Biocontrol of Avian Gastrointestinal Parasites Using Predatory Fungi: Current Status, Challenges, and Opportunities
Abstract
1. Gastrointestinal Parasites of Galliformes and Ratites
2. Biocontrol of GI Parasites Using Predatory Fungi
3. Testing the Use of Predatory Fungi against Avian GI Parasites: State of the Art
4. Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yazwinski, T.A.; Tucker, C.A. Nematodes and Acanthocephalans. In Diseases of Poultry, 12th ed.; Saif, Y.M., Ed.; Blackwell Publishing: Hoboken, NJ, USA, 2008; pp. 1025–1056. [Google Scholar]
- Thapa, S.; Hinrichsen, L.K.; Brenninkmeyer, C.; Gunnarsson, S.; Heerkens, J.L.T.; Verwer, C.; Niebuhr, K.; Willett, A.; Grilli, G.; Thamsborg, S.M.; et al. Prevalence and magnitude of helminth infections in organic laying hens (Gallus domesticus) across Europe. Vet. Parasitol. 2015, 214, 118–124. [Google Scholar] [CrossRef]
- Fatoba, A.J.; Adeleke, M.A. Diagnosis and control of chicken coccidiosis: A recent update. J. Parasit. Dis. 2018, 42, 483–493. [Google Scholar] [CrossRef]
- Lozano, J.; Anaya, A.; Palomero Salinero, A.; Lux Hoppe, E.G.; Gomes, L.; Paz-Silva, A.; Teresa Rebelo, M.; Madeira de Carvalho, L. Gastrointestinal parasites of free-range chickens—A worldwide issue. Bull. UASVM Vet. Med. 2019, 76, 110–117. [Google Scholar] [CrossRef]
- Attree, E.; Sanchez-Arsuaga, G.; Jones, M.; Xia, D.; Marugan-Hernandez, V.; Blake, D.; Tomley, F. Controlling the causative agents of coccidiosis in domestic chickens; an eye on the past and considerations for the future. CABI Agric. Biosci. 2021, 2, 37. [Google Scholar] [CrossRef]
- Lozano, J.; Almeida, C.; Victório, A.C.; Melo, P.; Rodrigues, J.P.; Rinaldi, L.; Cringoli, G.; Gomes, L.; Oliveira, M.; Paz-Silva, A.; et al. Implementation of Mini-FLOTAC in Routine Diagnosis of Coccidia and Helminth Infections in Domestic and Exotic Birds. Vet. Sci. 2021, 8, 160. [Google Scholar] [CrossRef]
- Mesa-Pineda, C.; Navarro-Ruíz, J.L.; López-Osorio, S.; Chaparro-Gutiérrez, J.J.; Gómez-Osorio, L.M. Chicken Coccidiosis: From the Parasite Lifecycle to Control of Disease. Front. Vet. Sci. 2021, 8, 787653. [Google Scholar] [CrossRef]
- Nath, T.C.; Eom, K.S.; Choe, S.; Hm, S.; Islam, S.; Ndosi, B.A.; Kang, Y.; Bia, M.M.; Kim, S.; Eamudomkarn, C.; et al. Insight into One Health Approach: Endoparasite Infections in Captive Wildlife in Bangladesh. Pathogens 2021, 10, 250. [Google Scholar] [CrossRef]
- Titilincu, A.; Mircean, V.; Bejan, A.; Iovu, A.; Ungureanu, R.; Cozma, V. Prevalence of endoparasites in peacocks (Pavo cristatus). Sci. Parasitol. 2009, 10, 101–105. [Google Scholar]
- Papini, R.; Girivetto, M.; Marangi, M.; Mancianti, F.; Giangaspero, A. Endoparasite infections in pet and zoo birds in Italy. Sci. World J. 2012, 2012, 253127. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Sudan, V.; Shanker, D.; Kumar, P. Endoparasitic infections in Indian peacocks (Pavo cristatus) of Veterinary College Campus, Mathura. J. Parasit. Dis. 2013, 37, 26–28. [Google Scholar] [CrossRef][Green Version]
- Prakashbabu, B.C.; Thenmozhi, V.; Limon, G.; Kundu, K.; Kumar, S.; Garg, R.; Clark, E.L.; Srinivasa Rao, A.S.R.; Raj, D.G.; Raman, M.; et al. Eimeria species occurrence varies between geographic regions and poultry production systems and may influence parasite genetic diversity. Vet. Parasitol. 2017, 233, 62–72. [Google Scholar] [CrossRef]
