Contactless Determination of Electric Field in Metal–Insulator–Semiconductor Interfaces by Using Constant DC-Reflectivity Photoreflectance
Abstract
:1. Introduction
2. Experimental Procedures
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aspnes, D.E. Third-Derivative Modulation Spectroscopy with Low-Field Electroreflectance. Surf. Sci. 1973, 37, 418. [Google Scholar] [CrossRef]
- Aspnes, D.E.; Studna, A.A. Schottky-Barrier Electroreflectance: Application to GaAs. Phys. Rev. B 1973, 7, 4605. [Google Scholar] [CrossRef]
- Pollak, F.H. Modulation Spectroscopy as a Technique for Semiconductor Characterization. Proc. SPIE 1981, 276, 142. [Google Scholar] [CrossRef]
- Pollak, F.H.; Glembocki, O.J. Modulation Spectroscopy of Semiconductor Microstructures: An Overview. Proc. SPIE 1988, 946, 2. [Google Scholar] [CrossRef]
- Pollak, F.H.; Shen, H. Modulation Spectroscopy of Semiconductors: Bulk/Thin Film, Microstructures, Surfaces, Interfaces and Devices. Mater. Sci. Eng. R 1993, 10, 275. [Google Scholar] [CrossRef]
- Franz, W. Einfluss Eines Elektrischen Feldes Auf Eine Optische Absorptionskante. Z. Naturforsch. 1958, 13a, 484. [Google Scholar] [CrossRef]
- Keldysh, L.V. The Effect of a Strong Electric Field on the Optical Properties of Insulating Crystals. Sov. Phys. JETP 1958, 7, 788. [Google Scholar]
- Ralph, H.I. On the Theory of the Franz-Keldysh Effect. J. Phys. C 1968, 1, 378. [Google Scholar] [CrossRef]
- Qin, J.; Huang, Z.; Ge, Y.; Hou, Y.; Chu, J. Tandem Demodulation Lock-in Amplifier Based on Digital Signal Processor for Dual-Modulated Spectroscopy. Rev. Sci. Instrum. 2009, 80, 033112. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Qiang, H.; Pollak, F.H. A New Offset Technique for Suppression of Spurious Signals in Photoreflectance Spectra. Rev. Sci. Instrum. 1994, 65, 1988. [Google Scholar] [CrossRef]
- Acher, O.; Omnes, F.; Razeghi, M.; Drevillon, B. In Situ Characterization by Reflectance Difference Spectroscopy of III-v Materials and Heterojunctions Grown by Low Pressure Metal Organic Chemical Vapour Deposition. Materials Sci. Eng. B 1990, 5, 223. [Google Scholar] [CrossRef]
- Yasuda, T. In Situ Characterization of ZnSe/GaAs Interfaces by Reflectance Difference Spectroscopy. J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. 1996, 14, 3052. [Google Scholar] [CrossRef]
- Yin, X.; Pollak, F.H. Novel Contactless Mode of Electroreflectance. Appl. Phys. Lett. 1991, 59, 2305–2307. [Google Scholar] [CrossRef]
- Motyka, M.; Kudrawiec, R.; Sek, G.; Misiewicz, J.; Bisping, D.; Marquardt, B.; Forchel, A.; Fischer, M. Contactless Electroreflectance Investigation of Energy Levels in a 1.3 Micron Emitting Laser Structure with the Gain Medium Composed of InAsN Quantum Dots Embedded in GaInNAs/GaAs Quantum Wells. Appl. Phys. Lett. 2007, 90, 221112. [Google Scholar] [CrossRef]
- Lin, H.; Braeuninger-Weimer, P.; Kamboj, V.S.; Jessop, D.S.; Degl-Innocenti, R.; Beere, H.E.; Ritchie, D.A.; Zeitler, J.A.; Hofmann, S. Contactless Graphene Conductivity Mapping on a Wide Range of Substrates with Terahertz Time-Domain Reflection Spectroscopy. Sci. Rep. 2017, 7, 10625. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Parayanthal, P.; Liu, Y.F.; Pollak, F.H. New Normalization Procedure for Modulation Spectroscopy. Rev. Sci. Instrum. 1987, 58, 1429. [Google Scholar] [CrossRef]
- Qiang, H.; Yan, D.; Yin, Y.; Pollak, F.H. Characterization of Semiconductor Device Structures by Modulation Spectroscopy. Proc. SPIE 1994, 2141, 58. [Google Scholar] [CrossRef]
- Li, Q.; Tan, H.H.; Jagadish, C. A New Optical Front-End Compensation Technique for Suppression of Spurious Signal in Photoreflectance Spectroscopy Using an Antiphase Signal. Rev. Sci. Instrum. 2010, 81, 043102. [Google Scholar] [CrossRef]
- Wetzel, C.; Takeuchi, T.; Amano, H.; Akasaki, I. Piezoelectric Franz-Keldysh Effect in Strained GaInN/GaN Heterostructures. J. Appl. Phys. 1999, 85, 3786. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Li, M.-F.; Chua, S.-J.; Akutsu, N.; Matsumoto, K. Photoreflectance Study of Au-Schottky Contacts on n-GaN. J. Electron. Mater. 1999, 28, 360. [Google Scholar] [CrossRef]
- Hattori, K.; Fukuda, S.; Nishimura, K.; Okamoto, H.; Hamakawa, Y. Interpretation of CPM Measurements in Amorphous Semiconductors. J. Non-Cryst. Solids 1993, 164, 351. [Google Scholar] [CrossRef]
