Factors Influencing Late Breast Toxicity After Radiotherapy: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection Criteria
- -
- Primarily investigated factors associated with long-term effects on the breast in the context of radiotherapy or radiation oncology.
- -
- Provided either an abstract or full-text availability.
- -
- Were written in English.
2.2. Ethical Considerations
3. Results
3.1. Quality Assessment
3.2. Non-Modifiable Factors
3.2.1. Bioinformatic Tools
3.2.2. Modern Detection Methods
3.2.3. Age
3.2.4. Breast Volume
3.3. Modifiable Factors
3.3.1. Comorbidities
3.3.2. Systemic Therapy
3.3.3. Dose
3.3.4. Volumes
3.3.5. Technique
3.3.6. Boost Administration
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
RT | Radiation therapy |
BC | Breast cancer |
SNPs | Single-nucleotide polymorphism |
CT | Computed tomography |
IMRT | Intensity-modulated radiation therapy |
CF | Conventional Fractionation |
HF | Hypofractionated |
AUC | Area under the curve |
BED | Biologically effective dose |
IBTR | Ipsilateral breast tumor recurrences |
PBI | Partial breast irradiation |
WBI | Whole-breast irradiation |
3DCRT | 3D conformal radiation therapy |
VMAT | Volumetric arc modulated radiation therapy |
OAR | Organs at risk |
DIBH | Deep inspiration breath hold |
References
- Veronesi, U.; Cascinelli, N.; Mariani, L.; Greco, M.; Saccozzi, R.; Luini, A.; Aguilar, M.; Marubini, E. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N. Engl. J. Med. 2002, 347, 1227–1232. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.W.S.; Wu, M.; Cho, W.C.S.; To, K.K.W. Recent Advances in the Treatment of Breast Cancer. Front. Oncol. 2018, 8, 227. [Google Scholar] [CrossRef] [PubMed]
- Garibaldi, C.; Jereczek-Fossa, B.A.; Marvaso, G.; Dicuonzo, S.; Rojas, D.P.; Cattani, F.; Starzyńska, A.; Ciardo, D.; Surgo, A.; Leonardi, M.C.; et al. Recent advances in radiation oncology. ecancer Med. Sci. 2017, 11, 785. [Google Scholar] [CrossRef]
- EBCTCG (Early Breast Cancer Trialists’ Collaborative Group); McGale, P.; Taylor, C.; Correa, C.; Cutter, D.; Duane, F.; Ewertz, M.; Wang, Y. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: Meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 2014, 383, 2127–2135. [Google Scholar] [CrossRef] [PubMed]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG); Darby, S.; McGale, P.; Correa, C.; Taylor, C.; Arriagada, R.; Clarke, M.; Cutter, D.; Davies, C.; Ewertz, M.; et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: Meta-analysis of individual patient data for 10 801 women in 17 randomised trials. Lancet 2011, 378, 1707–1716. [Google Scholar] [CrossRef]
- Taylor, C.; Dodwell, D.; McGale, P.; Hills, R.K.; Berry, R.; Bradley, R.; Braybrooke, J.; Clarke, M.; Gray, R.; Holt, F.; et al. Radiotherapy to regional nodes in early breast cancer: An individual patient data meta-analysis of 14,324 women in 16 trials. Lancet 2023, 402, 1991–2003. [Google Scholar] [CrossRef]
- De Santis, M.C.; Samy, F.; De Rose, F.; Meduri, B.; Lambertini, M.; Sotiriou, C.; Carnevale, M.G.; Verderio, P.; Aspitia, M.; Piccart, M.; et al. 152MO Post-mastectomy radiation therapy in patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer: Analysis of the adjuvant lapatinib and/or trastuzumab treatment optimization (ALTTO) trial [BIG 2-06/NCCTG N063D (Alliance)]. ESMO Open 2025, 10, 104706. [Google Scholar] [CrossRef]
- Roberts, S.; Spreadborough, A.; Bulman, B.; Barber, J.; Evans, D.; Scott, D. Heritability of cellular radiosensitivity: A marker of low-penetrance predisposition genes in breast cancer? Am. J. Hum. Genet. 1999, 65, 784–794. [Google Scholar] [CrossRef]
- Kerns, S.L.; Dorling, L.; Fachal, L.; Bentzen, S.; Pharoah, P.D.; Barnes, D.R.; Gómez-Caamaño, A.; Carballo, A.M.; Dearnaley, D.P.; Peleteiro, P.; et al. Meta-analysis of Genome Wide Association Studies Identifies Genetic Markers of Late Toxicity Following Radiotherapy for Prostate Cancer. eBioMedicine 2016, 10, 150–163. [Google Scholar] [CrossRef]
