Combined X-ray and Neutron Powder Diffraction Study on B-Site Cation Ordering in Complex Perovskite La2(Al1/2MgTa1/2)O6
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Neutron Powder Diffraction Data Analysis
3.2. Ta Detection in the Unit Cell through X-rays
3.3. Combined Rietveld Analysis on X-ray and Neutron Powder Diffraction Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaßen, R.; Jarligo, M.O.; Steinke, T.; Mack, D.E.; Stöver, D. Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 2010, 205, 938–942. [Google Scholar] [CrossRef]
- Guo, R.; Bhalla, A.S.; Cross, L.E. Ba(Mg1/3Ta2/3)O3 single crystal fiber grown by the laser heated pedestal growth technique. J. Appl. Phys. 1994, 75, 4704–4708. [Google Scholar] [CrossRef]
- Jarligo, M.O.; Mack, D.E.; Vassen, R.; Stöver, D. Application of plasma-sprayed complex perovskites as thermal barrier coatings. J. Therm. Spray Technol. 2009, 18, 187–193. [Google Scholar] [CrossRef]
- Gilles, R.; Mukherji, D.; Karge, L.; Strunz, P.; Beran, P.; Barbier, B.; Kriele, A.; Hofmann, M.; Eckerlebe, H.; Rösler, J. Stability of TaC precipitates in a Co-Re-based alloy being developed for ultra-high-temperature applications. J. Appl. Cryst. 2016, 49, 1253–1265. [Google Scholar] [CrossRef]
- Schlegel, N.; Sebold, D.; Sohn, Y.J.; Mauer, G.; Vaßen, R. Cycling performance of a columnar-structured complex perovskite in a temperature gradient test. J. Therm. Spray Technol. 2015, 24, 1205–1212. [Google Scholar] [CrossRef]
- Vaßen, R.; Mack, D.E.; Tandler, M.; Sohn, Y.J.; Sebold, D.; Guillon, O. Unique performance of thermal barrier coatings made of yttria-stabilized zirconia at extreme temperatures (>1500 °C). J. Am. Ceram. Soc. 2021, 104, 463–471. [Google Scholar] [CrossRef]
- Sohn, Y.J.; Mauer, G.; Roth, G.; Guillon, O.; Vaßen, R. Crystal structure analysis and high-temperature phase transitions of complex rare-earth perovskite, La2(Al1/2MgTa1/2)O6. J. Am. Ceram. Soc. 2020, 103, 1404–1413. [Google Scholar] [CrossRef] [Green Version]
- Smaha, R.W.; Boukahil, I.; Titus, C.J.; Jiang, J.M.; Sheckelton, J.P.; He, W.; Wen, J.; Vinson, J.; Wang, S.G.; Chen, Y.S.; et al. Site-specific structure at multiple length scales in kagome quantum spin liquid candidates. Phys. Rev. Mater. 2020, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Freedman, D.E.; Han, T.H.; Prodi, A.; Müller, P.; Huang, Q.Z.; Chen, Y.S.; Webb, S.M.; Lee, Y.S.; McQueen, T.M.; Nocera, D.G. Site specific X-ray anomalous dispersion of the geometrically frustrated kagomé magnet, herbertsmithite, ZnCu3(OH)6Cl2. J. Am. Chem. Soc. 2010, 132, 16185–16190. [Google Scholar] [CrossRef] [PubMed]
- Gilles, R. How neutrons facilitate research into gas turbines and batteries from development to engineering applications. J. Surf. Investig. 2020, 14 (Suppl. 1), S69–S74. [Google Scholar] [CrossRef]
- Hoelzel, M.; Senyshyn, A.; Juenke, N.; Boysen, H.; Schmahl, W.; Fuess, H. High-resolution neutron powder diffractometer SPODI at research reactor FRM II. Nucl. Instrum. Methods Phys. Res. A 2012, 667, 32–37. [Google Scholar] [CrossRef]
- Prince, E. International Tables for Crystallography Volume C: Mathematical, Physical and Chemical Tables, 3rd ed.; Wiley: Chichester, UK, 2006; pp. 444–454. [Google Scholar]
- TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data; Bruker AXS: Karlsruhe, Germany, 2008.