- Lolli, S.; Grilli, G.; Ferrari, L.; Ferrari, P.; Ferrante, V. Effect of range use on endo- and ectoparasite infestation in italian organic egg production. Ital. J. Anim. Sci. 2019, 18, 690–695. [Google Scholar] [CrossRef]
- Carrisosa, M.; Jin, S.; McCrea, B.A.; Macklin, K.S.; Dormitorio, T.; Hauck, R. Prevalence of select intestinal parasites in Alabama backyard poultry flocks. Animals 2021, 11, 939. [Google Scholar] [CrossRef]
- Blake, D.P.; Knox, J.; Dehaeck, B.; Huntington, B.; Rathinam, T.; Ravipati, V.; Ayoade, S.; Gilbert, W.; Adebambo, A.O.; Jatau, I.D.; et al. Re-calculating the cost of coccidiosis in chickens. Vet. Res. 2020, 51, 115. [Google Scholar] [CrossRef]
- Ilić, T.; Becskei, Z.; Gajić, B.; Özvegy, J.; Stepanović, P.; Nenadović, K.; Dimitrijević, S. Prevalence of endoparasitic infections of birds in zoo gardens in Serbia. Acta Parasitol. 2018, 63, 134–146. [Google Scholar] [CrossRef]
- Valadão, M.C.; Vieira, Í.S.; Millena de Carvalho, L.; Neves, P.H.; Magalhães, R.T.; Campos, A.K.; Araújo, J. Gastrointestinal helminth parasites of Gallus gallus in extensive system in the city of Viçosa, Minas Gerais, Brazil. Braz. J. Vet. Med. 2021, 43, e002121. [Google Scholar] [CrossRef]
- Jansson, D.S.; Christensson, D. Gastrointestinala parasiter hos strutsfåglar i Sverige. Sven. Vet. Tidn. 2000, 52, 621–626. [Google Scholar]
- Ponce Gordo, F.; Herrera, S.; Castro, A.T.; García Durán, B.; Martínez Díaz, R.A. Parasites from farmed ostriches (Struthio camelus) and rheas (Rhea americana) in Europe. Vet. Parasitol. 2002, 107, 137–160. [Google Scholar] [CrossRef]
- McKenna, P.B. Libyostrongylus infections in ostriches—A brief review with particular reference to their detection in New Zeland. N. Z. Vet. J. 2005, 53, 267–270. [Google Scholar] [CrossRef]
- Kummrow, M.S. Ratites or Struthioniformes: Struthiones, Rheae, Cassuarii, Apteryges (Ostriches, Rheas, Emus, Cassowaries, and Kiwis), and Tinamiformes (Tinamous). In Fowler’s Zoo and Wild Animal Medicine; Eric Miller, R., Fowler, M.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 8, pp. 75–82. [Google Scholar]
- Ederli, N.B.; Rodrigues de Oliveira, F.C. Gastrointestinal nematodes in ostriches, Struthio camelus, in different regions of the state of Rio de Janeiro, Brazil. Braz. J. Vet. Parasitol. 2015, 24, 168–173. [Google Scholar] [CrossRef][Green Version]
- Köhler, P. The biochemical basis of anthelminthic action and resistance. Int. J. Parasitol. 2001, 31, 336–345. [Google Scholar] [CrossRef]
- Beynon, S.A. Potential environmental consequences of administration of anthelmintics to sheep. Vet. Parasitol. 2012, 189, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Noack, S.; Chapman, H.D.; Selzer, P.M. Anticoccidial drugs of the livestock industry. Parasitol. Res. 2019, 118, 2009–2026. [Google Scholar] [CrossRef]
- Selzer, P.M.; Epe, C. Antiparasitics in Animal Health: Quo Vadis? Trends Parasitol. 2021, 37, 77–89. [Google Scholar] [CrossRef]
- Araújo, J.V.; Braga, F.R.; Mendoza de Gives, P.; Paz-Silva, A.; Vilela, V.L.R. Recent Advances in the Control of Helminths of Domestic Animals by Helminthophagous Fungi. Parasitologia 2021, 1, 168–176. [Google Scholar] [CrossRef]
- Canhão-Dias, M.; Paz-Silva, A.; Madeira de Carvalho, L.M. The efficacy of predatory fungi on the control of gastrointestinal parasites in domestic and wild animals—A systematic review. Vet. Parasitol. 2020, 283, 109173. [Google Scholar] [CrossRef]