- Barnett, G.C.; Elliott, R.M.; Alsner, J.; Andreassen, C.N.; Abdelhay, O.; Burnet, N.G.; Chang-Claude, J.; Coles, C.E.; Gutiérrez-Enríquez, S.; Fuentes-Raspall, M.J.; et al. Individual patient data meta-analysis shows no association between the SNP rs1800469 in TGFB and late radiotherapy toxicity. Radiother. Oncol. 2012, 105, 289–295. [Google Scholar] [CrossRef]
- Jandu, H.K.; Veal, C.D.; Fachal, L.; Luccarini, C.; Aguado-Barrera, M.E.; Altabas, M.; Azria, D.; Baten, A.; Bourgier, C.; Bultijnck, R.; et al. Genome-wide association study of treatment-related toxicity two years following radiotherapy for breast cancer. Radiother. Oncol. 2023, 187, 109806. [Google Scholar] [CrossRef] [PubMed]
- Magnuson, A.; Sedrak, M.S.; Gross, C.P.; Tew, W.P.; Klepin, H.D.; Wildes, T.M.; Muss, H.B.; Dotan, E.; Freedman, R.A.; O’Connor, T.; et al. Development and Validation of a Risk Tool for Predicting Severe Toxicity in Older Adults Receiving Chemotherapy for Early-Stage Breast Cancer. J. Clin. Oncol. 2021, 39, 608–618. [Google Scholar] [CrossRef]
- Llorián-Salvador, Ó.; Windeler, N.; Martin, N.; Etzel, L.; Andrade-Navarro, M.A.; Bernhardt, D.; Rost, B.; Borm, K.J.; Combs, S.E.; Duma, M.N.; et al. CT-based radiomics for predicting breast cancer radiotherapy side effects. Sci Rep. 2024, 14, 20051. [Google Scholar] [CrossRef]
- Feng, H.; Wang, H.; Xu, L.; Ren, Y.; Ni, Q.; Yang, Z.; Ma, S.; Deng, Q.; Chen, X.; Xia, B.; et al. Prediction of radiation-induced acute skin toxicity in breast cancer patients using data encapsulation screening and dose-gradient-based multi-region radiomics technique: A multicenter study. Front. Oncol. 2022, 12, 1017435. [Google Scholar] [CrossRef] [PubMed]
- Kraus, K.M.; Oreshko, M.; Bernhardt, D.; Combs, S.E.; Peeken, J.C. Dosiomics and radiomics to predict pneumonitis after thoracic stereotactic body radiotherapy and immune checkpoint inhibition. Front. Oncol. 2023, 13, 1124592. [Google Scholar] [CrossRef] [PubMed]
- Avanzo, M.; Pirrone, G.; Vinante, L.; Caroli, A.; Stancanello, J.; Drigo, A.; Massarut, S.; Mileto, M.; Urbani, M.; Trovo, M.; et al. Electron Density and Biologically Effective Dose (BED) Radiomics-Based Machine Learning Models to Predict Late Radiation-Induced Subcutaneous Fibrosis. Front. Oncol. 2020, 10, 490. [Google Scholar] [CrossRef]
- Soltani, S.; Aliasgharzadeh, A.A.; Fadavi, P.; Bagherpour, Z.; Moradi, H.; Safari, M.; Beigi, M. Enhanced prediction of radiation-induced skin toxicity in breast cancer patients using a hybrid dosiomics-clinical model. J. Radiat. Res. Appl. Sci. 2025, 18, 101382. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, J.; Yang, X.; Henry, S.; Lin, J.Y.; Torres, M.A.; Liu, T. Ultrasound Histogram Assessment of Acute Breast Toxicity After Breast Cancer Radiation Therapy: A Prospective Longitudinal Study. Ultrasound Med. Biol. 2022, 49, 309–317. [Google Scholar] [CrossRef]
- Batenburg, M.; Bartels, M.; Maarse, W.; Witkamp, A.; Verkooijen, H.; Bongard, H.v.D. Factors Associated with Late Local Radiation Toxicity after Post-Operative Breast Irradiation. Breast J. 2022, 2022, 6745954. [Google Scholar] [CrossRef]
- Lilla, C.; Ambrosone, C.B.; Kropp, S.; Helmbold, I.; Schmezer, P.; von Fournier, D.; Haase, W.; Sautter-Bihl, M.-L.; Wenz, F.; Chang-Claude, J. Predictive factors for late normal tissue complications following radiotherapy for breast cancer. Breast Cancer Res. Treat. 2007, 106, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Barnett, G.C.; Wilkinson, J.S.; Moody, A.M.; Wilson, C.B.; Twyman, N.; Wishart, G.C.; Burnet, N.G.; Coles, C.E. The Cambridge Breast Intensity-modulated Radiotherapy Trial: Patient- and treatment-related factors that influence late toxicity. Clin. Oncol. 2011, 23, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Ratosa, I.; Jenko, A.; Oblak, I. Breast size impact on adjuvant radiotherapy adverse effects and dose parameters in treatment planning. Radiol. Oncol. 2018, 52, 233–244. [Google Scholar] [CrossRef]
