Urban Mining of Bivalve Shell Waste as a Sustainable Alternative to Limestone Exploitation: A Review on Alkali-Activated Cements and Mortars
Abstract
1. Introduction
2. Review Methodology
3. Literature Overview and Discussion
3.1. Annual Scientific Production and Country Scientific Production
3.2. Word Cloud and Network Frame
4. Cement Industry and Its Associated Environmental Impacts
4.1. Alkali-Activated Binders
4.2. Alkali Activation Using Bivalve Mollusk Shells
4.3. Scallops, Mussels and Periwinkle Shells
4.4. Urban Mining as a Framework for Bivalve Shell Valorization
4.5. Study Limitations
5. Conclusion Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| CO2 | Carbon Dioxide |
| NOX | Nitrogen Oxides |
| SOX | Sulfur Oxides |
| C-A-S-H | calcium-aluminosilicate hydrate |
| UCS | unconfined compressive strength |
| XRF | X-ray fluorescence |
| XRD | X-ray diffraction |
| SEM | Scanning Electron Microscope |
| EDS | Energy-Dispersive X-ray Spectroscopy |
| NaOH | Sodium Hydroxide |
| SiO2 | Silicon Dioxide |
| Na2O | Sodium Oxide |
| TGA | Thermogravimetric analysis |
| FT-IR | Infrared spectroscopy |
| UPV | Ultrasonic pulse velocity |
| Na2SiO3 | Sodium Metasilicate |
| MIP | Modified Impact Penetration test |
| H2O | Water |
| ITC | Isothermal titration calorimetry |
| TCLP | Toxicity Characteristic Leaching Procedure |
| RCP | Rapid Chloride Permeability |
| RCM | Chloride migration coefficient |
| EIS | Electrochemical impedance spectroscopy |
| DTG | Derivative Thermogravimetry |
| WSL | Waste seashell |
References
- Zhang, G.Y.; Lee, S.; Han, Y.; Wang, X.Y. The Effect of Oyster Shell Powder on the High-Temperature-Properties of Slag-Ceramic Powder-Based Geopolymer. Materials 2023, 16, 3706. [Google Scholar] [CrossRef]
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z.; Lee, S.C.; Goh, W.I.; Yuen, C.W. Recycling of Seashell Waste in Concrete: A Review. Constr. Build. Mater. 2018, 162, 751–764. [Google Scholar] [CrossRef]
- García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A. Low Environmental Impact Hybrid Cements: Reducing Clinker Content. Alconpat 2015, 5, 141–151. [Google Scholar] [CrossRef]
- Huang, B.-T.; Xi, H.; Ma, R.-Y.; Zhang, Z.-L.; Lao, J.-C.; Zhang, H.; Shen, Y.-N.; Shi, D.-D.; Xu, L.-Y. Ultra-High-Strength Engineered Geopolymer Composites (UHS-EGC) with Mineral Processing Waste: Probabilistic Modeling of Cracking Behavior. Theor. Appl. Fract. Mech. 2025, 140, 105138. [Google Scholar] [CrossRef]
- Mateus, W.; Levandoski, K.; Mota, J.D.; Menegolla, C.; Ferrazzo, S.T.; Bruschi, G.J.; Korf, E.P. Mechanical Strength, Mineralogical Characteristics and Leaching Behavior of Iron Ore Tailings Stabilized with Alkali-Activated Rice Husk Ash and Eggshell Lime Binder. Minerals 2025, 15, 567. [Google Scholar] [CrossRef]
- Pelisser, G.; Ferrazzo, S.T.; Mota, J.D.; dos Santos, C.P.; Pelisser, C.; Rosa, F.D.; Korf, E.P. Rice Husk Ash-Carbide Lime as an Alternative Binder for Waste Foundry Sand Stabilization. Environ. Sci. Pollut. Res. 2023, 30, 42176–42191. [Google Scholar] [CrossRef] [PubMed]
- Pompermaier, C.L.; Ferrazzo, S.T.; Levandoski, W.M.K.; Bruschi, G.J.; Prietto, P.D.M.; Korf, E.P. Stabilization of Waste Foundry Sand with Alkali-Activated Binder: Mechanical Behavior, Microstructure and Leaching. Constr. Build. Mater. 2024, 444, 137772. [Google Scholar] [CrossRef]
