Adoption of Industry 4.0 Technologies in Chilean Mining: A Comparative Analysis Between Sectors
Abstract
:1. Introduction
1.1. Industry 4.0
2. Materials and Methods
2.1. Data
2.2. Variables
2.3. Principal Component Analysis
3. Results
3.1. Descriptive Statistics
3.2. Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Code | Variable | Definition |
C0701 | X1 | During the year 2018, did your company use any ERP software (e.g., SAP, Oracle E-Business One, NetSuite ERP, etc.) that allowed you to integrate and manage processes and information across different business areas of the company (e.g., planning, logistics, sales, etc.)? |
C0801 | X2 | During the year 2018, did your company use any CRM software (e.g., Salesforce, Apptivo, Zoho CRM, etc.) that allowed you to integrate and manage information about customers? |
Sharing electronic information of the production chain (SCM) involves coordinating all types of information exchange with other companies, whether customers or suppliers, regarding the availability, production, development, and distribution of goods or services (e.g., SAP SCM, E2open, Logility, Oracle SCM, Infor SCM, etc.). Information related to the production chain includes demand forecasts, inventory levels, production plans, and delivery progress, among others. This information should be exchanged via websites, internal networks, or other electronic data exchange methods, excluding emails that are manually written or not processed automatically.During the year 2018, indicate if the company electronically shared any type of production chain information (SCM) using systems designed for this purpose with (check one or more options): | ||
C1001 | X3 | Suppliers |
C1002 | X4 | Costumers |
G1801 | X5 | During 2018, did your company perform Big Data analysis? |
During 2018, which of the following sources did your company use for Big Data analysis? | ||
G1901 | X6 | Large volumes of data from the company itself are obtained from sensors or smart devices in the context of big data. |
G1902 | X7 | Large-scale data from geolocation is based on the use of portable devices in the context of big data. |
G1903 | X8 | Large-scale data generated from social media in the context of Big Data. |
During the year 2018, did your company use radio-frequency identification (RFID) tools for any of the following purposes? (Mark one or more options): | ||
J1301 | X9 | Identification of individuals or access control (excluding biometric access control systems such as fingerprint readers, facial recognition, etc.). |
J1302 | X10 | As part of the production process or product delivery service (e.g., monitoring and controlling the industrial production process, tracking and controlling the supply chain and inventories, managing service and maintenance, or managing assets, etc.). |
J1303 | X11 | Identification of the product after the production process (e.g., theft control, counterfeiting, allergen information, etc.). |
M2201 | X12 | Did the company use paid Cloud Computing services during 2018? |
N2401 | X13 | During the year 2018, did the company have a dedicated area, position, or role for ICT security? |
References
- Bisschoff, R.A.D.P.; Grobbelaar, S. Evaluation of data-driven decision-making implementation in the mining industry. S. Afr. J. Ind. Eng. 2022, 33, 218–232. [Google Scholar] [CrossRef]
- Zhironkin, S.; Taran, E. Development of Surface Mining 4.0 in Terms of Technological Shock in Energy Transition: A Review. Energies 2023, 16, 3639. [Google Scholar] [CrossRef]
- Zhironkin, S.; Gasanov, M.; Suslova, Y. Orderliness in Mining 4.0. Energies 2022, 15, 8153. [Google Scholar] [CrossRef]
- Zhironkina, O.; Zhironkin, S. Technological and Intellectual Transition to Mining 4.0: A Review. Energies 2023, 16, 1427. [Google Scholar] [CrossRef]
- Chirgwin, P. Skills Development and Training of Future Workers in Mining Automation Control Rooms. Comput. Hum. Behav. Rep. 2021, 4, 100115. [Google Scholar] [CrossRef]
- Narula, S.; Prakash, S.; Dwivedy, M.; Talwar, V.; Tiwari, S.P. Industry 4.0 Adoption Key Factors: An Empirical Study on Manufacturing Industry. J. Adv. Manag. Res. 2020, 17, 697–725. [Google Scholar] [CrossRef]
- Banco Central de Chile. Reporte de Política Monetaria; Banco Central de Chile: Santiago, Chile, 2022. [Google Scholar]
- Exponor Is Chile’s Second Largest Mining Trade Show. The U.S. Pavilion Features Around 40 Exhibitors. Available online: https://www.trade.gov/country-commercial-guides/chile-mining (accessed on 21 May 2024).