- Thomsen, M.S.; Alsner, J.; Lutz, C.M.; Berg, M.; Jensen, I.; Lorenzen, E.L.; Nielsen, H.M.; Jakobsen, E.H.; Stenbygaard, L.; Nielsen, M.H.; et al. Breast induration and irradiated volume in the DBCG HYPO trial: The impact of age, smoking, and boost. Radiother. Oncol. 2024, 201, 110574. [Google Scholar] [CrossRef] [PubMed]
- De Rose, F.; Fogliata, A.; Franceschini, D.; Iftode, C.; D’agostino, G.R.; Comito, T.; Franzese, C.; Di Brina, L.; Clerici, E.; Loi, M.; et al. Hypofractionated Whole Breast Irradiation and Simultaneous Integrated Boost in Large-breasted Patients: Long-term Toxicity and Cosmesis. Clin. Breast Cancer 2020, 20, 527–533. [Google Scholar] [CrossRef]
- Neal, A.; Torr, M.; Helyer, S.; Yarnold, J. Correlation of breast dose heterogeneity with breast size using 3D CT planning and dose-volume histograms. Radiother. Oncol. 1995, 34, 210–218. [Google Scholar] [CrossRef]
- Colciago, R.R.; Cavallo, A.; Magri, M.C.; Vitullo, A.; La Rocca, E.; Giandini, C.; Bonfantini, F.; Di Cosimo, S.; Baili, P.; Sant, M.; et al. Hypofractionated whole-breast radiotherapy in large breast size patients: Is it really a resolved issue? Med. Oncol. 2021, 38, 107. [Google Scholar] [CrossRef]
- Gimbrone, M.A., Jr.; García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Boerma, M.; Fu, Q.; HauerJensen, M. Significance of endothelial dysfunction in the pathogenesis of early and delayed radiation enteropathy. World J. Gastroenterol. 2007, 13, 3047–3055. [Google Scholar] [CrossRef]
- Rattay, T.; Seibold, P.; Aguado-Barrera, M.E.; Altabas, M.; Azria, D.; Barnett, G.C.; Bultijnck, R.; Chang-Claude, J.; Choudhury, A.; Coles, C.E.; et al. External Validation of a Predictive Model for Acute Skin Radiation Toxicity in the REQUITE Breast Cohort. Front. Oncol. 2020, 10, 575909. [Google Scholar] [CrossRef]
- Colciago, R.R.; La Rocca, E.; Giandini, C.; Mateo, A.R.; Bedini, N.; Capri, G.; Folli, S.; Lozza, L.; Meroni, S.; Emanuele, P.; et al. One-week external beam partial breast irradiation: Survival and toxicity outcomes. J. Cancer Res. Clin. Oncol. 2023, 149, 10965–10974. [Google Scholar] [CrossRef]
- Cinciripini, P.M.; Kypriotakis, G.; Blalock, J.A.; Karam-Hage, M.; Beneventi, D.M.; Robinson, J.D.; Minnix, J.A.; Warren, G.W. Survival Outcomes of an Early Intervention Smoking Cessation Treatment After a Cancer Diagnosis. JAMA Oncol. 2024, 31, e244890. [Google Scholar] [CrossRef]
- Digesù, C.; Deodato, F.; Macchia, G.; Cilla, S.; Pieri, M.; Zamagni, A.; Farioli, A.; Buwenge, M.; Ferrandina, G.; Morganti, A.G. Hypofractionated radiotherapy after conservative surgery may increase low–intermediate grade late fibrosis in breast cancer patients. Breast Cancer Targets Ther. 2018, 10, 143–151. [Google Scholar] [CrossRef]
- Ishiyama, H.; Niino, K.; Hosoya, T.; Hayakawa, K. Results of a questionnaire survey for symptom of late complications caused by radiotherapy in breast conserving therapy. Breast Cancer 2006, 13, 197–201. [Google Scholar] [CrossRef]
- Keller, L.M.; Sopka, D.M.; Li, T.; Klayton, T.; Li, J.; Anderson, P.R.; Bleicher, R.J.; Sigurdson, E.R.; Freedman, G.M. Five-year results of whole breast intensity modulated radiation therapy for the treatment of early stage breast cancer: The fox chase cancer center experience. Int. J. Radiat. Oncol. 2012, 84, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG); Bradley, R.; Braybrooke, J.; Gray, R.; Hills, R.K.; Liu, Z.; Pan, H.; Peto, R.; Dodwell, D.; McGale, P.; et al. Aromatase inhibitors versus tamoxifen in premenopausal women with oestrogen receptor-positive early-stage breast cancer treated with ovarian suppression: A patient-level meta-analysis of 7030 women from four randomised trials. Lancet Oncol. 