A Reflective Spectroscopy and Mineralogical Investigation of Cosmetic Blush (Wet‘N’Wild) Potentially for Forensic Investigations Related to Interpersonal Violence—An Experimental Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Powder X-ray Diffraction (XRD)
2.2.2. Transmission Electron Microscopy (TEM) Methods
2.2.3. Spectroradiometry
3. Results and Interpretations
3.1. Powder X-ray Diffraction (XRD)
3.2. Transmission Electron Microscopy (TEM)
3.3. Reflective Spectroscopy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moraes, J.D.D.; Bertolino, S.R.A.; Cuffini, S.L.; Ducart, D.F.; Bretzke, P.E.; Leonardi, G.R. Clay minerals: Properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes—A review. Int. J. Pharm. 2017, 534, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Kulikov, E.; Latham, K.; Adams, M.J. Classification and discrimination of some cosmetic face powders using XRF spectrometry with chemometric data analysis. X-ray Spectrom. 2012, 41, 410–415. [Google Scholar] [CrossRef]
- O’Neill, E.; Harrington, D.; Allison, J. Interpretation of laser desorption mass spectra of unexpected inorganic species found in a cosmetic sample of forensic interest: Fingernail polish. Anal. Bioanal. Chem. 2009, 394, 2029–2038. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Bermudez, E.; Harp, B.P.; Barrows, J.N. Qualitative Identification of Permitted and Non-permitted Color Additives in Cosmetics. J. AOAC Int. 2014, 97, 1039–1047. [Google Scholar] [CrossRef]
- Mercy, J.A.; Hillis, S.D.; Butchart, A.; Bellis, M.A.; Ward, C.L.; Fang, X.; Rosenberg, M.L. Chapter 5: Interpersonal Violence: Global Impact and Paths to Prevention. In Injury Prevention and Environmental Health, 3rd ed.; Mock, C.N., Nugent, R., Kobusingye, R., Smith, K.R., Eds.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2017; Volume 7. [Google Scholar] [CrossRef]
- Bergslein, E. An Introduction to Forensic Geoscience; Wiley-Blackwell: Hoboken, NJ, USA, 2012; 514p. [Google Scholar]
- Chophi, R.; Sharma, S.; Sharma, S.; Singh, R. Trends in the forensic analysis of cosmetic evidence. Forensic Chem. 2019, 14, 100165. [Google Scholar] [CrossRef]
- Gordon, A.; Coulson, S. The evidential value of cosmetic foundation smears in forensic casework. J. Forensic Sci. 2004, 49, 1244–1252. [Google Scholar] [CrossRef]
- Adamowicz, M.S.; Labonte, R.D.; Schienman, J.E. The Potential of Cosmetic Applicators as a Sources of DNA for Forensic Analysis. J. Forensic Sci. 2015, 4, 1001–1011. [Google Scholar] [CrossRef]
- López-López, M.; Vaz, J.; García-Ruiz, C. Confocal Raman spectrocopy for the analysis of nail polish evidence. Talanta 2014, 138, 155–162. [Google Scholar] [CrossRef]
- Melquiades, F.L.; Parreira, P.S.; Endo, L.Y.; dos Santos, G.; Wouk, L.; Filho, O.P. Portable EDXRF for Quality Assurance of Cosmetics. Cosmetics 2015, 2, 277–285. [Google Scholar] [CrossRef]
- Chophi, R.; Sharma, S.; Singh, R. Forensic analysis of red lipsticks using ATR-FTIR spectroscopy and chemometrics. Forensic Chem. 2020, 17, 100209. [Google Scholar] [CrossRef]
- Kaur, K.; Yadav, P.K.; Bumbrah, G.S.; Sharma, R.M. Forensic classification of lipsticks using attenuated total reflectance—Fourier transform infrared (ATR-FTIR) spectroscopy. Vib. Spectrosc. 2020, 110, 103146. [Google Scholar] [CrossRef]
- Chophi, R.; Sharma, S.; Singh, R. Discrimination of mail polish using attenuated total reflectance infrared reflectance spectroscopy and chemometrics. Aust. J. Forensic Sci. 2021, 53, 325–336. [Google Scholar] [CrossRef]