- Ferrazzo, S.T.; de Araújo, M.T.; Bruschi, G.J.; Chaves, H.M.; Korf, E.P.; Consoli, N.C. Mechanical and Environmental Behavior of Waste Foundry Sand Stabilized with Alkali-Activated Sugar Cane Bagasse Ash-Eggshell Lime Binder. Constr. Build. Mater. 2023, 383, 131313. [Google Scholar] [CrossRef]
- da Veiga, F.P.; Levandoski, W.M.K.; Bruschi, G.J.; Krogel, M.; Piovesan, M.A.; Pelissaro, D.T.; Prietto, P.D.M.; Korf, E.P. Utilizing Iron Ore Tailings for the Development of a Sustainable Alkali-Activated Binder. Mining 2025, 5, 26. [Google Scholar] [CrossRef]
- Nasaeng, P.; Wongsa, A.; Cheerarot, R.; Sata, V.; Chindaprasirt, P. Strength Enhancement of Pumice-Based Geopolymer Paste by Incorporating Recycled Concrete and Calcined Oyster Shell Powders. Case Stud. Constr. Mater. 2022, 17, e01307. [Google Scholar] [CrossRef]
- Monneron-Gyurits, M.; Joussein, E.; Soubrand, M.; Fondanèche, P.; Rossignol, S. Valorization of Mussel and Oyster Shells toward Metakaolin-Based Alkaline Activated Material. Appl. Clay Sci. 2018, 162, 15–26. [Google Scholar] [CrossRef]
- Hasnaoui, A.; Bourguiba, A.; Sebaibi, N.; Boutouil, M. Valorization of Queen Scallop Shells in the Preparation of Metakaolin-Based Geopolymer Mortars. J. Build. Eng. 2022, 53, 104578. [Google Scholar] [CrossRef]
- Oladele, O.L.; Adesanya, E.D.; Arbe, A.; Iturrospe, A.; Ogundiran, M.B. Mitigation of Efflorescence, Drying Shrinkage and Water Demand of Calcined Clay-Based Geopolymers with Biological Waste Ashes as Activator and Hardener. Appl. Clay Sci. 2023, 243, 107050. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2024—Blue Transformation in Action; FAO: Rome, Italy, 2024; Volume 35. [Google Scholar] [CrossRef]
- Yao, Z.; Xia, M.; Li, H.; Chen, T.; Ye, Y.; Zheng, H. Bivalve Shell: Not an Abundant Useless Waste but a Functional and Versatile Biomaterial. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2502–2530. [Google Scholar] [CrossRef]
- Moita Neto, J.M.; Leal, R.C.; Araújo, N.L.d.S.; da Silva, E.A. Challenges and Opportunities for the Development of Urban Mining in Brazil. Minerals 2025, 15, 593. [Google Scholar] [CrossRef]
- Cossu, R.; Williams, I.D. Urban mining: Concepts, terminology, challenges. Waste Manag. 2015, 45, 1–3. [Google Scholar] [CrossRef]
- Xavier, L.H.; Ottoni, M.; Abreu, L.P.P. A comprehensive review of urban mining and the value recovery from e waste materials. Resour. Conserv. Recycl. 2023, 190, 106840. [Google Scholar] [CrossRef]
- Águila-Almanza, E.; Hernández-Cocoletzi, H.; Rubio-Rosas, E.; Calleja-González, M.; Lim, H.R.; Khoo, K.S.; Singh, V.; Maldonado-Montiel, J.C.; Show, P.L. Recuperation and Characterization of Calcium Carbonate from Residual Oyster and Clamshells and Their Incorporation into a Residential Finish. Chemosphere 2022, 288, 132550. [Google Scholar] [CrossRef]
- Bellei, P.; Torres, I.; Solstad, R.; Flores-Colen, I. Potential Use of Oyster Shell Waste in the Composition of Construction Composites: A Review. Buildings 2023, 13, 1546. [Google Scholar] [CrossRef]
- Her, S.; Im, S.; Liu, J.; Suh, H.; Kim, G.; Sim, S.; Wi, K.; Park, D.; Bae, S. Exploring the Potential of Pulverized Oyster Shell as a Limestone Substitute in Limestone Calcined Clay Cement (LC3) and Its Implications for Performance. Constr. Build. Mater. 2024, 425, 135918. [Google Scholar] [CrossRef]