- Harmsen, J.H.M.; Roes, A.L.; Patel, M.K. The Impact of Copper Scarcity on the Efficiency of 2050 Global Renewable Energy Scenarios. Energy 2013, 50, 62–73. [Google Scholar] [CrossRef]
- Skenderas, D.; Politi, C. Industry 4.0 Roadmap for the Mining Sector. Mater. Proc. 2023, 15, 16. [Google Scholar] [CrossRef]
- Kuzior, A.; Grebski, W. Mining Industry in Canada (Opportunities and Threats). Acta Montan. Slovaca 2022, 27, 407–416. [Google Scholar] [CrossRef]
- Holcombe, S.; Kemp, D. Indigenous Peoples and Mine Automation: An Issues Paper. Resour. Policy 2019, 63, 101420. [Google Scholar] [CrossRef]
- Culot, G.; Nassimbeni, G.; Orzes, G.; Sartor, M. Behind the Definition of Industry 4.0: Analysis and Open Questions. Int. J. Prod. Econ. 2020, 226, 107617. [Google Scholar] [CrossRef]
- Mariani, M.; Borghi, M. Industry 4.0: A Bibliometric Review of Its Managerial Intellectual Structure and Potential Evolution in the Service Industries. Technol. Forecast. Soc. Chang. 2019, 149, 119752. [Google Scholar] [CrossRef]
- Oesterreich, T.D.; Teuteberg, F. Understanding the Implications of Digitisation and Automation in the Context of Industry 4.0: A Triangulation Approach and Elements of a Research Agenda for the Construction Industry. Comput. Ind. 2016, 83, 121–139. [Google Scholar] [CrossRef]
- Pencarelli, T. The Digital Revolution in the Travel and Tourism Industry. Inf. Technol. Tour. 2020, 22, 455–476. [Google Scholar] [CrossRef]
- Castelo-Branco, I.; Cruz-Jesus, F.; Oliveira, T. Assessing Industry 4.0 Readiness in Manufacturing: Evidence for the European Union. Comput. Ind. 2019, 107, 22–32. [Google Scholar] [CrossRef]
- Castelo-Branco, I.; Amaro-Henriques, M.; Cruz-Jesus, F.; Oliveira, T. Assessing the Industry 4.0 European Divide through the Country/Industry Dichotomy. Comput. Ind. Eng. 2023, 176, 108925. [Google Scholar] [CrossRef]
- Kagermann, H. Change Through Digitization—Value Creation in the Age of Industry 4.0. In Management of Permanent Change; Albach, H., Meffert, H., Pinkwart, A., Reichwald, R., Eds.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2015; pp. 23–45. ISBN 978-3-658-05014-6. [Google Scholar]
- Liao, Y.; Deschamps, F.; Loures, E.d.F.R.; Ramos, L.F.P. Past, Present and Future of Industry 4.0—A Systematic Literature Review and Research Agenda Proposal. Int. J. Prod. Res. 2017, 55, 3609–3629. [Google Scholar] [CrossRef]
- Frank, A.G.; Dalenogare, L.; Ayala, N. Industry 4.0 Technologies: Implementation Patterns in Manufacturing Companies. Int. J. Prod. Econ. 2019, 210, 15–26. [Google Scholar] [CrossRef]
- Kamble, S.; Gunasekaran, A.; Dhone, N.C. Industry 4.0 and Lean Manufacturing Practices for Sustainable Organisational Performance in Indian Manufacturing Companies. Int. J. Prod. Res. 2020, 58, 1319–1337. [Google Scholar] [CrossRef]
- Barreto, L.; Amaral, A.; Pereira, T. Industry 4.0 Implications in Logistics: An Overview. Procedia Manuf. 2017, 13, 1245–1252. [Google Scholar] [CrossRef]
- Gokalp, M.O.; Kayabay, K.; Akyol, M.A.; Eren, P.E.; Kocyigit, A. Big Data for Industry 4.0: A Conceptual Framework. In Proceedings of the 2016 International Conference on Computational Science and Computational Intelligence (CSCI 2016), Las Vegas, NV, USA, 15–17 December 2016; pp. 431–434. [Google Scholar]
