Digital Entanglement: The Influence of Internet Addiction and Negative Affect on Memory Functions—A Structural Approach
Abstract
1. Introduction
2. Methodology
2.1. Procedure and Participants
2.2. Measures
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Firth, J.; Torous, J.; Stubbs, B.; Firth, J.A.; Steiner, G.Z.; Smith, L.; Alvarez-Jimenez, M.; Gleeson, J.; Vancampfort, D.; Armitage, C.J.; et al. The “online brain”: How the Internet may be changing our cognition. World Psychiatry Off. J. World Psychiatr. Assoc. (WPA) 2019, 18, 119–129. [Google Scholar] [CrossRef]
- Ding, K.; Shen, Y.; Liu, Q.; Li, H. The effects of digital addiction on brain function and structure of children and adolescents: A scoping review. Healthcare 2024, 12, 15. [Google Scholar] [CrossRef] [PubMed]
- Skowronek, J.; Seifert, A.; Lindberg, S. The mere presence of a smartphone reduces basal attentional performance. Sci. Rep. 2023, 13, 9363. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, K.; Hook, R.; Goudriaan, A.E.; Vlies, S.; Fineberg, N.A.; Grant, J.E.; Chamberlain, S.R. Cognitive deficits in problematic internet use: Meta-analysis of 40 studies. Br. J. Psychiatry 2019, 215, 639–646. [Google Scholar] [CrossRef]
- Brand, M.; Young, K.S.; Laier, C.; Wölfling, K.; Potenza, M.N. Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet-use disorders: An Interaction of Person-Affect-Cognition-Execution (I-PACE) model. Neurosci. Biobehav. Rev. 2016, 71, 252–266. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, S.R.; Lochner, C.; Stein, D.J.; Goudriaan, A.E.; van Holst, R.J.; Zohar, J.; Grant, J.E. Behavioural addiction—A rising tide? Eur. Neuropsychopharmacol. 2016, 26, 841–855. [Google Scholar] [CrossRef] [PubMed]
- Romero-Rodríguez, J.M.; Martínez-Heredia, N.; Campos, M.N.; Ramos, M. Influencia de la adicción a internet en el bienestar personal de los estudiantes universitarios. Health Addict./Salud Y Drog. 2021, 21, 171–185. [Google Scholar] [CrossRef]
- Pan, Y.-C.; Chiu, Y.-C.; Lin, Y.-H. Systematic review and meta-analysis of epidemiology of internet addiction. Neurosci. Biobehav. Rev. 2020, 118, 612–622. [Google Scholar] [CrossRef]
- Arain, M.; Haque, M.; Johal, L.; Mathur, P.; Nel, W.; Rais, A.; Sandhu, R.; Sharma, S. Maturation of the adolescent brain. Neuropsychiatr. Dis. Treat. 2013, 9, 449–461. [Google Scholar] [CrossRef]
- Poon, K.-T. Unpacking the mechanisms underlying the relation between ostracism and Internet addiction. Psychiatry Res. 2018, 270, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Mamun, M.A.; Hossain, M.S.; Siddique, A.B.; Sikder, M.T.; Kuss, D.J.; Griffiths, M.D. Problematic internet use in Bangladeshi students: The role of socio-demographic factors, depression, anxiety, and stress. Asian J. Psychiatry 2019, 44, 48–54. [Google Scholar] [CrossRef]
- WHO—World Health Organization. Public Health Implications of Excessive Use of the Internet, Computers, Smartphones and Similar Electronic Devices: Meeting Report, Main Meeting Hall, Foundation for Promotion of Cancer Research, National Cancer Research Centre, Tokyo, Japan, 27–29 August 2014; WHO: Geneva, Switzerland, 2015; Available online: https://iris.who.int/handle/10665/184264 (accessed on 16 May 2025).