- Yang, B.; Jang, J.G. Environmentally Benign Production of One-Part Alkali-Activated Slag with Calcined Oyster Shell as an Activator. Constr. Build. Mater. 2020, 257, 119552. [Google Scholar] [CrossRef]
- Her, S.; Park, T.; Zalnezhad, E.; Bae, S. Synthesis and Characterization of Cement Clinker Using Recycled Pulverized Oyster and Scallop Shell as Limestone Substitutes. J. Clean. Prod. 2021, 278, 123987. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-Activated Materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Yue, G.H.; Tay, Y.X.; Wong, J.; Shen, Y.; Xia, J. Aquaculture Species Diversification in China. Aquac. Fish. 2024, 9, 206–217. [Google Scholar] [CrossRef]
- Belaïd, F. How Does Concrete and Cement Industry Transformation Contribute to Mitigating Climate Change Challenges? Resour. Conserv. Recycl. Adv. 2022, 15, 200084. [Google Scholar] [CrossRef]
- Adesina, A. Recent Advances in the Concrete Industry to Reduce Its Carbon Dioxide Emissions. Environ. Challenges 2020, 1, 100004. [Google Scholar] [CrossRef]
- Dunuweera, S.P.; Rajapakse, R.M.G. Cement Types, Composition, Uses and Advantages of Nanocement, Environmental Impact on Cement Production, and Possible Solutions. Adv. Mater. Sci. Eng. 2018, 2018, 4158682. [Google Scholar] [CrossRef]
- Mohamad, N.; Muthusamy, K.; Embong, R.; Kusbiantoro, A.; Hashim, M.H. Environmental Impact of Cement Production and Solutions: A Review. Mater. Today Proc. 2021, 48, 741–746. [Google Scholar] [CrossRef]
- USGS. U.S. Geological Survey, Mineral Commodity Summaries. January 2025. Available online: https://www.usgs.gov/ (accessed on 30 May 2025).
- CSI-ECRA. CSI/ECRA—Technology Papers 2017: Development of State of the Art Techniques in Cement Manufacturing: Trying to Look Ahead; European Cement Research Academy: Düsseldorf, Germany, 2017. Available online: https://ecra-online.org (accessed on 27 May 2025).
- Sun, Q.; Cui, C.; Li, J.; Liu, F.; Chen, B.; Liu, Y.; Tu, K.N.; Jiang, H. Geopolymer Adhesives for DUV LED Packaging: Synthesis and Bonding Mechanism. J. Alloys Compd. 2025, 1036, 181903. [Google Scholar] [CrossRef]
- Gökçe, H.S. Durability of Slag-Based Alkali-Activated Materials: A Critical Review. J. Aust. Ceram. Soc. 2024, 60, 885–903. [Google Scholar] [CrossRef]
- Nasir, M.; Mahmood, A.H.; Bahraq, A.A. History, Recent Progress, and Future Challenges of Alkali-Activated Binders—An Overview. Constr. Build. Mater. 2024, 426, 136141. [Google Scholar] [CrossRef]
- Provis, J.L. Geopolymers and Other Alkali Activated Materials: Why, How, and What? Mater. Struct. Constr. 2014, 47, 11–25. [Google Scholar] [CrossRef]
- Santos, M.E.M.; de Oliveira Moura, E.M. Potencialidades e Impactos Ambientais Dos Resíduos Oriundos Da Malacocultura. Acta Fish. Aquat. Resour. 2017, 5, 147–152. [Google Scholar] [CrossRef]
- Chierighini, D.; Bridi, R.; Rocha, A.A.; Lapa, K.R. Possibilidades do Uso das Conchas de Moluscos. In Proceedings of the 3rd International Workshop Advances in Cleaner Production, São Paulo, Brazil, 18–20 May 2011; Available online: http://www.advancesincleanerproduction.net/third/files/sessoes/6A/6/Chierighini_D%20-%20Paper%20-%206A6.pdf (accessed on 4 April 2025).