- Rezazadegan, R.; Sharifzadeh, M. Applications of Artificial Intelligence and Big Data in Industry 4.0 Technologies. In Industry 4.0 Vision for Energy and Materials; Wiley: Hoboken, NJ, USA, 2022; pp. 121–158. ISBN 9781119695868. [Google Scholar]
- Alvarez-Marin, A.; Castillo-Vergara, M. Estrategias Para Acercar La Tecnología de Identificación Por Radiofrecuencia a La Formación de Futuros Ingenieros Industriales. Form. Univ. 2015, 8, 23–34. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, L.; Guo, H. Investigating the Impact of Cloud Computing Vendor on the Adoption of Cloud Computing. Mob. Inf. Syst. 2021, 2021, 6557937. [Google Scholar] [CrossRef]
- Onifade, M.; Adebisi, J.A.; Shivute, A.P.; Genc, B. Challenges and Applications of Digital Technology in the Mineral Industry. Resour. Policy 2023, 85, 103978. [Google Scholar] [CrossRef]
- Bytniewski, A.; Matouk, K.; Rot, A.; Hernes, M.; Kozina, A. Towards Industry 4.0: Functional and Technological Basis for ERP 4.0 Systems. In Towards Industry 4.0—Current Challenges in Information Systems; Springer: Berlin/Heidelberg, Germany, 2020; pp. 3–19. [Google Scholar]
- Lu, Y. Industry 4.0: A Survey on Technologies, Applications and Open Research Issues. J. Ind. Inf. Integr. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Morawiec, P.; Sołtysik-Piorunkiewicz, A. ERP System Development for Business Agility in Industry 4.0—A Literature Review Based on the TOE Framework. Sustainability 2023, 15, 4646. [Google Scholar] [CrossRef]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis; Pearson Education Limited: London, UK, 2002. [Google Scholar]
- Peña, D. Análisis de Datos Multivariantes; McGraw-Hill España: Cambridge, UK, 2013; ISBN 8448191846. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis for Special Types of Data; Springer: Berlin/Heidelberg, Germany, 2002; ISBN 0387954422. [Google Scholar]
- Dien, J. Evaluating Two-step PCA of ERP Data with Geomin, Infomax, Oblimin, Promax, and Varimax Rotations. Psychophysiology 2010, 47, 170–183. [Google Scholar] [CrossRef]
- Abdi, H. Factor Rotations in Factor Analyses. Encyclopedia for Research Methods for the Social Sciences; Sage: Thousand Oaks, CA, USA, 2003; pp. 792–795. [Google Scholar]
- Sánchez, F.; Hartlieb, P. Innovation in the Mining Industry: Technological Trends and a Case Study of the Challenges of Disruptive Innovation. Min. Met. Explor. 2020, 37, 1385–1399. [Google Scholar] [CrossRef]
- Castillo-Vergara, M.; Muñoz-Cisterna, V.; Geldes, C.; Álvarez-Marín, A.; Soto-Marquez, M. Bibliometric Analysis of Computational and Mathematical Models of Innovation and Technology in Business. Axioms 2023, 12, 631. [Google Scholar] [CrossRef]
- Heredia, J.; Castillo-Vergara, M.; Geldes, C.; Carbajal Gamarra, F.M.; Flores, A.; Heredia, W. How Do Digital Capabilities Affect Firm Performance? The Mediating Role of Technological Capabilities in the “New Normal”. J. Innov. Knowl. 2022, 7, 100171. [Google Scholar] [CrossRef]
- González-Martinez, P.; García-Pérez-De-Lema, D.; Castillo-Vergara, M.; Hansen, P.B. Determinants and Performance of the Quadruple Helix Model and the Mediating Role of Civil Society. Technol. Soc. 2023, 75, 102358. [Google Scholar] [CrossRef]