2022, 23, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Meattini, I.; Poortmans, P.M.; Marrazzo, L.; Desideri, I.; Brain, E.; Hamaker, M.; Lambertini, M.; Miccinesi, G.; Russell, N.; Saieva, C.; et al. Exclusive endocrine therapy or partial breast irradiation for women aged ≥70 years with luminal A-like early stage breast cancer (NCT04134598—EUROPA): Proof of concept of a randomized controlled trial comparing health related quality of life by patient reported outcome measures. J. Geriatr. Oncol. 2021, 12, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.F. 21 years of Biologically Effective Dose. Br. J. Radiol. 2010, 83, 554–568. [Google Scholar] [CrossRef]
- Brunt, A.; Haviland, J.; Kirby, A.; Somaiah, N.; Wheatley, D.; Bliss, J.; Yarnold, J. Five-fraction Radiotherapy for Breast Cancer: FAST-Forward to Implementation. Clin. Oncol. 2021, 33, 430–439. [Google Scholar] [CrossRef]
- Haviland, J.S.; Bentzen, S.M.; Bliss, J.M.; Yarnold, J.R.; START Trial Management Group. Prolongation of overall treatment time as a cause of treatment failure in early breast cancer: An analysis of the UK START (Standardisation of Breast Radiotherapy) trials of radiotherapy fractionation. Radiother. Oncol. 2016, 121, 420–423. [Google Scholar] [CrossRef]
- Meattini, I.; Palumbo, I.; Becherini, C.; Borghesi, S.; Cucciarelli, F.; Dicuonzo, S.; Fiorentino, A.; Spoto, R.; Poortmans, P.; Aristei, C.; et al. The Italian Association for Radiotherapy and Clinical Oncology (AIRO) position statements for postoperative breast cancer radiation therapy volume, dose, and fractionation. Radiol. Med. 2022, 127, 1407–1411. [Google Scholar] [CrossRef]
- Whelan, T.J.; Pignol, J.-P.; Levine, M.N.; Julian, J.A.; MacKenzie, R.; Parpia, S.; Shelley, W.; Grimard, L.; Bowen, J.; Lukka, H.; et al. Long-term results of hypofractionated radiation therapy for breast cancer. N. Engl. J. Med. 2010, 362, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Haviland, J.S.; Owen, J.R.; Dewar, J.A.; Agrawal, R.K.; Barrett, J.; Barrett-Lee, P.J.; Dobbs, H.J.; Hopwood, P.; Lawton, P.A.; Magee, B.J.; et al. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol. 2013, 14, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Reddy, J.P.; Lei, X.; Huang, S.-C.; Nicklaus, K.M.; Fingeret, M.C.; Shaitelman, S.F.; Hunt, K.K.; Buchholz, T.A.; Merchant, F.; Markey, M.K.; et al. Quantitative Assessment of Breast Cosmetic Outcome After Whole-Breast Irradiation. Int. J. Radiat. Oncol. 2016, 97, 894–902. [Google Scholar] [CrossRef]
- Offersen, B.V.; Alsner, J.; Nielsen, H.M.; Jakobsen, E.H.; Nielsen, M.H.; Krause, M.; Stenbygaard, L.; Mjaaland, I.; Schreiber, A.; Kasti, U.-M.; et al. Hypofractionated Versus Standard Fractionated Radiotherapy in Patients With Early Breast Cancer or Ductal Carcinoma In Situ in a Randomized Phase III Trial: The DBCG HYPO Trial. J. Clin. Oncol. 2020, 38, 3615–3625. [Google Scholar] [CrossRef]
- Lu, Y.; Hui, B.; Yang, D.; Li, Y.; Li, B.; Zhou, L.; Xu, L.; Tang, F.; Wang, W.; Chen, R.; et al. Efficacy and safety analysis of hypofractionated and conventional fractionated radiotherapy in postoperative breast cancer patients. BMC Cancer 2024, 24, 181. [Google Scholar] [CrossRef]
- Brunt, A.M.; Haviland, J.S.; Sydenham, M.; Agrawal, R.K.; Algurafi, H.; Alhasso, A.; Barrett-Lee, P.; Bliss, P.; Bloomfield, D.; Bowen, J.; et al. Ten-Year Results of FAST: A Randomized Controlled Trial of 5-Fraction Whole-Breast Radiotherapy for Early Breast Cancer. J. Clin. Oncol. 2020, 38, 3261–3272. [Google Scholar] [CrossRef]
- Murray Brunt, A.; Haviland, J.S.; Wheatley, D.A.; Sydenham, M.A.; Alhasso, A.; Bloomfield, D.J.; Chan, C.; Churn, M.; Cleator, S.; Coles, C.E.; et al. Hypofractionated breast radiotherapy for 1 week versus 3 weeks (FAST-Forward): 5-year efficacy and late normal tissue effects results from a multicentre, non-inferiority, randomised, phase 3 trial. Lancet 2020, 395, 1613–1626. [Google Scholar] [CrossRef]
