clinical study of a vaccine candidate against urinary schistosomiasis. PLoS Negl. Trop. Dis. 2012, 6, e1704. [Google Scholar] [CrossRef]
- U.S. National Library of Medicine. ClinicalTrials.gov. Phase 1 Study Evaluating Safety and Immunological Criteria of Efficacy of the Recombinant Vaccine Candidate Bilhvax against Schistosomiasis [NCT01512277]. 1999. Available online: https://clinicaltrials.gov/ct2/show/NCT01512277?term=rsh28GST&cond=Schistosomiasis&draw=2&rank=1 (accessed on 1 January 2024).
- Danso-Appiah, A.; Olliaro, P.L.; Donegan, S.; Sinclair, D.; Utzinger, J. Drugs for treating Schistosoma mansoni infection. Cochrane Database Syst. Rev. 2013, 2, CD000528. [Google Scholar] [CrossRef]
- Sousa-Figueiredo, J.C.; Betson, M.; Atuhaire, A.; Arinaitwe, M.; Navaratnam, A.M.; Kabatereine, N.B.; Bickle, Q.; Stothard, J.R. Performance and safety of praziquantel for treatment of intestinal schistosomiasis in infants and preschool children. PLoS Negl. Trop. Dis. 2012, 6, e1864. [Google Scholar] [CrossRef] [PubMed]
- Zwang, J.; Olliaro, P. Efficacy and safety of praziquantel 40 mg/kg in preschool-aged and school-aged children: A meta-analysis. Parasit. Vectors 2017, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Oettle, R.C.; Wilson, S. The Interdependence between Schistosome Transmission and Protective Immunity. Trop. Med. Infect. Dis. 2017, 2, 42. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.M.; Coutinho, F.A. Acquired immunity of a schistosomiasis transmission model—Analysis of the stabilizing effects. J. Theor. Biol. 1999, 196, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Spencer, S.A.; Andriamasy, E.H.; Linder, C.; Penney, J.M.S.; Henstridge-Blows, J.; Russell, H.J.; Hyde, K.; Sheehy, C.; Young, I.L.; Sjoflot, B.; et al. Impact of a Novel, Low-Cost and Sustainable Health Education Program on the Knowledge, Attitudes, and Practices Related to Intestinal Schistosomiasis in School Children in a Hard-to-Reach District of Madagascar. Am. J. Trop. Med. Hyg. 2022, 106, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Webster, B.L.; Diaw, O.T.; Seye, M.M.; Webster, J.P.; Rollinson, D. Introgressive hybridization of Schistosoma haematobium group species in Senegal: Species barrier break down between ruminant and human schistosomes. PLoS Negl. Trop. Dis. 2013, 7, e2110. [Google Scholar] [CrossRef] [PubMed]
- Van den Broeck, F.; Maes, G.E.; Larmuseau, M.H.; Rollinson, D.; Sy, I.; Faye, D.; Volckaert, F.A.; Polman, K.; Huyse, T. Reconstructing Colonization Dynamics of the Human Parasite Schistosoma mansoni following Anthropogenic Environmental Changes in Northwest Senegal. PLoS Negl. Trop. Dis. 2015, 9, e0003998. [Google Scholar] [CrossRef]
- King, K.C.; Stelkens, R.B.; Webster, J.P.; Smith, D.F.; Brockhurst, M.A. Hybridization in Parasites: Consequences for Adaptive Evolution, Pathogenesis, and Public Health in a Changing World. PLoS Pathog. 2015, 11, e1005098. [Google Scholar] [CrossRef]
- Southgate, V.R. Schistosomiasis in the Senegal River Basin: Before and after the construction of the dams at Diama, Senegal and Manantali, Mali and future prospects. J. Helminthol. 1997, 71, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Kloos, H. Water resources development and schistosomiasis ecology in the Awash Valley, Ethiopia. Soc. Sci. Med. 1985, 20, 609–625. [Google Scholar] [CrossRef] [PubMed]
- Tchuem Tchuente, L.A.; Southgate, V.R.; Njiokou, F.; Njine, T.; Kouemeni, L.E.; Jourdane, J. The evolution of schistosomiasis at Loum, Cameroon: Replacement of Schistosoma intercalatum by S. haematobium through introgressive hybridization. Trans. R. Soc. Trop. Med. Hyg. 1997, 91, 664–665. [Google Scholar] [CrossRef] [PubMed]
- Picquet, M.; Ernould, J.C.; Vercruysse, J.; Southgate, V.R.; Mbaye, A.; Sambou, B.; Niang, M.; Rollinson, D. Royal Society of Tropical Medicine and Hygiene meeting at Manson House, London, 18 May 1995. The epidemiology of human schistosomiasis in the Senegal river basin. Trans. R. Soc. Trop. Med. Hyg. 1996, 90, 340–346. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Schistosomiasis. 22 November 2018. Available online: http://www.who.int/schistosomiasis/en/ (accessed on 25 December 2023).