- Aroyo, M.I. International Tables for Crystallography Volume A: Space-Group Symmetry; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2016. [Google Scholar]
- Cheary, R.W.; Coelho, A. A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Cryst. 1992, 25, 109–121. [Google Scholar] [CrossRef]
- Balzar, D.; Audebrand, N.; Daymond, M.R.; Fitch, A.; Hewat, A.; Langford, J.I.; Le Bail, A.; Louёr, D.; Masson, O.; McCowan, C.N.; et al. Size-strain line-broadening analysis of the ceria round-robin sample. J. Appl. Cryst. 2004, 37, 911–924. [Google Scholar] [CrossRef]
- Balzar, D. Voigt function model in diffraction-line broadening analysis. In Defect and Microstructure Analysis by Diffraction; Snyder, R.L., Fiala, J., Bunge, H.J., Eds.; International Union of Crystallography, Oxford University Press Inc.: New York, NY, USA, 1999; pp. 94–124. [Google Scholar]
- Kim, Y.I.; Woodward, P.M. Crystal structures and dielectric properties of ordered double perovskites containing Mg2+ and Ta5+. J. Solid State Chem. 2007, 180, 2798–2807. [Google Scholar] [CrossRef]
- Choi, I.K.; Cho, B.J.; Paik, J.H.; Nahm, S.; Kim, J.S.; Lee, H.J.; Park, H.M.; Byun, J.D.; Ahn, B.G. Crystal structure of La(Mg2/3Nb1/3)O3 ceramics. Mater. Res. Bull. 2000, 35, 921–928. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
X-ray | Neutron | |
---|---|---|
Crystal system, Space group | Monoclinic, P21/n | |
Lattice parameters: a, b, c [Å], β [°] | 5.566 (6) 5.568 (9) 7.867 (6) 89.98 (30) | 5.567 (2) 5.565 (2) 7.866 (2) 89.97 (9) |
Unit cell volume [Å3] | 243.78 (60) | 243.73 (15) |
Atomic parameters [Wyckoff position, x, y, z, Occ., Biso] | ||
La Al/Ta Mg O1 O2 O3 | 4e, 0.4932 (2), 0.4764 (1), 0.2456 (5), 1, 1.566 (13) 2d, 0.5, 0, 0, 0.5, 0.663 (8) 2c, 0, 0.5, 0, 1, 0.663 (8) 4e, 0.2274 (6), 0.2197 (7), 0.0335 (3), 1, 1.072 (8) 4e, 0.2854 (5), 0.7206 (7), 0.0396 (3), 1, 1.072 (8) 4e, 0.5734 (2), 0.0123 (2), 0.2489 (8), 1, 1.072 (8) | |
RBragg | 3.66 | 2.67 |
χ2, Rwp, Rp | 3.71, 4.33, 3.22 | |
Domain size and microstrain [Dv, e] | >200 nm, 2.9 (1)·10−4 |
La-O [Å] <La-O> | 2.410 (4) − 3.292 (4) 2.799 |
Al/Ta-O [Å] <Al/Ta-O> | 1.966 (4) × 2 1.985 (3) × 2 2.001 (6) × 2 1.984 |
Mg-O [Å] <Mg-O> | 2.018 (6) × 2 2.026 (4) × 2 2.032 (3) × 2 2.025 |
Al/Ta-O-Mg [°] | 156.2 (3) 160.6 (2) 156.9 (2) |
O-Al/Ta-O [°] | 90.2 (1) × 2 89.7 (1) × 2 89.8 (1) × 2 90.3 (1) × 2 89.9 (1) × 2 90.1 (1) × 2 |
O-Mg-O [°] | 87.5 (1) × 2 92.5 (1) × 2 91.4 (1) × 2 89.3 (1) × 2 88.6 (1) × 2 90.7 (1) × 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sohn, Y.J.; Baran, V.; Gilles, R.; Roth, G.; Vaßen, R. Combined X-ray and Neutron Powder Diffraction Study on B-Site Cation Ordering in Complex Perovskite La2(Al1/2MgTa1/2)O6. Solids 2023, 4, 87-93. https://doi.org/10.3390/solids4010006
Sohn YJ, Baran V, Gilles R, Roth G, Vaßen R. Combined X-ray and Neutron Powder Diffraction Study on B-Site Cation Ordering in Complex Perovskite La2(Al1/2MgTa1/2)O6. Solids. 2023; 4(1):87-93. https://doi.org/10.3390/solids4010006
Chicago/Turabian StyleSohn, Yoo Jung, Volodymyr Baran, Ralph Gilles, Georg Roth, and Robert Vaßen. 2023. "Combined X-ray and Neutron Powder Diffraction Study on B-Site Cation Ordering in Complex Perovskite La2(Al1/2MgTa1/2)O6" Solids 4, no. 1: 87-93. https://doi.org/10.3390/solids4010006
APA StyleSohn, Y. J., Baran, V., Gilles, R., Roth, G., & Vaßen, R. (2023). Combined X-ray and Neutron Powder Diffraction Study on B-Site Cation Ordering in Complex Perovskite La2(Al1/2MgTa1/2)O6. Solids, 4(1), 87-93. https://doi.org/10.3390/solids4010006