- Sigaudi, V.; Zannetti, M.; Ferrara, E.; Manfredda, I.; Mones, E.; Loi, G.; Krengli, M.; Franco, P. Ultra-Hypofractionation for Whole-Breast Irradiation in Early Breast Cancer: Interim Analysis of a Prospective Study. Biomedicines 2022, 10, 2568. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, U.; Marubini, E.; Mariani, L.; Galimberti, V.; Luini, A.; Veronesi, P.; Salvadori, B.; Zucali, R. Radiotherapy after breast-conserving surgery in small breast carcinoma: Long-term results of a randomized trial. Ann. Oncol. 2001, 12, 997–1003. [Google Scholar] [CrossRef]
- Gage, I.; Recht, A.; Gelman, R.; Nixon, A.J.; Silver, B.; Bornstein, B.A.; Harris, J.R. Long-term outcome following breast-conserving surgery and radiation therapy. Int. J. Radiat. Oncol. 1995, 33, 245–251. [Google Scholar] [CrossRef]
- Vicini, F.A.; Kestin, L.L.; Goldstein, N.S. Defining the clinical target volume for patients with early-stage breast cancer treated with lumpectomy and accelerated partial breast irradiation: A pathologic analysis. Int. J. Radiat. Oncol. 2004, 60, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, M.; Whelan, T.J. Accelerated Partial Breast Irradiation (APBI): Where Are We Now? Curr. Breast Cancer Rep. 2020, 12, 275–284. [Google Scholar] [CrossRef]
- Coles, C.E.; Griffin, C.L.; Kirby, A.M.; Titley, J.; Agrawal, R.K.; Alhasso, A.; Bhattacharya, I.S.; Brunt, A.M.; Ciurlionis, L.; Chan, C.; et al. Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial): 5-year results from a multicentre, randomised, controlled, phase 3, non-inferiority trial. Lancet 2017, 390, 1048–1060. [Google Scholar] [CrossRef]
- Whelan, T.J.; Julian, J.A.; Berrang, T.S.; Kim, D.-H.; Germain, I.; Nichol, A.M.; Akra, M.; Lavertu, S.; Germain, F.; Fyles, A.; et al. External beam accelerated partial breast irradiation versus whole breast irradiation after breast conserving surgery in women with ductal carcinoma in situ and node-negative breast cancer (RAPID): A randomised controlled trial. Lancet 2019, 394, 2165–2172. [Google Scholar] [CrossRef] [PubMed]
- Vicini, F.A.; Cecchini, R.S.; White, J.R.; Arthur, D.W.; Julian, T.B.; Rabinovitch, R.A.; Kuske, R.R.; Ganz, P.A.; Parda, D.S.; Scheier, M.F.; et al. Long-term primary results of accelerated partial breast irradiation after breast-conserving surgery for early-stage breast cancer: A randomised, phase 3, equivalence trial. Lancet 2019, 394, 2155–2164. [Google Scholar] [CrossRef]
- White, J.; Winter, K.; Cecchini, R.; Vicini, F.; Arthur, D.; Kuske, R.; Rabinovitch, R.; Sehkon, A.; Khan, A.; Chmura, S.; et al. Cosmetic outcome from post lumpectomy whole breast irradiation (WBI) versus partial breast irradiation (PBI) on the NRG oncology/NSABP B39-RTOG 0413 phase III clinical trial. Int. J. Radiat. Oncol. 2019, 105, S3–S4. [Google Scholar] [CrossRef]
- Meduri, B.; Baldissera, A.; Iotti, C.; Scheijmans, L.J.; Stam, M.R.; Parisi, S.; Boersma, L.J.; Ammendolia, I.; Koiter, E.; Valli, M.; et al. Cosmetic Results and Side Effects of Accelerated Partial-Breast Irradiation Versus Whole-Breast Irradiation for Low-Risk Invasive Carcinoma of the Breast: The Randomized Phase III IRMA Trial. J. Clin. Oncol. 2023, 41, 2201–2210. [Google Scholar] [CrossRef]
- Livi, L.; Meattini, I.; Marrazzo, L.; Simontacchi, G.; Pallotta, S.; Saieva, C.; Paiar, F.; Scotti, V.; Cardillo, C.D.L.; Bastiani, P.; et al. Accelerated partial breast irradiation using intensity-modulated radiotherapy versus whole breast irradiation: 5-year survival analysis of a phase 3 randomised controlled trial. Eur. J. Cancer 2015, 51, 451–463. [Google Scholar] [CrossRef]
- Meattini, I.; Marrazzo, L.; Saieva, C.; Desideri, I.; Scotti, V.; Simontacchi, G.; Bonomo, P.; Greto, D.; Mangoni, M.; Scoccianti, S.; et al. Accelerated Partial-Breast Irradiation Compared With Whole-Breast Irradiation for Early Breast Cancer: Long-Term Results of the Randomized Phase III APBI-IMRT-Florence Trial. J. Clin. Oncol. 2020, 38, 4175–4183. [Google Scholar] [CrossRef]