- Firth, J.A.; Torous, J.; Firth, J. Exploring the impact of internet use on memory and attention processes. Int. J. Environ. Res. Public Health 2020, 17, 9481. [Google Scholar] [CrossRef]
- Montag, C.; Markowetz, A.; Blaszkiewicz, K.; Andone, I.; Lachmann, B.; Sariyska, R.; Trendafilov, B.; Eibes, M.; Kolb, J.; Reuter, M.; et al. Facebook usage on smartphones and gray matter volume of the nucleus accumbens. Behav. Brain Res. 2017, 329, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hairston, J.; Schrier, M.; Fan, J. Common and distinct networks underlying reward valence and processing stages: A meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 2011, 35, 1219–1236. [Google Scholar] [CrossRef]
- Parro, C.; Dixon, M.; Christoff, K. The neural basis of motivational influences on cognitive control. Hum. Brain Mapp. 2018, 39, 5097–5111. [Google Scholar] [CrossRef] [PubMed]
- Morelli, S.; Sacchet, M.; Zaki, J. Common and distinct neural correlates of personal and vicarious reward: A quantitative meta-analysis. Neuroimage 2015, 112, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Sharifian, N.; Zahodne, L.B. Daily associations between social media use and memory failures: The mediating role of negative affect. J. Gen. Psychol. 2021, 148, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Alaniz-Gómez, F.; Durán-Pérez, F.B.; Quijano-Ortiz, B.L.; Salas-Vera, T.; Cisneros-Herrera, J.; Guzmán-Díaz, G. Memoria: Revisión conceptual. Boletín Científico De La Esc. Super. Atotonilco De Tula 2022, 9, 45–52. [Google Scholar] [CrossRef]
- Moreno-Osuna, K.L. La Neuroeducación en los procesos de enseñanza y aprendizaje en primaria. Form. Estratégica 2022, 4, 47–61. [Google Scholar]
- Aprilia, A.; Aminatun, D. Investigating memory loss: How depression affects students’ memory endurance. J. Engl. Lang. Teach. Learn. 2022, 3, 1–11. [Google Scholar] [CrossRef]
- Quintanar Stephano, J.L. Bases biológicas de la memoria en el aprendizaje. Investig. Práctica Psicol. Desarro. 2020, 6, 93–103. [Google Scholar] [CrossRef]
- Ho, R.C.; Zhang, M.W.; Tsang, T.Y.; Toh, A.H.; Pan, F.; Lu, Y.; Cheng, C.; Yip, P.S.; Lam, L.T.; Lai, C.-M.; et al. The association between internet addiction and psychiatric co-morbidity: A meta-analysis. BMC Psychiatry 2014, 14, 183. [Google Scholar] [CrossRef]
- Miao, S.; Xu, L.; Gao, S.; Bai, C.; Huang, Y.; Peng, B. The association between anxiety and internet addiction among left-behind secondary school students: The moderating effect of social support and family types. BMC Psychiatry 2024, 24, 406. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Xu, P.; Zhao, L.; Yu, G. Impaired orienting in youth with Internet Addiction: Evidence from the Attention Network Task (ANT). Psychiatry Res. 2018, 264, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Montag, C.; Zhao, Z.; Sindermann, C.; Xu, L.; Fu, M.; Li, J.; Zheng, X.; Li, K.; Kendrick, K.M.; Dai, J.; et al. Internet Communication Disorder and the structure of the human brain: Initial insights on WeChat addiction. Sci. Rep. 2018, 8, 2155. [Google Scholar] [CrossRef] [PubMed]
- Sha, P.; Dong, X. Research on adolescents regarding the indirect effect of depression, anxiety, and stress between TikTok use disorder and memory loss. Int. J. Environ. Res. Public Health 2021, 18, 8820. [Google Scholar] [CrossRef]
- Rodrigues, F.L.N. Los Perfiles y Estados de Estudiantes vs Docentes y su Impacto en la Memoria y Afectividad en el Proceso de Aprendizaje y Adicción a Internet. Universidad de Salamanca. 1 June 2024. Available online: https://gredos.usal.es/handle/10366/159088 (accessed on 24 April 2025).
- Google Workspace. Google Forms: Criador de Formulários Online. Available online: https://workspace.google.com/intl/pt-PT/products/forms/ (accessed on 24 April 2025).
- Pichot, P.; Brun, J.P. Questionnaire bref d’auto-évaluation des dimensions dépressive, asthénique et anxieuse [Brief self-evaluation questionnaire for depressive, asthenic and anxious dimensions]. Ann. Med.-Psychol. 1984, 142, 862–865. [Google Scholar] [PubMed]
- Brito, L.F. Estudo de Validação Psicométrica da Versão Portuguesa da Escala de Fadiga de Pichot. Master’s Thesis, Universidade Lusófona de Humanidades e Tecnologias, Escola de Psicologia e Ciências da Vida, Lisboa, Portugal, 2020. Available online: http://hdl.handle.net/10437/11827 (accessed on 9 May 2025).
- Lovibond, P.F.; Lovibond, S.H. The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Ther. 1995, 33, 335–343. [Google Scholar] [CrossRef]
- Pais-Ribeiro, J.; Honrado, A.; Leal, I. Contribuição para o estudo da Adaptação Portuguesa das Escalas de Ansiedade, Depressão e Stress (EADS) de 21 itens de Lovibond e Lovibond. Psicol. Saúde Doenças 2004, 5, 229–239. [Google Scholar]
- Pinto, A.C. Questionário de lapsos de memória (QLM): Dados psicométricos e análise dos efeitos da idade e sexo sobre a frequência de lapsos. Psychologica 1990, 4, 1–20. [Google Scholar]
- Young, K.S. Internet addiction: The emergence of a new clinical disorder. CyberPsychol. Behav. 1998, 1, 237–244. [Google Scholar] [CrossRef]
- Carvalho, J. Adaptação e Validação Portuguesa da Escala de Adição à Internet. Master’s Thesis, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal, 2020. Available online: https://hdl.handle.net/10316/97867 (accessed on 29 April 2025).
- Pontes, H.M.; Patrão, I.M.; Griffiths, M.D. Portuguese validation of the Internet Addiction Test: An empirical study. J. Behav. Addict. 2014, 3, 107–114. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 26 April 2025).