- Gładysz, M.; Król, M.; Kościelniak, P. Current analytical methodologies used for examination of lipsticks and its traces for forensic purposes. Microchem. J. 2021, 164, 106002. [Google Scholar] [CrossRef]
- Knijnenberg, A.; van Loon, A.; Dik, J.; van Asten, A. Elemental imaging of Forensic Traces with Macro and Micro-XRF. In Leading Edge Techniques in Forensic Trace Evidence Analysis; John Wiley: Hoboken, NJ, USA, 2022; pp. 213–244. [Google Scholar]
- Khei, L.K.K.; Verma, R.; Tan, E.L.Y.; Ismail, D.; Asri, M.N.M. Forensic analysis of nail polish traces on different substrates using ATR-FTIR spectroscopy and chemometric methods. Forensic Chem. 2023, 34, 100503. [Google Scholar] [CrossRef]
- Sacks, M.; Ackerman, A.R.; Shlosberg, A. Rape Myths in the Media: A Content Analysis of Local Newspaper Reporting in the United States. Deviant Behav. 2017, 39, 1237–1246. [Google Scholar] [CrossRef]
- Pain, R. Space, sexual violence and social control: Integrating geographical and feminist analyses of women’s fear of crime. Prog. Hum. Geogr. 1991, 15, 415–431. [Google Scholar] [CrossRef]
- Krekeler, M.P.S.; Allen, C.S.; Kearns, L.E.; Maynard, J.B. An investigation of aspects of mine waste from a kyanite mine, Central Virginia, USA. Environ. Earth Sci. 2010, 61, 93–106. [Google Scholar] [CrossRef]
- Cymes, B.A.; Almquist, C.B.; Krekeler, M.P.S. Europium-doped cryptomelane: Multi-pathway synthesis, characterization, and evaluation for the gas phase catalytic oxidation of ethanol. Appl. Catal. A 2020, 589, 117310. [Google Scholar] [CrossRef]
- Cymes, I.; Szymczyk, S.; Sidoruk, M.; Cymes, I. Effect of River Supply on the Distribution of Macroelements in the Sediments of a Retention Reservoir—A Case Study of the Loje Reservoir. Environ. Eng. Manag. J. 2017, 16, 2869–2878. [Google Scholar] [CrossRef]
- Paul, K.C.; Silverstein, J.; Krekeler, M.P.S. New insights into rare earth element particulate generated by cigarette lighters: An electron microscopy and materials science investigation of a poorly understood indoor air pollutant and constraints for urban geochemistry. Environ. Earth Sci. 2017, 76, 369. [Google Scholar] [CrossRef]
- Burke, M.; Rakovan, J.; Krekeler, M.P.S. A study by electron microscopy of gold and associated minerals from Round Mountain, Nevada. Ore Geol. Rev. 2017, 91, 708–717. [Google Scholar] [CrossRef]
- LeGalley, E.; Krekeler, M.P.S. A mineralogical and geochemical investigation of street sediment near a coal-fired power plant in Hamilton, Ohio: An example of complex pollution and cause for community health concerns. Environ. Pollut. 2013, 176, 26–35. [Google Scholar] [CrossRef]
- Geaney, H.; Dickinson, C.; Barrett, C.A.; Ryan, K.M. High Density Germanium Nanowire Growth Directly from Copper Foil by Self-Induced Solid Seeding. Chem. Mater. 2011, 23, 4838–4843. [Google Scholar] [CrossRef]
- Gatta, G.D.; Merlini, M.; Valdrè, G.; Liermann, H.-P.; Nénert, G.; Rothkirch, A.; Kahlenberg, V.; Pavese, A. On the crystal structure and compressional behavior of talc: A mineral of interest in petrology and material science. Phys. Chem. Miner. 2013, 40, 145–156. [Google Scholar] [CrossRef]
- Bailey, S.W. X-ray Diffraction Identification of the Polytypes of Mica, Serpentine, and Chlorite. Clays Clay Miner. 1988, 36, 193–213. [Google Scholar] [CrossRef]
- Allen, C.S.; Krekeler, M.P.S. Reflectance spectra of crude oils and refined petroleum products on a variety of common substrates. SPIE 2010, 7687, 162–174. [Google Scholar] [CrossRef]