- Silva, T.H.; Mesquita-Guimarães, J.; Henriques, B.; Silva, F.S.; Fredel, M.C. The Potential Use of Oyster Shell Waste in New Value-Added by-Product. Resources 2019, 8, 13. [Google Scholar] [CrossRef]
- Aimikhe, V.J.; Lekia, G.B. An Overview of the Applications of Periwinkle (Tympanotonus fuscatus) Shells. Curr. J. Appl. Sci. Technol. 2021, 40, 31–58. [Google Scholar] [CrossRef]
- de Castro, V.G. Cimento Portland. In Compósitos Madeira-Cimento: Um Produto Sustentável Para o Futuro; EdUFERSA: Mossoró, Brazil, 2021; pp. 13–21. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Pesquisa da Pecuária Municipal 2023 (PPM); IBGE: Rio de Janeiro, Brazil, 2023. Available online: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9107-producao-da-pecuaria-municipal.html?=&t=resultados (accessed on 8 April 2025).
- Igarashi, M.A. Aspectos Do Desenvolvimento Tecnológico Do Cultivo de Ostra No Sul Do Brasil Aspects of the Technological Development of Oyster Culture in Southern Brazil. Semiárido Visu 2018, 8, 28–44. [Google Scholar] [CrossRef]
- Pessoa, K.d.A.R.; Salgado, R.; Da Mata, A.M.A.T.; Quintella, C.M. Oyster Shell: Recent Trends in Environmental Uses for Circular Economy. Cad. Prospecção 2019, 12, 849–864. [Google Scholar] [CrossRef]
- Okoro, W.; Oyebisi, S. Mechanical and Durability Assessments of Steel Slag-Seashell Powder-Based Geopolymer Concrete. Heliyon 2023, 9, e13188. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.Y.; Lin, R.S.; Wang, X.Y. Effect of Waste Oyster Shell Powder on the Properties of Alkali-Activated Slag-Waste Ceramic Geopolymers. J. Mater. Res. Technol. 2023, 22, 1768–1780. [Google Scholar] [CrossRef]
- Le, T.T.; Park, S.S.; Lee, J.C.; Lee, D.E. Strength Characteristics of Spent Coffee Grounds and Oyster Shells Cemented with GGBS-Based Alkaline-Activated Materials. Constr. Build. Mater. 2021, 267, 120986. [Google Scholar] [CrossRef]
- Djobo, Y.J.N.; Elimbi, A.; Dika Manga, J.; Djon Li Ndjock, I.B. Partial Replacement of Volcanic Ash by Bauxite and Calcined Oyster Shell in the Synthesis of Volcanic Ash-Based Geopolymers. Constr. Build. Mater. 2016, 113, 673–681. [Google Scholar] [CrossRef]
- Djobo, J.N.Y.; Tchakouté, H.K.; Ranjbar, N.; Elimbi, A.; Tchadjié, L.N.; Njopwouo, D. Gel Composition and Strength Properties of Alkali-Activated Oyster Shell-Volcanic Ash: Effect of Synthesis Conditions. J. Am. Ceram. Soc. 2016, 99, 3159–3166. [Google Scholar] [CrossRef]
- Angdiarto, S.P.; Chen, C.T.; Chang, T.P. Engineering Characteristics of One-Part Alkali-Activated Slag-Based Paste Incorporating Nano-Silica and Calcined Oyster Shells Ash. J. Chinese Inst. Eng. Trans. Chinese Inst. Eng. A 2024, 48, 1–14. [Google Scholar] [CrossRef]
- Choi, S.-G.; Park, S.-S.; Wang, K. Early-Age Strength of Alkali-Activated Slag Mortar Based on Burned Oyster Shell and Other Chemical Activators. J. Mater. Civ. Eng. 2019, 31, 04019186. [Google Scholar] [CrossRef]
- Shao, W.C.; Lu, C.L.; Dong, Y.W.; Chen, J.W.; Chiang, Y.T. Research on Innovative Green Building Materials from Waste Oyster Shells into Foamed Heat-Insulating Bricks. Clean. Mater. 2024, 11, 100222. [Google Scholar] [CrossRef]
- Deng, Z.; Yang, Z.; Bian, J.; Pan, X.; Wu, G.; Guo, F.; Fu, R.; Yan, H.; Deng, Z.; Chen, S. Engineering Properties of PVA Fibre-Reinforced Geopolymer Mortar Containing Waste Oyster Shells. Materials 2022, 15, 7013. [Google Scholar] [CrossRef]