- Malinauskas, R.; Malinauskiene, V. A meta-analysis of psychological interventions for Internet/smartphone addiction among adolescents. J. Behav. Addict. 2019, 8, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ma, W.; Li, W.; Zhou, C. Meta-analysis of interventions for internet addiction: Cognitive-behavioural therapy, physical activity and mindfulness. Addict. Behav. 2022, 126, 107198. [Google Scholar]
- Theopilus, Y.; Al Mahmud, A.; Davis, H.; Octavia, J.R. Preventive Interventions for Internet Addiction in Young Children: Systematic Review. JMIR Ment Health 2024, 11, e56896. [Google Scholar] [CrossRef] [PubMed]
- Bowler, R.M.; Adams, S.W.; Schwarzer, R.; Gocheva, V.V.; Roels, H.A.; Kim, Y.; Kircos, C.L.; Wright, C.W.; Colledge, M.; Bollweg, G.; et al. Validity of self-reported concentration and memory problems: Relationship with neuropsychological assessment and depression. J. Clin. Exp. Neuropsychol. 2017, 39, 1026–1036. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
(1) Reactive Salience | - | ||||||||||
(2) Functional Impairment | 0.67 | - | |||||||||
(3) Verbal Distractions | 0.32 | 0.38 | - | ||||||||
(4) Failed Acts | 0.44 | 0.45 | 0.79 | - | |||||||
(5) Local Geographic Orientation | 0.40 | 0.32 | 0.73 | 0.8 | - | ||||||
(6) Names and Faces Memory | 0.32 | 0.34 | 0.65 | 0.73 | 0.68 | - | |||||
(7) Recovery | 0.34 | 0.43 | 0.87 | 0.8 | 0.72 | 0.68 | - | ||||
(8) Depression | 0.35 | 0.28 | 0.35 | 0.33 | 0.36 | 0.24 | 0.36 | - | |||
(9) Anxiety | 0.34 | 0.24 | 0.35 | 0.39 | 0.41 | 0.24 | 0.35 | 0.8 | - | ||
(10) Stress | 0.32 | 0.28 | 0.36 | 0.38 | 0.35 | 0.24 | 0.36 | 0.8 | 0.86 | - | |
(11) Fatigue | 0.37 | 0.39 | 0.46 | 0.48 | 0.43 | 0.41 | 0.45 | 0.68 | 0.62 | 0.63 | - |
Overall | Adult | Young | ||||
---|---|---|---|---|---|---|
Measure | M (SD) | M (SD) | M (SD) | t | p | d |
Reactive Salience | 1.29 (0.88) | 1 (0.75) | 1.45 (0.91) | −3.94 | <0.001 | 0.55 |
Functional Impairment | 1.92 (0.88) | 1.77 (0.92) | 2 (0.85) | −1.86 | 0.064 | 0.249 |
Verbal Distractions | 3.21 (1.31) | 2.8 (1.06) | 3.45 (1.39) | −3.74 | <0.001 | 0.531 |
Failed Acts | 2.60 (1.06) | 2.42 (0.92) | 2.69 (1.12) | −1.91 | 0.058 | 0.266 |
Local Geographic Orientation | 2.31 (1.02) | 2.01 (0.69) | 2.48 (1.13) | −3.53 | 0.001 | 0.523 |
Names and Faces Memory | 2.87 (1.26) | 2.94 (1.21) | 2.83 (1.29) | 0.61 | 0.541 | 0.084 |
Recovery | 3.17 (1.29) | 2.98 (1.1) | 3.27 (1.38) | −1.71 | 0.089 | 0.24 |
Depression | 7.46 (5.73) | 5.36 (5.21) | 8.63 (5.7) | −4.36 | <0.001 | 0.599 |
Anxiety | 7.57 (5.54) | 5.95 (4.96) | 8.48 (5.66) | −3.44 | 0.001 | 0.476 |
Stress | 9.15 (5.30) | 8.07 (5.23) | 9.75 (5.26) | −2.36 | 0.019 | 0.32 |
Fatigue | 14.11 (7.56) | 12.55 (7.86) | 14.97 (7.26) | −2.39 | 0.018 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, F.; Casillas-Martín, S.; Pocinho, R. Digital Entanglement: The Influence of Internet Addiction and Negative Affect on Memory Functions—A Structural Approach. Digital 2025, 5, 37. https://doi.org/10.3390/digital5030037
Rodrigues F, Casillas-Martín S, Pocinho R. Digital Entanglement: The Influence of Internet Addiction and Negative Affect on Memory Functions—A Structural Approach. Digital. 2025; 5(3):37. https://doi.org/10.3390/digital5030037
Chicago/Turabian StyleRodrigues, Fernando, Sonia Casillas-Martín, and Ricardo Pocinho. 2025. "Digital Entanglement: The Influence of Internet Addiction and Negative Affect on Memory Functions—A Structural Approach" Digital 5, no. 3: 37. https://doi.org/10.3390/digital5030037
APA StyleRodrigues, F., Casillas-Martín, S., & Pocinho, R. (2025). Digital Entanglement: The Influence of Internet Addiction and Negative Affect on Memory Functions—A Structural Approach. Digital, 5(3), 37. https://doi.org/10.3390/digital5030037