- Krekeler, M.P.S.; Allen, C.S. Remote sensing spectra of cesium chloride provide a potential emergency management tool for response to a radiological dispersal device detonation. J. Emerg. Manag. 2008, 6, 60–64. [Google Scholar] [CrossRef]
- Oglesbee, T.; McLeod, C.L.; Chappell, C.; Vest, J.; Sturmer, D.; Krekeler, M.P.S. A mineralogical and geochemical investigation of modern aeolian sands near Tonopah, Nevada: Sources and environmental implications. Catena 2020, 194, 104640. [Google Scholar] [CrossRef]
- Barnes, M.; McLeod, C.L.; Chappell, C.; Faraci, O.; Gibson, B.; Krekeler, M.P.S. Characterizing the geogenic background of the Midwest: A detailed mineralogical and geochemical investigation of a glacial till in southwestern Ohio. Environ. Earth Sci. 2020, 79, 159. [Google Scholar] [CrossRef]
- Burke, M.; Dawson, C.; Allen, C.S.; Brum, J.; Roberts, J.; Krekeler, M.P.S. Reflective spectroscopy investigations of clothing items to support law enforcement, search and rescue, and war crime investigations. Forensic Sci. Int. 2019, 304, 109945. [Google Scholar] [CrossRef]
- Wei, J.; Ming, Y.; Jia, Q.; Yang, D. Simple mineral mapping algorithm based on multitype spectral diagnostic absorption features: A case study at Cuprite, Nevada. J. Appl. Remote Sens. 2017, 11, 026015. [Google Scholar] [CrossRef]
- Cloutis, E.A. Spectral Reflectance Properties of Hydrocarbons: Remote-Sensing Implications. Science 1989, 245, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Curran, P.J.; Dungan, J.L.; Gholz, H.L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol. 1990, 7, 33–48. [Google Scholar] [CrossRef]
- Hunt, G.R. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 1977, 42, 501–513. [Google Scholar] [CrossRef]
- Hunt, G.R.; Salisbury, J.; Lenhoff, C.J. Visible and near-infrared spectra of minerals and rocks III: Oxides and hydroxides. Mod. Geol. 1971, 2, 195–205. [Google Scholar]
- Hunt, G.R.; Salisbury, J.W.; Lenhoff, C.J. Visible and near-infrared spectra of minerals and rocks IV: Sulphides and sulphates. Mod. Geol. 1971, 3, 1–14. [Google Scholar]
- Hunt, G.R.; Logan, L.M. Variation of Single Particle Mid-Infrared Emission Spectrum with Particle Size. Appl. Opt. 1972, 11, 142–147. [Google Scholar] [CrossRef]
- Hunt, G.R.; Salisbury, J.W.; Lenhoff, C.J. Visible and near-infrared spectra of minerals and rocks VI:additional silicates. Mod. Geol. 1973, 4, 85–106. [Google Scholar]
- Krekeler, M.P.S.; Burke, M.; Allen, S.; Sather, B.; Chappell, C.; McLeod, C.L.; Loertscher, C.; Loertscher, S.; Dawson, C.; Brum, J.; et al. A novel hyperspectral remote sensing tool for detecting and analyzing human materials in the environment: A geoenvironmental approach to aid in emergency response. Environ. Earth Sci. 2023, 82, 109. [Google Scholar] [CrossRef]
- Brum, J.; Schlegel, C.; Chappell, C.; Burke, M.; Krekeler, M.P.S. Reflective spectra of gasoline, diesel and jet fuel ion sand substrates under ambient and cold conditions: Implications for detection using hyperspectral remote sensing and development of age estimation models. Environ. Earth Sci. 2020, 79, 463. [Google Scholar] [CrossRef]
- Bish, D.; Reynolds, R.C. Sample preparation for X-ray diffraction. In Reviews in Mineralogy; Bish, D.L., Post, J.E., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 1989; Volume 20, pp. 73–99. [Google Scholar]
- Moore, D.M.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clay Minerals; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Berg, R.B. Talc and Chlorite Deposits in Montana; Memoir 45; Montana Bureau of Mines and Geology Memoir: Butte, MT, USA, 1979; 3 sheets. [Google Scholar]