- Yanting, M.; Bo, D.; Xiaotong, Y.; Da, C.; Yingdi, L. Study on Mechanical Properties and Durability of Geopolymer Concrete with Oyster Shell Aggregate. Constr. Build. Mater. 2025, 472, 140926. [Google Scholar] [CrossRef]
- López, L.C.S.; Ramos, J.C.L.; de la Rosa, Y.E.N.; Bruschi, G.J.; Baldovino, J.D.J.A. Stabilization of Clay Soils Using a Lime Derived from Seashell. Materials 2025, 18, 2723. [Google Scholar] [CrossRef]
- Chung, S.Y.; Oh, S.E.; Jo, S.S.; Lehmann, C.; Won, J.; Elrahman, M.A. Microstructural Investigation of Mortars Incorporating Cockle Shell and Waste Fishing Net. Case Stud. Constr. Mater. 2023, 18, e01719. [Google Scholar] [CrossRef]
- Lertwattanaruk, P.; Makul, N.; Siripattarapravat, C. Utilization of Ground Waste Seashells in Cement Mortars for Masonry and Plastering. J. Environ. Manag. 2012, 111, 133–141. [Google Scholar] [CrossRef]
- NBR 16697:2018; Cimento Portland—Requisitos. Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2018.
- Kim, M.O.; Lee, M.K. Strength and Microstructural Changes in Cementitious Composites Containing Waste Oyster Shell Powder. Buildings 2023, 13, 3078. [Google Scholar] [CrossRef]
- Seo, J.H.; Park, S.M.; Yang, B.J.; Jang, J.G. Pó de concha de ostra calcinada como aditivo expansivo em argamassa de cimento. Materiais 2019, 12, 1322. [Google Scholar] [CrossRef]
- Cha, I.; Kim, J.; Lee, H. Aumento da resistência à compressão em compósitos cimentícios por meio do uso eficaz de conchas de ostras desperdiçadas e aditivos. Buildings 2023, 13, 2787. [Google Scholar] [CrossRef]
- Provis, J.L.; van Deventer, J.S.J. Geopolymers: Structure, Processing, Properties and Industrial Applications; Woodhead Publishing: Great Abington, UK, 2009. [Google Scholar] [CrossRef]
- Paswan, R.K.; Kumar, P.; Kumar, V.; Sembeta, R.Y. Mechanical Properties of Alkali Activated Slag Binder Based Concrete at Elevated Temperatures. Discov. Sustain. 2025, 6, 744. [Google Scholar] [CrossRef]
- Olivia, M.; Oktaviani, R. Ismeddiyanto Properties of Concrete Containing Ground Waste Cockle and Clam Seashells. Procedia Eng. 2017, 171, 658–663. [Google Scholar] [CrossRef]
- Oyejobi, D.O.; Raji, S.A.; Aina, S.T.; Siva, A. Physio-Chemical and Microstructural Characteristics of Selected Pozzolanic Materials for Cement and Concrete Production. Niger. J. Technol. Dev. 2019, 16, 111–119. [Google Scholar] [CrossRef]
- Khankhaje, E.; Salim, M.R.; Mirza, J.; Salmiati; Hussin, M.W.; Khan, R.; Rafieizonooz, M. Properties of Quiet Pervious Concrete Containing Oil Palm Kernel Shell and Cockleshell. Appl. Acoust. 2017, 122, 113–120. [Google Scholar] [CrossRef]





| Variable Keywords | Boolean Operator | Fixed Keywords | Serchin Within | Scopus | Web of Science |
|---|---|---|---|---|---|
| “Oyster” | AND | “alkali-activated” OR “alkali-activation” OR “geopolymers” OR “geopolymer” | Article Title, Keywords and Abstract | 21 | 29 |
| “Scallop” | AND | “alkali-activated” OR “alkali-activation” OR “geopolymers” OR “geopolymer” | Article Title, Keywords and Abstract | 2 | 1 |
| “Mussel” | AND | “alkali-activated” OR “alkali-activation” OR “geopolymers” OR “geopolymer” | Article Title, Keywords and Abstract | 1 | 2 |