- Braga, F.R.; Araújo, J.V. Nematophagous fungi for biological control of gastrointestinal nematodes in domestic animals. Appl. Microbiol. Biotechnol. 2014, 98, 71–82. [Google Scholar] [CrossRef]
- Madeira de Carvalho, L.M.; Bernardo, F.A.; Paz-Silva, A. The role of fungi in the control of animal parasites—classification, mode of action and practical applications. In Fungi: Types, Environmental Impact and Role in Disease; Paz-Silva, A., Vázquez, M.S.A., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2012; pp. 271–308. [Google Scholar]
- Madeira de Carvalho, L.M.; Serra, P.M.; Bernardo, F.A.; Agrícola, R.; Jorge, H.; Farrim, A.P.; Fazendeiro, I.M.; Paz-Silva, A. Controlo Integrado da Estrongilidose Equina com Anti-Helmínticos Associados ao Fungo Duddingtonia flagrans: Aspectos da sua Utilização em Portugal. Acta Parasitol. Port. 2011, 18, 63–90. [Google Scholar]
- Healey, K.; Lawlora, C.; Knox, M.R.; Chambers, M.; Lamb, J.; Groves, P. Field evaluation of Duddingtonia flagrans IAH 1297 for the reduction of worm burden in grazing animals: Pasture larval studies in horses, cattle and goats. Vet. Parasitol. 2018, 258, 124–132. [Google Scholar] [CrossRef]
- Branco de Oliveira, L.S.S.C.; Dias, F.G.S.; Melo, A.L.T.; Millena de Carvalho, L.; Silva, E.N.; Araújo, J.V. Bioverm® in the Control of Nematodes in Beef Cattle Raised in the Central-West Region of Brazil. Pathogens 2021, 10, 548. [Google Scholar] [CrossRef]
- Palomero, A.M.; Cazapal-Monteiro, C.F.; Viña, C.; Hernández, J.; Voinot, M.; Vilá, M.; Silva, M.I.; Paz-Silva, A.; Sánchez-Andrade, R.; Arias, M.S. Formulating fungal spores to prevent infection by trichostrongylids in a zoological park: Practical approaches to a persisting problem. Biol. Control 2021, 152, 104466. [Google Scholar] [CrossRef]
- Voinot, M.; Bonilla, R.; Sousa, S.; Sanchís, J.; Canhão-Dias, M.; Delgado, J.R.; Lozano, J.; Sánchez-Andrade, R.; Arias, M.S.; Madeira de Carvalho, L. Control of Strongyles in First-Season Grazing Ewe Lambs by Integrating Deworming and Thrice-Weekly Administration of Parasiticidal Fungal Spores. Pathogens 2021, 10, 1338. [Google Scholar] [CrossRef] [PubMed]
- Saumell, C.; Fernández, A.; Echevarria, F.; Gonçalves, I.; Iglesias, L.; Sagües, M.; Rodríguez, E. Lack of negative effects of the biological control agent Duddingtonia flagrans on soil nematodes and other nematophagous fungi. J. Helminthol. 2016, 90, 706–711. [Google Scholar] [CrossRef]
- Hernández, J.; Arroyo, F.L.; Suárez, J.; Cazapal-Monteiro, C.F.; Romasanta, Á.; López-Arellano, M.E.; Pedreira, J.; Madeira de Carvalho, L.M.; Sánchez-Andrade, R.; Arias, M.S.; et al. Feeding horses with industrially manufactured pellets with fungal spores to promote nematode integrated control. Vet. Parasitol. 2016, 229, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Soto-Barrientos, N.; Oliveira, J.; Vega-Obando, R.; Montero-Caballero, D.; Vargas, B.; Hernández-Gamboa, J.; Orozco-Solano, C. In-vitro predatory activity of nematophagous fungi from Costa Rica with potential use for controlling sheep and goat parasitic nematodes. Rev. Biol. Trop. 2011, 59, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Falbo, M.K.; Soccol, V.T.; Sandini, I.E.; Vicente, V.A.; Robl, D.; Soccol, C.R. Isolation and characterization of the nematophagous fungus Arthrobotrys conoides. Parasitol. Res. 2013, 112, 177–185. [Google Scholar] [CrossRef]