- Evans, B.W.; Guggenheim, S. Talc, pyrophyllite, and related minerals. In Reviews in Mineralogy; Bailey, S.W., Ed.; Mineralogical Society of America: Chantilly, VA, USA, 1988; Volume 19, pp. 225–294. [Google Scholar]
- Center for Food Safety and Applied Nutrition. White Paper: IWGACP Scientific Opinions on Testing Methods for Asbestos in Cosmetic Products Containing Talc. 2021. Available online: https://www.regulations.gov/document/FDA-2020-N-0025-0053 (accessed on 1 June 2023).
- Krekeler, M.P.S.; Argyilan, E.P.; Lepp, J.; Kearns, L.E. Investigation of calcareous beach sands in the Akumal and Tulum areas for use in constructed wetlands, Eastern Yucatan Peninsula. Environ. Earth Sci. 2009, 59, 411–420. [Google Scholar] [CrossRef]
- Edelman, G.J.; Aalders, M.C. Photogrammetry using visible, infrared, hyper-spectral and thermal imaging of crime scenes. Forensic Sci. Int. 2018, 292, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.J.; Khan, H.S.; Yousaf, A.; Khurshid, K.; Abbas, A. Modern trends in hyperspectral image analysis: A review. IEEE Access 2018, 6, 14118–14129. [Google Scholar] [CrossRef]
- Xu, J.Y.; Fang, S.B.; Zhou, J. Application of hyperspectral imaging and mass spectrometry imaging technique to fingerprinting visualization and trace analysis. Acta Phys. Sin. 2019, 68, 068701. [Google Scholar] [CrossRef]
- Silva, C.S.; Pimentel, M.F.; Amigo, J.M.; Honorato, R.S.; Pasquini, C. Detecting semen stains on fabrics using near infrared hyperspectral images and multivariate models. TrAC Trends Anal. Chem. 2017, 95, 23–35. [Google Scholar] [CrossRef]
- Brito, L.R.E.; Braz, A.; Honorato, R.S.; Pimentel, M.F.; Pasquini, C. Evaluating the potential of near infrared hyperspectral imaging associated with multivariate data analysis for examining crossing ink lines. Forensic Sci. Int. 2019, 298, 169–176. [Google Scholar] [CrossRef]
- Qureshi, R.; Uzair, M.; Khurdid, K.; Yan, H. Hyperspectral document image processing: Applications, challenges and future prospects. Pattern Recognit. 2019, 90, 12–22. [Google Scholar] [CrossRef]
- Lim, H.T.; Murukeshan, V.M. Hyperspectral imaging of polymer banknotes for building and analysis of spectral library. Opt. Lasers Eng. 2017, 98, 168–175. [Google Scholar] [CrossRef]
- Murray, B.; Anderson, D.T.; Wescott, D.J.; Moorhead, R.; Anderson, M.F. Survey and Insights into unmanned aerial-vehicle-based detection and documentation of clandestine graves and human remains. Hum. Biol. 2018, 90, 45–61. [Google Scholar] [CrossRef]
- Glomb, P.; Romaszewski, M.; Cholewa, M.; Domino, K. Application of hyper-spectral imaging and machine learning methods for the detection of gunshot residue patterns. Forensic Sci. Int. 2018, 290, 227–237. [Google Scholar] [CrossRef]
- De Carvalho, M.A.; Talhavini, M.; Pimentel, M.F.; Amigo, J.M.; Pasquini, C.; Alves, S.; Weber, I.T. NIR hyperspectral images for identification of gunshot residue from tagged ammunition. Anal. Methods 2018, 10, 4711–4717. [Google Scholar] [CrossRef]
- Cadd, S.; Li, B.; Beveridge, P.; O’Hare, W.T.; Islam, M. Age determination of blood stained fingerprints using visible wavelength reflectance hyperspectral imaging. J. Imaging 2018, 4, 141. [Google Scholar] [CrossRef]
- Balash, A.; Holmes, K.; Burke, M.; Krekeler, M.P.S. Dirt, Blood, and Clothing: Reflective Spectroscopy investigations of human blood on geologic and other substrates to support forensic investigations. Geol. Soc. Am. Abstr. Progr. 2018, 50, 24. Available online: https://gsa.confex.com/gsa/2018AM/webprogram/Paper320767.html (accessed on 26 September 2023).