| “Periwinkle” | AND | “alkali-activated” OR “alkali-activation” OR “geopolymers” OR “geopolymer” | Article Title, Keywords and Abstract | 2 | 1 |
| “Clam” | AND | “alkali-activated” OR “alkali-activation” OR “geopolymers” OR “geopolymer” | Article Title, Keywords and Abstract | 2 | 1 |
| “Cockle” | AND | “alkali-activated” OR “alkali-activation” OR “geopolymers” OR “geopolymer” | Article Title, Keywords and Abstract | 0 | 0 |
| Shell Type | Other Materials Present | Activator(s) | Analyses Performed | qt (MPa) * | qu (MPa) * | Reference |
|---|---|---|---|---|---|---|
| Oysters | Steel slag, fine and coarse aggregates | Commercial sodium silicate powder | Compressive tensile, and flexural strength tests; X-ray fluorescence (XRF); X-ray diffraction (XRD); Slump test; Microstructural analysis (SEM/EDS); Thermal conductivity and resistivity test; Drying shrinkage test | ≈1–3 | ≈4.5–22 | [44] |
| Oysters | Ground granulated blast furnace slag and ceramic powder residue | Solid NaOH mixed with glass water solution (glass-water + sodium oxide + water) and deionized water with molar ratio SiO2/Na2O = 1.2 | XRF; Compressive strength; Thermogravimetric analysis (TGA); XRD; Infrared spectroscopy (FT-IR); Ultrasonic pulse velocity (UPV) | - | ≈20–75 | [1] |
| Oysters | Ground granulated blast furnace slag and ceramic powder residue | Solid NaOH mixed with glass water solution (glass-water + sodium oxide + water) with molar ratio SiO2/Na2O = 0.833 M | XRF; Compressive strength; Heat of hydration; UPV; TGA; FT-IR; XRD; Electrical resistivity; SEM/EDS | - | ≈20–80 | [45] |
| Oysters | Ground granulated blast furnace slag and reused coffee grounds | Solid NaOH mixed with distilled water and NaOH mixed with liquid sodium silicate and distilled water in 70/30 proportions (NaOH/Na2SiO3), both at 5 M | XRF; Unconfined compressive strength (UCS); XRD; FT-IR; SEM/EDS | - | ≈1.3–2.8 | [46] |
| Oysters | Pumice stone and recycled concrete | NaOH dissolved in deionized water (10 M) and commercial sodium silicate (35.12% silica, 16.26% sodium oxide, 48.62% water) in 1:1 proportion (NaOH/Na2SiO3) | XRF; Compressive strength; XRD; Mercury Intrusion Porosimetry (MIP); SEM/EDS; FT-IR | - | ≈15–27 | [10] |
| Oysters | Volcanic ash and bauxite | Solid NaOH and distilled water at 12 M, mixed with sodium silicate (62.4% H2O, 28.7% SiO2, 8.9% Na2O), SiO2/Na2O ratio = 1.45 M | XRF; XRD; FT-IR; UCS; Durability tests, setting time, porosity, and linear shrinkage on specimens | - | ≈28–39 | [47] |
| Oysters | Volcanic ash | Solid NaOH mixed with distilled water at 8, 12, and 15 M | XRF; XRD; FT-IR; SEM/EDS; Thermal analysis; Wet and dry compressive strength | - | ≈0–34 | [48] |
| Oysters | Ground granulated blast furnace slag and nano-silica | Calcined oyster shells | XRF; Thermal conductivity test; Drying shrinkage; Isothermal titration calorimetry (ITC); UPV; XRD; SEM/EDS; Tensile strength by compression and cracking; Water absorption; MIP; Flow table test | ≈1–1.9 | ≈5–26 | [49] |
| Oysters | Ground granulated blast furnace slag | Calcined oyster shells, calcium hydroxide, sodium hydroxide, and potassium hydroxide (all at 1 M) | XRF; UCS and deformation tests; XRD; SEM/EDS | - | ≈0–1.2 | [50] |
| Oysters | Ground granulated blast furnace slag | Calcined oyster shells | XRF; XRD; Isothermal conduction calorimetry (ITP); FT-IR; MIP; Thermogravimetric analysis (TGA); Compressive strength | - | ≈13–35 | [22] |