- Ojeda-Robertos, N.F.; Aguilar-Marcelino, L.; Olmedo-Juárez, A.; Luna-Palomera, C.; Peralta-Torres, J.A.; López-Arellano, M.E.; Mendoza de Gives, P. In vitro predatory activity of nematophagous fungi isolated from water buffalo feces and from soil in the Mexican southeastern. Rev. Bras. Parasitol. Vet. 2019, 28, 314–319. [Google Scholar] [CrossRef]
- Arroyo-Balán, F.; Landeros-Jaime, F.; González-Garduño, R.; Cazapal-Monteiro, C.; Arias-Vázquez, M.S.; Aguilar-Tipacamú, G.; Esquivel-Naranjo, E.U.; Mosqueda, J. High Predatory Capacity of a Novel Arthrobotrys oligospora Variety on the Ovine Gastrointestinal Nematode Haemonchus contortus (Rhabditomorpha: Trichostrongylidae). Pathogens 2021, 10, 815. [Google Scholar] [CrossRef]
- Ocampo-Gutiérrez, A.Y.; Hernández-Velázquez, V.M.; Aguilar-Marcelino, L.; Cardoso-Taketa, A.; Zamilpa, A.; López-Arellano, M.E.; González-Cortázar, M.; Hernández-Romano, J.; Reyes-Estebanez, M.; Mendoza de Gives, P. Morphological and molecular characterization, predatory behaviour and effect of organic extracts of four nematophagous fungi from Mexico. Fungal Ecol. 2021, 49, 101004. [Google Scholar] [CrossRef]
- Hernández, J.A.; Vázquez-Ruiz, R.A.; Cazapal-Monteiro, C.F.; Valderrábano, E.; Arroyo, F.L.; Francisco, I.; Miguélez, S.; Sánchez-Andrade, R.; Paz-Silva, A.; Arias, M.S. Isolation of Ovicidal Fungi from Fecal Samples of Captive Animals Maintained in a Zoological Park. J. Fungi. 2017, 3, 29. [Google Scholar] [CrossRef]
- Liu, W.; Han, Y.; Wang, B.-B.; Sun, L.-J.; Chen, M.-Y.; Cai, K.-Z.; Li, X.; Zhao, M.-W.; Xu, C.-L.; Xu, Q.; et al. Isolation, identification, and characterization of the nematophagous fungus Monacrosporium salinum from China. J. Basic Microbiol. 2015, 55, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.-J.; Li, E.-L.; Jing, C.-X.; Ma, L.; Cai, K.-Z. Isolation, identification and characterization of the nematophagous fungus Arthrobotrys (Monacrosporium) sinense from China. Acta Parasitol. 2018, 63, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.; Faedo, M.; Waller, P.J. The potential of nematophagous fungi to control the free-living stages of nematode parasites of sheep: Survey for the presence of fungi in fresh faeces of grazing livestock in Australia. Vet. Parasitol. 1994, 53, 275–281. [Google Scholar] [CrossRef]
- Faedo, M.; Larsen, M.; Waller, P.J. The potential of nematophagous fungi to control the free-living stages of nematode parasites of sheep: Comparison between Australian isolates of Arthrobotrys spp. and Duddingtonia flagrans. Vet. Parasitol. 1997, 72, 149–155. [Google Scholar] [CrossRef]
- Gray, N.F.; Smith, R.I.L. The distribution of nematophagous fungi in the maritime Antarctic. Mycopathologia 1984, 85, 81–92. [Google Scholar] [CrossRef]
- Braga, F.R.; Araújo, J.V.; Tavela, A.O.; Vilela, V.L.R.; Soares, F.E.F.; Araujo, J.M.; Magalhães, L.Q.; Ferreira da Silveira, W.; Feitosa, T.F.; Dantas, E.S.; et al. First report of interaction of nematophagous fungi on Libyostrongylus douglassii (Nematoda: Trichostrongylidae). Rev. Bras. Parasitol. Vet. 2013, 22, 147–151. [Google Scholar] [CrossRef]
- Thapa, S.; Mejer, H.; Thamsborg, S.M.; Lekfeldt, J.D.S.; Wang, R.; Jensen, B.; Magid, J.; Meylingb, N.V. Survival of chicken ascarid eggs exposed to different soil types and fungi. Appl. Soil Ecol. 2017, 121, 143–151. [Google Scholar] [CrossRef]
- Silva, M.E.; Ferreira da Silveira, W.; Braga, F.R.; Araújo, J.V. Nematicide activity of microfungi (Orbiliales, Orbiliaceae) after transit through gastrointenstinal tract of “Gallus gallus domesticus”. Rev. Bras. Saúde Prod. Anim. 2017, 18, 1–9. [Google Scholar] [CrossRef][Green Version]