- Kita, T.; Yamada, M.; Wada, O. Dual Chopped Photoreflectance Spectroscopy for Nondestructive Characterization of Semiconductors and Semiconductor Nanostructures. Rev. Sci. Instrum. 2008, 79, 046110. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.F.; Chang, C.C.; Wang, D.P.; Tseng, B.H.; Liao, Y.D.; Lin, C.H. A Novel Approach for Normalizing the Photoreflectance Spectrum by Using Polymer-Dispersed Liquid Crystal. Rev. Sci. Instrum. 2012, 83, 103904. [Google Scholar] [CrossRef] [PubMed]
- Misiewicz, J.; Sitarek, P.; Sek, G.; Kudrawiec, R. Semiconductor Heterostructures and Device Structures Investigated by Photoreflectance Spectroscopy. Mater. Sci. 2003, 21, 263. [Google Scholar]
- Kobayashi, E.; Shimmura, S.; Ito, S.; Makino, T. A New Photoreflectance Signal Possibly Due to Midgap Interface States in Buried f-Doped SnO2/TiO2 Junctions. Jpn. J. Appl. Phys 2019, 59, SCCB23. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, X.-J. Note: A Modified Optics Based Technique for Suppressing Spurious Signals in Photoreflectance Spectra. Rev. Sci. Instrum. 2017, 88, 106103. [Google Scholar] [CrossRef] [PubMed]
- Ozgur, U.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Dogan, S.; Avrutin, V.; Cho, S.J.; Morkoc, H. A Comprehensive Review of ZnO Materials and Devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef] [Green Version]
- Klingshirn, C. ZnO: From Basics Towards Applications. Phys. Status Solidi B 2007, 244, 3027. [Google Scholar] [CrossRef]
- Ando, M.; Nakayama, M.; Nishimura, H.; Schneider, H.; Fujiwara, K. Franz-Keldysh Oscillations at the Miniband Edge in a GaAs Superlattice. Superlat. Microstr. 1997, 22, 459. [Google Scholar] [CrossRef]
- Makino, T.; Chia, C.H.; Tuan, N.T.; Segawa, Y.; Kawasaki, M.; Ohtomo, A.; Tamura, K.; Koinuma, H. Exciton Spectra in ZnO Epitaxial Layers on Lattice-Matched Substrates Grown with Laser-Molecular-Beam Epitaxy. Appl. Phys. Lett. 2000, 76, 3549. [Google Scholar] [CrossRef]
- Ozaki, S.; Mishima, T.; Adachi, S. Photoreflectance Spectroscopy of ZnO for Ordinary and Extraordinary Rays. Jpn. J. Appl. Phys 2003, 42, 5465. [Google Scholar] [CrossRef]
- Sze, S.M. Physics of Semiconductor Devices; Wiley: New York, NY, USA, 1981; ISBN 0471056618. [Google Scholar]
- Baenard, W.O.; Myburg, G.; Auret, F.D.; Goodman, S.A.; Meyer, W.E. Metal Contacts to Gallium Arsenide. J. Electron. Mater. 1996, 25, 1695. [Google Scholar] [CrossRef]
- Hall, D.J.; Hosea, T.J.C.; Lancefield, D. Airy Function Analysis of Franz-Keldysh Oscillations in the Photoreflectance Spectra of Layers. J. Appl. Phys 1997, 82, 3092. [Google Scholar] [CrossRef]
- Ashok, S.; Borrego, J.M.; Gutmann, R.J. Electrical Characteristics of GaAs MIS Schottky Diodes. Solid-State Electron. 1979, 22, 621. [Google Scholar] [CrossRef]
- Hughes, P.; Weiss, B.; Hosea, T. Analysis of Franz-Keldysh Oscillations in Photoreflectance Spectra of a GaAs Single-Quantum Well Structure. J. Appl. Phys. 1995, 77, 6472. [Google Scholar] [CrossRef]
- Van Hoof, C.; Deneffe, K.; De Boeck, J.; Arent, D.J.; Borghs, G. Franz-Keldysh Oscillations Originating from a Well-Controlled Electric Field in the GaAs Depletion Region. Appl. Phys. Lett. 1989, 54, 608. [Google Scholar] [CrossRef]
- Mollwo, E. Semiconductors: Physics of II-VI and i-VII Compounds, Semimagnetic Semiconductors; Madelung, O., Schulz, M., Weiss, H., Eds.; Landolt-Boernstein New Series; Springer: Berlin/Heidelberg, Germany, 1982; Volume 17, p. 35. [Google Scholar]
- Tanguy, C. Analytical Expression of the Complex Dielectric Function for the Hulthe n Potential. Phys. Rev. B 1999, 60, 10660. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobayashi, E.; Satta, K.; Inoue, R.; Suzuki, K.; Makino, T. Contactless Determination of Electric Field in Metal–Insulator–Semiconductor Interfaces by Using Constant DC-Reflectivity Photoreflectance. Solids 2021, 2, 129-138. https://doi.org/10.3390/solids2020008
Kobayashi E, Satta K, Inoue R, Suzuki K, Makino T. Contactless Determination of Electric Field in Metal–Insulator–Semiconductor Interfaces by Using Constant DC-Reflectivity Photoreflectance. Solids. 2021; 2(2):129-138. https://doi.org/10.3390/solids2020008
Chicago/Turabian StyleKobayashi, Eiichi, Koya Satta, Ryoga Inoue, Ken Suzuki, and Takayuki Makino. 2021. "Contactless Determination of Electric Field in Metal–Insulator–Semiconductor Interfaces by Using Constant DC-Reflectivity Photoreflectance" Solids 2, no. 2: 129-138. https://doi.org/10.3390/solids2020008
APA StyleKobayashi, E., Satta, K., Inoue, R., Suzuki, K., & Makino, T. (2021). Contactless Determination of Electric Field in Metal–Insulator–Semiconductor Interfaces by Using Constant DC-Reflectivity Photoreflectance. Solids, 2(2), 129-138. https://doi.org/10.3390/solids2020008