Substrate | Limit of Detection |
---|---|
Carpet 1 | 0.04 mg/mm2 |
Carpet 2 | 0.02 mg/mm2 |
Closet Material 1 | 0.03 mg/mm2 |
Fabric 1 | 0.03 mg/mm2 |
Fabric 1 with Cardboard | 0.03 mg/mm2 |
Fabric 2 | 0.05 mg/mm2 |
Fabric 3 | 0.05 mg/mm2 |
Linoleum 1 | 0.05 mg/mm2 |
Ottawa Sand | 0.03 mg/mm2 |
Pergo Wood 1 | 0.05 mg/mm2 |
Tile 1 | 0.03 mg/mm2 |
Tile 3 | 0.05 mg/mm2 |
Tulum Sand | >0.38 mg/mm2 |
Wood Block 1 | 0.05 mg/mm2 |
Maximum | Minimum | Average | Standard Deviation |
---|---|---|---|
>0.38 mg/mm2 | 0.02 mg/mm2 | 0.03 mg/mm2 | 0.01 mg/mm2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curtis, J.; Stitle, L.; Certain, J.; Murchland, M.; Piszel, C.; Vest, J.; McLeod, C.L.; Krekeler, M.P.S. A Reflective Spectroscopy and Mineralogical Investigation of Cosmetic Blush (Wet‘N’Wild) Potentially for Forensic Investigations Related to Interpersonal Violence—An Experimental Feasibility Study. Forensic Sci. 2023, 3, 544-559. https://doi.org/10.3390/forensicsci3040038
Curtis J, Stitle L, Certain J, Murchland M, Piszel C, Vest J, McLeod CL, Krekeler MPS. A Reflective Spectroscopy and Mineralogical Investigation of Cosmetic Blush (Wet‘N’Wild) Potentially for Forensic Investigations Related to Interpersonal Violence—An Experimental Feasibility Study. Forensic Sciences. 2023; 3(4):544-559. https://doi.org/10.3390/forensicsci3040038
Chicago/Turabian StyleCurtis, Juliana, Landon Stitle, Jessica Certain, Madeline Murchland, Charlotte Piszel, Jordan Vest, Claire L. McLeod, and Mark P. S. Krekeler. 2023. "A Reflective Spectroscopy and Mineralogical Investigation of Cosmetic Blush (Wet‘N’Wild) Potentially for Forensic Investigations Related to Interpersonal Violence—An Experimental Feasibility Study" Forensic Sciences 3, no. 4: 544-559. https://doi.org/10.3390/forensicsci3040038
APA StyleCurtis, J., Stitle, L., Certain, J., Murchland, M., Piszel, C., Vest, J., McLeod, C. L., & Krekeler, M. P. S. (2023). A Reflective Spectroscopy and Mineralogical Investigation of Cosmetic Blush (Wet‘N’Wild) Potentially for Forensic Investigations Related to Interpersonal Violence—An Experimental Feasibility Study. Forensic Sciences, 3(4), 544-559. https://doi.org/10.3390/forensicsci3040038