- Valadão, M.C.; Millena de Carvalho, L.; Vieira, Í.S.; Neves, P.H.; Ferreira, V.M.; Campos, A.K.; Soares, F.E.F.; Ferraz, C.M.; Vilela, V.L.R.; Braga, F.R.; et al. Germination capacity of the Pochonia chlamydosporia fungus after its passage through the gastrointestinal tract of domestic chickens (Gallus gallus domesticus). Exp. Parasitol. 2020, 216, 107936. [Google Scholar] [CrossRef]
- Thapa, S.; Thamsborg, S.M.; Wang, R.; Meyling, N.V.; Dalgaard, T.S.; Petersen, H.H.; Mejer, H. Effect of the nematophagous fungus Pochonia chlamydosporia on soil content of ascarid eggs and infection levels in exposed hens. Parasites Vectors 2018, 11, 319. [Google Scholar] [CrossRef]
- Carrasco, J.M.D.; Casanova, N.A.; Miyakawa, M.E.F. Microbiota, Gut Health and Chicken Productivity: What Is the Connection? Microorganisms 2019, 7, 374. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Tang, X.; Bi, F.; Hao, Z.; Han, Z.; Suo, J.; Zhang, S.; Wang, S.; Duan, C.; Yu, Z.; et al. Eimeria tenella infection perturbs the chicken gut microbiota from the onset of oocyst shedding. Vet. Parasitol. 2018, 258, 30–37. [Google Scholar] [CrossRef] [PubMed]
Type of Assay | Fungal Species (Biotype) | Target Organism | Study Objectives | Reference |
---|---|---|---|---|
In vitro | D. flagrans (AC001; CG722) A. cladodes (CG719) | L. douglassii | Test larvicidal activity against L3 larvae | [49] |
P. chlamydosporia (Biotype 10) Me. brunneum (KVL04-57; KVL16-26) Me. carneum (KVL16-33) Acremonium sp. (KVL16-34) | A. galli H. gallinarum | Test ovicidal activity in different soil types; isolate native ovicidal fungi | [50] | |
In vivo | D. flagrans (AC001; CG722) M. thaumasium (NF34A) | Panagrellus spp. | Test GI passage in chickens and evaluate the maintenance of germination and larvicidal capacities | [51] |
P. chlamydosporia (VC4) | A. galli H. gallinarum | Test GI passage in chickens and evaluate the maintenance of germination and ovicidal capacities | [52] | |
P. chlamydosporia (Biotype 10) | A. galli H. gallinarum | Test ovicidal activity in different soil types; evaluate the interaction soil-fungi in birds worm population and burdens, and egg counting | [53] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano, J.; Almeida, C.; Oliveira, M.; Paz-Silva, A.; Madeira de Carvalho, L. Biocontrol of Avian Gastrointestinal Parasites Using Predatory Fungi: Current Status, Challenges, and Opportunities. Parasitologia 2022, 2, 37-44. https://doi.org/10.3390/parasitologia2010004
Lozano J, Almeida C, Oliveira M, Paz-Silva A, Madeira de Carvalho L. Biocontrol of Avian Gastrointestinal Parasites Using Predatory Fungi: Current Status, Challenges, and Opportunities. Parasitologia. 2022; 2(1):37-44. https://doi.org/10.3390/parasitologia2010004
Chicago/Turabian StyleLozano, João, Cristina Almeida, Manuela Oliveira, Adolfo Paz-Silva, and Luís Madeira de Carvalho. 2022. "Biocontrol of Avian Gastrointestinal Parasites Using Predatory Fungi: Current Status, Challenges, and Opportunities" Parasitologia 2, no. 1: 37-44. https://doi.org/10.3390/parasitologia2010004
APA StyleLozano, J., Almeida, C., Oliveira, M., Paz-Silva, A., & Madeira de Carvalho, L. (2022). Biocontrol of Avian Gastrointestinal Parasites Using Predatory Fungi: Current Status, Challenges, and Opportunities. Parasitologia, 2(1), 37-44. https://doi.org/10.3390/parasitologia2010004