| Oysters | Ground granulated blast furnace slag | NaOH with sodium aluminate, sodium silicate, and water (6 M, 8 M, and 10 M) | XRF; Compressive and flexural strength; Specific gravity (Archimedes’ principle); Thermal conductivity; Heat flux analysis; Surface temperature analysis; Toxicity leaching (TCLP); Carbon and economic benefit analysis; SEM/EDS | ≈1.2–7 | ≈0.8–19.4 | [51] |
| Oysters | Ground granulated blast furnace slag and fly ash | NaOH 8 M and commercial sodium silicate (56.26% H2O, 29.99% SiO2, 13.75% Na2O) | XRF; Compressive and flexural strength; Drying shrinkage; Workability; Chloride permeability (RCP); Porosity; Flowability; Fiber dispersion; Eco-efficiency; SEM | ≈2.5–6 | ≈22–52 | [52] |
| Oysters | Ground granulated blast furnace slag and fly ash | NaOH and sodium silicate solution (commercial sodium silicate: 56.51% H2O, 29.99% SiO2, 13.75% Na2O) | XRF; Compressive, flexural, and tensile strength; Static elastic modulus; XRD; Water absorption and volume of permeable pores; Chloride migration coefficient (RCM); UPV; Electrochemical impedance spectroscopy (EIS); SEM/EDS | ≈3–4.5 | ≈40–74 | [53] |
| Oysters and Mussels (calcined and non-calcined) | Metakaolin | Solid NaOH mixed with sodium silicate solution, Si/Na ratio = 1.65 M | XRF; Leaching test; XRD; SEM/EDS; FT-IR | - | - | [11] |
| Snails and Mussels | Clayey soil | NaOH and distilled water solution (0.5 M, 1.0 M, 1.5 M, 2.0 M) | XRF; Particle size distribution by Laser Diffraction; Thermal analysis (TG/DTG); UCS; Statistical analysis of WSL content, NaOH molarity, and curing time influence on soil strength; SEM/EDS | - | ≈0.9–4.6 | [54] |
| Scallops | Metakaolin | NaOH and sodium silicate solution, SiO2/Na2O molar ratio = 1.8 M | XRF; TG/DTG; XRD; Setting time, workability, porosity, shrinkage, efflorescence, compressive and flexural strength | ≈6–11 | ≈30–60 | [12] |
| Periwinkles | Kaolin clay, quarry dust, cocoa pod ash | Commercial sodium silicate (65.5% H2O, 26.5% SiO2, 8% Na2O), SiO2/Na2O molar ratio = 3.3 M | XRF; TG/DTG; XRD; FT-IR; Setting time, density, porosity, absorption, efflorescence, drying shrinkage; Compressive strength | - | ≈20–35 | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paim Cescon, A.; Bruschi, G.J.; Korf, E.P. Urban Mining of Bivalve Shell Waste as a Sustainable Alternative to Limestone Exploitation: A Review on Alkali-Activated Cements and Mortars. Mining 2025, 5, 69. https://doi.org/10.3390/mining5040069
Paim Cescon A, Bruschi GJ, Korf EP. Urban Mining of Bivalve Shell Waste as a Sustainable Alternative to Limestone Exploitation: A Review on Alkali-Activated Cements and Mortars. Mining. 2025; 5(4):69. https://doi.org/10.3390/mining5040069
Chicago/Turabian StylePaim Cescon, Arthur, Giovani Jordi Bruschi, and Eduardo Pavan Korf. 2025. "Urban Mining of Bivalve Shell Waste as a Sustainable Alternative to Limestone Exploitation: A Review on Alkali-Activated Cements and Mortars" Mining 5, no. 4: 69. https://doi.org/10.3390/mining5040069
APA StylePaim Cescon, A., Bruschi, G. J., & Korf, E. P. (2025). Urban Mining of Bivalve Shell Waste as a Sustainable Alternative to Limestone Exploitation: A Review on Alkali-Activated Cements and Mortars. Mining, 5(4), 69. https://doi.org/10.3390/mining5040069