- Colciago, R.R.; La Rocca, E.; Giandini, C.; Carnevale, M.G.; Bianchi, G.V.; Maugeri, I.; Depretto, C.; Meroni, S.; Cavallo, A.; Pignoli, E.; et al. Fat necrosis after accelerated partial breast irradiation or hypofractionated whole breast irradiation: A case-control study. Tumori J. 2024, 110, 451–461. [Google Scholar] [CrossRef]
- Donovan, E.; Bleakley, N.; Denholm, E.; Evans, P.; Gothard, L.; Hanson, J.; Peckitt, C.; Reise, S.; Ross, G.; Sharp, G.; et al. Randomised trial of standard 2D radiotherapy (RT) versus intensity modulated radiotherapy (IMRT) in patients prescribed breast radiotherapy. Radiother. Oncol. 2007, 82, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Hörner-Rieber, J.; Forster, T.; Hommertgen, A.; Haefner, M.F.; Arians, N.; König, L.; Harrabi, S.B.; Schlampp, I.; Weykamp, F.; Lischalk, J.W.; et al. Intensity Modulated Radiation Therapy (IMRT) With Simultaneously Integrated Boost Shortens Treatment Time and Is Noninferior to Conventional Radiation Therapy Followed by Sequential Boost in Adjuvant Breast Cancer Treatment: Results of a Large Randomized Phase III Trial (IMRT-MC2 Trial). Int. J. Radiat. Oncol. 2021, 109, 1311–1324. [Google Scholar] [CrossRef]
- Mukesh, M.B.; Barnett, G.C.; Wilkinson, J.S.; Moody, A.M.; Wilson, C.; Dorling, L.; Hak, C.C.W.; Qian, W.; Twyman, N.; Burnet, N.G.; et al. Randomized Controlled Trial of Intensity-Modulated Radiotherapy for Early Breast Cancer: 5-Year Results Confirm Superior Overall Cosmesis. J. Clin. Oncol. 2013, 31, 4488–4495. [Google Scholar] [CrossRef]
- De Rose, F.; De Santis, M.C.; Lucidi, S.; Colciago, R.R.; Marino, L.; Cucciarelli, F.; La Rocca, E.; Di Pressa, F.; Lohr, F.; Vanoni, V.; et al. Dose constraints in breast cancer radiotherapy. A critical review. Radiother. Oncol. 2024, 202, 110591. [Google Scholar] [CrossRef]
- Fogliata, A.; Burger, H.; Groenewald, A.; Punt, L.; Parkes, J.; Cozzi, L. Intensity Modulated Therapy for Patients With Breast Cancer. Practical Guidelines and Tips for an Effective Treatment Planning Strategy. Adv. Radiat. Oncol. 2024, 9, 101535. [Google Scholar] [CrossRef]
- Berg, M.; Lorenzen, E.L.; Jensen, I.; Thomsen, M.S.; Lutz, C.M.; Refsgaard, L.; Nissen, H.D.; Offersen, B.V. The potential benefits from respiratory gating for breast cancer patients regarding target coverage and dose to organs at risk when applying strict dose limits to the heart: Results from the DBCG HYPO trial. Acta Oncol. 2017, 57, 113–119. [Google Scholar] [CrossRef]
- Romestaing, P.; Lehingue, Y.; Carrie, C.; Coquard, R.; Montbarbon, X.; Ardiet, J.M.; Mamelle, N.; Gérard, J.P. Role of a 10-Gy boost in the conservative treatment of early breast cancer: Results of a randomized clinical trial in Lyon, France. J. Clin. Oncol. 1997, 15, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Graham, P.; Browne, L.; Capp, A.; Fox, C.; Delaney, G.; Kearsley, J. The St George, Wollongong and Liverpool breast boost trial: 1st planned analysis at 6-year mean follow-up. Australas Radiol. 2007, 51 (Suppl. S3), A85. [Google Scholar]
- Teissier, E.; Henry, M.; Ramaioli, A.; Lagrange, J.L.; Courdi, A.; Bensadoun, R.J. Boost in conservative treatment: 6 years results of randomized trial. Breast Cancer Res. Treat. 1998, 50, 287. [Google Scholar]
- Bartelink, H.; Maingon, P.; Poortmans, P.; Weltens, C.; Fourquet, A.; Jager, J.; Schinagl, D.; Oei, B.; Rodenhuis, C.; Horiot, J.-C.; et al. Whole-breast irradiation with or without a boost for patients treated with breast-conserving surgery for early breast cancer: 20-year follow-up of a randomised phase 3 trial. Lancet Oncol. 2015, 16, 47–56. [Google Scholar] [CrossRef]