- Geldes, C. El Desafío de La Innovación Colaborativa: El Caso de La Agricultura Inteligente y de Precisión En El Sector Lechero En Chile. Obs. Económico. 2023, 175, 12–14. [Google Scholar] [CrossRef]
- Carrasco-Carvajal, O.; García-Pérez-de-Lema, D.; Castillo-Vergara, M. Impact of Innovation Strategy, Absorptive Capacity, and Open Innovation on SME Performance: A Chilean Case Study. J. Open Innov. Technol. Mark. Complex. 2023, 9, 100065. [Google Scholar] [CrossRef]
- Boisier, G.; Hahn, K.; Geldes, C.; Klerkx, L. Unpacking the Precision Technologies for Adaptation of the Chilean Dairy Sector. A Structural-Functional Innovation System Analysis. J. Technol. Manag. Innov. 2021, 16, 56–66. [Google Scholar]
- Lee, J.; Kao, H.A.; Yang, S. Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment. Procedia CIRP 2014, 16, 3–8. [Google Scholar] [CrossRef]
- Galindo, G.; Batta, R. Review of Recent Developments in OR/MS Research in Disaster Operations Management. Eur. J. Oper. Res. 2013, 230, 201–211. [Google Scholar] [CrossRef]
Total Sample | Mining Companies | Non-Mining Companies | ||
---|---|---|---|---|
Management Information Tools | X1 | 55.59 | 42.11 | 56.15 |
X2 | 17.7 | 6.02 | 18.19 | |
X3 | 8.07 | 10.53 | 7.97 | |
X4 | 7.89 | 6.77 | 7.94 | |
Big Data | X5 | 7.36 | 9.02 | 7.29 |
X6 | 4.16 | 7.52 | 4.02 | |
X7 | 2.21 | 6.02 | 2.06 | |
X8 | 1.67 | 0.75 | 1.71 | |
Radio Frequency Identification | X9 | 14.92 | 6.02 | 15.29 |
X10 | 4.01 | 5.26 | 3.96 | |
X11 | 1.2 | 2.26 | 1.15 | |
Cloud Computing | X12 | 42.02 | 29.32 | 42.54 |
Cybersecurity | X13 | 22.34 | 18.05 | 22.52 |
Size | Large | 51.53 | 2.1 | 97.9 |
Medium | 17.34 | 5.2 | 94.8 | |
Small | 31.13 | 6.3 | 93.7 | |
Total | N | 3344 | 133 | 3211 |
% | 100 | 3.98 | 96.02 |
Eigenvalue | Proportion of Variance | Cumulative Variance | |
---|---|---|---|
1 | 3.8001 | 23.7506 | 23.7506 |
2 | 1.8706 | 11.6912 | 35.4418 |
Eigenvalue | Proportion of Variance | Cumulative Variance | |
---|---|---|---|
1 | 5.0145 | 31.3406 | 31.3406 |
2 | 1.8931 | 11.8319 | 43.1725 |
Eigenvalue | Proportion of Variance | Cumulative Variance | |
---|---|---|---|
1 | 3.7555 | 23.4719 | 23.4719 |
2 | 1.8723 | 11.7019 | 35.1738 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Vergara, M.; Ortiz-Henríquez, R.; Geldes, C.; Muñoz-Cisterna, V.; Escobar-Arriagada, C. Adoption of Industry 4.0 Technologies in Chilean Mining: A Comparative Analysis Between Sectors. Mining 2024, 4, 913-925. https://doi.org/10.3390/mining4040051
Castillo-Vergara M, Ortiz-Henríquez R, Geldes C, Muñoz-Cisterna V, Escobar-Arriagada C. Adoption of Industry 4.0 Technologies in Chilean Mining: A Comparative Analysis Between Sectors. Mining. 2024; 4(4):913-925. https://doi.org/10.3390/mining4040051
Chicago/Turabian StyleCastillo-Vergara, Mauricio, Rodrigo Ortiz-Henríquez, Cristian Geldes, Víctor Muñoz-Cisterna, and Claudio Escobar-Arriagada. 2024. "Adoption of Industry 4.0 Technologies in Chilean Mining: A Comparative Analysis Between Sectors" Mining 4, no. 4: 913-925. https://doi.org/10.3390/mining4040051
APA StyleCastillo-Vergara, M., Ortiz-Henríquez, R., Geldes, C., Muñoz-Cisterna, V., & Escobar-Arriagada, C. (2024). Adoption of Industry 4.0 Technologies in Chilean Mining: A Comparative Analysis Between Sectors. Mining, 4(4), 913-925. https://doi.org/10.3390/mining4040051