- King, C.H.; Sutherland, L.J.; Bertsch, D. Systematic Review and Meta-analysis of the Impact of Chemical-Based Mollusciciding for Control of Schistosoma mansoni and S. haematobium Transmission. PLoS Negl. Trop. Dis. 2015, 9, e0004290. [Google Scholar] [CrossRef] [PubMed]
- Sokolow, S.H.; Wood, C.L.; Jones, I.J.; Swartz, S.J.; Lopez, M.; Hsieh, M.H.; Lafferty, K.D.; Kuris, A.M.; Rickards, C.; De Leo, G.A. Global Assessment of Schistosomiasis Control Over the Past Century Shows Targeting the Snail Intermediate Host Works Best. PLoS Negl. Trop. Dis. 2016, 10, e0004794. [Google Scholar] [CrossRef] [PubMed]
- Kariuki, H.C.; Madsen, H.; Ouma, J.H.; Butterworth, A.E.; Dunne, D.W.; Booth, M.; Kimani, G.; Mwatha, J.K.; Muchiri, E.; Vennervald, B.J. Long term study on the effect of mollusciciding with niclosamide in stream habitats on the transmission of schistosomiasis mansoni after community-based chemotherapy in Makueni District, Kenya. Parasit. Vectors 2013, 6, 107. [Google Scholar] [CrossRef] [PubMed]
- Allan, F.; Ame, S.M.; Tian-Bi, Y.T.; Hofkin, B.V.; Webster, B.L.; Diakite, N.R.; N’Goran, E.K.; Kabole, F.; Khamis, I.S.; Gouvras, A.N.; et al. Snail-Related Contributions from the Schistosomiasis Consortium for Operational Research and Evaluation Program Including Xenomonitoring, Focal Mollusciciding, Biological Control, and Modeling. Am. J. Trop. Med. Hyg. 2020, 103, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Sene-Wade, M.; Marchand, B.; Rollinson, D.; Webster, B.L. Urogenital schistosomiasis and hybridization between Schistosoma haematobium and Schistosoma bovis in adults living in Richard-Toll, Senegal. Parasitology 2018, 145, 1723–1726. [Google Scholar] [CrossRef]
- Oleaga, A.; Rey, O.; Polack, B.; Grech-Angelini, S.; Quilichini, Y.; Perez-Sanchez, R.; Boireau, P.; Mulero, S.; Brunet, A.; Rognon, A.; et al. Epidemiological surveillance of schistosomiasis outbreak in Corsica (France): Are animal reservoir hosts implicated in local transmission? PLoS Negl. Trop. Dis. 2019, 13, e0007543. [Google Scholar] [CrossRef]
- Gautret, P.; Mockenhaupt, F.P.; von Sonnenburg, F.; Rothe, C.; Libman, M.; Van De Winkel, K.; Bottieau, E.; Grobusch, M.P.; Hamer, D.H.; Esposito, D.H.; et al. Local and International Implications of Schistosomiasis Acquired in Corsica, France. Emerg. Infect. Dis. 2015, 21, 1865–1868. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panzner, U. Transmission Modelling for Human Non-Zoonotic Schistosomiasis Incorporating Vaccination: Guiding Decision- and Policymaking. Parasitologia 2024, 4, 101-128. https://doi.org/10.3390/parasitologia4020010
Panzner U. Transmission Modelling for Human Non-Zoonotic Schistosomiasis Incorporating Vaccination: Guiding Decision- and Policymaking. Parasitologia. 2024; 4(2):101-128. https://doi.org/10.3390/parasitologia4020010
Chicago/Turabian StylePanzner, Ursula. 2024. "Transmission Modelling for Human Non-Zoonotic Schistosomiasis Incorporating Vaccination: Guiding Decision- and Policymaking" Parasitologia 4, no. 2: 101-128. https://doi.org/10.3390/parasitologia4020010
APA StylePanzner, U. (2024). Transmission Modelling for Human Non-Zoonotic Schistosomiasis Incorporating Vaccination: Guiding Decision- and Policymaking. Parasitologia, 4(2), 101-128. https://doi.org/10.3390/parasitologia4020010