- Coles, C.; Haviland, J.S.; Kirby, A.M.; Griffin, C.L.; Sydenham, M.A.; Titley, J.C.; Bhattacharya, I.; Brunt, A.M.; Chan, H.Y.C.; Donovan, E.M.; et al. Dose-escalated simultaneous integrated boost radiotherapy in early breast cancer. Radiother. Oncol. 2021, 161, S197–S199. [Google Scholar] [CrossRef]
- Chua, B.H.; Link, E.K.; Kunkler, I.H.; Whelan, T.J.; Westenberg, A.H.; Gruber, G.; Bryant, G.; Ahern, V.; Purohit, K.; Graham, P.H.; et al. Radiation doses and fractionation schedules in non-low-risk ductal carcinoma in situ in the breast (BIG 3–07/TROG 07.01): A randomised, factorial, multicentre, open-label, phase 3 study. Lancet 2022, 400, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Collette, S.; Collette, L.; Budiharto, T.; Horiot, J.-C.; Poortmans, P.M.; Struikmans, H.; Bogaert, W.V.D.; Fourquet, A.; Jager, J.J.; Hoogenraad, W.; et al. Predictors of the risk of fibrosis at 10 years after breast conserving therapy for early breast cancer—A study based on the EORTC trial 22881–10882 ‘boost versus no boost’. Eur. J. Cancer 2008, 44, 2587–2599. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.D.; Bellon, J.R.; Blitzblau, R.; Freedman, G.; Haffty, B.; Hahn, C.; Halberg, F.; Hoffman, K.; Horst, K.; Moran, J.; et al. Radiation therapy for the whole breast: Executive summary of an American Society for Radiation Oncology (ASTRO) evidence-based guideline. Pract. Radiat. Oncol. 2018, 8, 145–152. [Google Scholar] [CrossRef]
- Curigliano, G.; Burstein, H.J.; Winer, E.P.; Gnant, M.; Dubsky, P.; Loibl, S.; Colleoni, M.; Regan, M.M.; Piccart-Gebhart, M.; Senn, H.-J.; et al. De-escalating and escalating treatments for early-stage breast cancer: The St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer. Ann. Oncol. 2017, 28, 1700–1712. [Google Scholar] [CrossRef]
- Beddok, A.; Kirova, Y.; Laki, F.; Reyal, F.; Salomon, A.V.; Servois, V.; Fourquet, A. The place of the boost in the breast cancer treatment: State of art. Radiother. Oncol. 2022, 170, 55–63. [Google Scholar] [CrossRef]
- Pignol, J.-P.; Olivotto, I.; Rakovitch, E.; Gardner, S.; Sixel, K.; Beckham, W.; Vu, T.T.T.; Truong, P.; Ackerman, I.; Paszat, L. A Multicenter randomized trial of breast intensity-modulated radiation therapy to reduce acute radiation dermatitis. J. Clin. Oncol. 2008, 26, 2085–2092. [Google Scholar] [CrossRef]
- Andreassen, C.N.; Alsner, J. Genetic variants and normal tissue toxicity after radiotherapy: A systematic review. Radiother. Oncol. 2009, 92, 299–309. [Google Scholar] [CrossRef]
- Rosenstein, B.S.; West, C.M.; Bentzen, S.M.; Alsner, J.; Andreassen, C.N.; Azria, D.; Barnett, G.C.; Baumann, M.; Burnet, N.; Chang-Claude, J.; et al. Radiogenomics: Radiobiology enters the era of big data and team science. Int. J. Radiat. Oncol. 2014, 89, 709–713. [Google Scholar] [CrossRef]
- Coppes, R.; van Dijk, L. Future of Team-based Basic and Translational Science in Radiation Oncology. Semin. Radiat. Oncol. 2024, 34, 370–378. [Google Scholar] [CrossRef]
- Beaton, L.; Bandula, S.; Gaze, M.N.; Sharma, R.A. How rapid advances in imaging are defining the future of precision radiation oncology. Br. J. Cancer 2019, 120, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Blaes, A.; Nohria, A.; Armenian, S.; Bergom, C.; Thavendiranathan, P.; Barac, A.; Sanchez-Petitto, G.; Desai, S.; Zullig, L.L.; Morgans, A.K.; et al. Cardiovascular Considerations After Cancer Therapy: Gaps in Evidence and JACC: CardioOncology Expert Panel Recommendations. JACC CardioOncol. 2025, 7, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, N.; Ayoub, N.; Agrawal, D.K. Integrating Radioprotective Agents into Post-Mastectomy Radiotherapy: Optimization of Reconstructive Outcomes in Breast Cancer. J. Surg. Res. 2024, 7, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Religioni, U.; Barrios-Rodríguez, R.; Requena, P.; Borowska, M.; Ostrowski, J. Enhancing Therapy Adherence: Impact on Clinical Outcomes, Healthcare Costs, and Patient Quality of Life. Medicina 2025, 61, 153. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; André, F.; Bachelot, T.; Barrios, C.; Bergh, J.; Burstein, H.; Cardoso, M.; Carey, L.; Dawood, S.; Del Mastro, L.; et al. Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 35, 159–182. [Google Scholar] [CrossRef]
Factor | Variable | Comment | Type of Publication |
---|---|---|---|
Genomics | rs643644; rs11345494; rs77311050; rs34063419; rs188287402; rs12657177; rs145328458; rs12443861 | These SNPs were associated with worse grade ≥ 2 nipple retraction, breast edema, induration, and grade ≥ 1 lymphedema | Prospective |
Radiomics | Electron distribution and dose maps | The model achieved good predictive power for breast fibrosis | Retrospective |
Age | Older age | More fibrosis, telangiectasia and edema | Retrospective |
Breast Volume | Large breast volume | More fibrosis and edema | Retrospective |
Comorbidities | Diabetes | More fat necrosis | Retrospective |
Smoking | Worse skin toxicity and fibrosis | Retrospective | |
Systemic Therapy | Chemotherapy | Worse edema | Retrospective |
Tamoxifen | Very few data supporting worse toxicity | ||
Dose Schedule | Hypofractionated | Better fibrosis, edema, telangiectasia and cosmesis for the whole cohort of patients | Randomized Phase III |
Volumes of Interest | PBI | Better fibrosis and cosmesis but worse fat necrosis compared with WBI | Randomized Phase III and Retrospective |
Technique of Irradiation | IMRT/VMAT | Better cosmesis and fibrosis compared with 3DRT | Randomized Phase III |
Boost Administration | Boost | Worse Fibrosis | Randomized Phase III |
Dose Schedule | BED for Efficacy * | taBED for Efficacy ** | BED for Toxicity *** | |
---|---|---|---|---|
Conventional | 50 Gy in 25 fractions | 77.0 Gy | 57.2 Gy | 83.3 Gy |
Hypofractionated | 40.05–42.4 Gy in 15–16 fractions | 68.9–72.7 Gy | 57.5–59.5 Gy | 75.7–79.8 Gy |
Ultra-hypo-fractionated | 26 Gy in 5 fractions | 62.5 Gy | 59.5 Gy | 71 |
Title | Intervention | Comparison | IBTR | Toxicity |
---|---|---|---|---|
UK IMPORT LOW [49] | 40 Gy/15 Fx | WBI: 40 Gy/15Fx | 5-y: 0.5% vs. 1.1% | Worse WBI (p = 0.002) |
OCOG-RAPID [50] | 38.5 Gy/10 Fx twice daily | WBI: 42.56 Gy/16 Fx +/− Boost | 5-y: 2.3% vs. 1.7% (HR 1.27; 0.84–1.91) | Late G ≥ 2: 32% vs. 13% (p < 0.0001) |
NSABP B-39/RTOG 0413 [51] | 38.5 Gy/10 Fx twice daily | WBI: 42.56 Gy/16 Fx +/− Boost | 4% vs. 3% (HR 1.22 0.94–1.58) | G ≥ 3: 10% vs. 7% |
IRMA [53] | 38.5 Gy/10 Fx twice daily | WBI: 50–40.05 Gy/25–15 Fx +/− Boost | N.D. | Worse PBI (p < 0.0001) |
FLORENCE [54] | 30 Gy/5 Fx in two weeks | WBI: 50 Gy/25 Fx +/− Boost | 5-y: 1.5% vs. 1.4% (p = 0.86) 10-y: 2.5% vs. 3.7% (p = 0.40) | G = 2 Late: 2% vs. 2.7% |
PBI | Boost Administration | |
---|---|---|
Patients |
|
|
Surgery |
|
|
Tumor |
|
|
Other |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colciago, R.R.; Chissotti, C.; Ferrario, F.; Manno, I.; Mombelli, M.; Rossano, G.; De Sanctis, L.; Arcangeli, S. Factors Influencing Late Breast Toxicity After Radiotherapy: A Scoping Review. BioChem 2025, 5, 13. https://doi.org/10.3390/biochem5020013
Colciago RR, Chissotti C, Ferrario F, Manno I, Mombelli M, Rossano G, De Sanctis L, Arcangeli S. Factors Influencing Late Breast Toxicity After Radiotherapy: A Scoping Review. BioChem. 2025; 5(2):13. https://doi.org/10.3390/biochem5020013
Chicago/Turabian StyleColciago, Riccardo Ray, Chiara Chissotti, Federica Ferrario, Ilenia Manno, Matteo Mombelli, Giulia Rossano, Lorenzo De Sanctis, and Stefano Arcangeli. 2025. "Factors Influencing Late Breast Toxicity After Radiotherapy: A Scoping Review" BioChem 5, no. 2: 13. https://doi.org/10.3390/biochem5020013
APA StyleColciago, R. R., Chissotti, C., Ferrario, F., Manno, I., Mombelli, M., Rossano, G., De Sanctis, L., & Arcangeli, S. (2025). Factors Influencing Late Breast Toxicity After Radiotherapy: A Scoping Review. BioChem, 5(2), 13. https://doi.org/10.3390/biochem5020013