Difference Between Pro- and Anti-Inflammatory Interleukins in Saliva of Children with Early Childhood Caries
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
- Early childhood caries (ECC) group (n = 40; ICDAS 1–6);
- Caries-free control group (n = 36; ICDAS 0).
2.3. Sample Size Calculation
2.4. Sampling Method
- Enrolled in invited public schools;
- Apparently healthy;
- Of either sex;
- Aged between 3 and 5 years.
2.5. Clinical and Anthropometric Evaluation
- Anthropometric measurements: Weight, height, and waist circumference were recorded. Waist-to-height ratio (WHtR) was calculated using a cut-off point of ≥0.50 to classify children as centrally obese or non-centrally obese [22].
- Habit questionnaire: Parents answered a questionnaire on dietary and oral hygiene habits, as well as other risk factors for caries development.
- Dental caries assessment: The International Caries Detection and Assessment System (ICDAS) was used to classify caries severity [23], with the following scale:
- ○
- 0: Sound tooth surface;
- ○
- 1: First visual change in enamel (dry surface);
- ○
- 2: First visual change in enamel (wet surface);
- ○
- 3: Localized enamel breakdown without visible dentin;
- ○
- 4: Underlying dark shadow from dentin, with or without enamel breakdown;
- ○
- 5: Distinct cavity with visible dentin involving <50% of the surface;
- ○
- 6: Extensive cavity with visible dentin involving >50% of the surface.
2.6. Saliva Sample Collection
2.7. Determination of IL-8 and IL-10 in Saliva by ELISA
2.8. Ethical Considerations
2.9. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ECC | Early Childhood Caries |
ICDAS | International Caries Detection and Assessment System |
IL-8 | Interleukin 8 |
IL-10 | Interleukin 10 |
References
- Márquez-Pérez, K.; Zúñiga-López, C.M.; Torres-Rosas, R.; Argueta-Figueroa, L. Prevalencia reportada de caries dental en niños y adolescentes mexicanos. Rev. Med. Inst. Mex. Seguro Soc. 2023, 61, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Du, Q.; Ge, L.; Wang, J.; Wang, X.; Li, Y.; Song, G.; Zhao, W.; Chen, X.; Jiang, B.; et al. Expert consensus on early childhood caries management. Int. J. Oral Sci. 2022, 14, 35. [Google Scholar] [CrossRef]
- Farges, J.-C.; Alliot-Licht, B.; Renard, E.; Ducret, M.; Gaudin, A.; Smith, A.J.; Cooper, P.R. Dental Pulp Defence and Repair Mechanisms in Dental Caries. Mediat. Inflamm. 2015, 2015, 230251. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Veerayutthwilai, O.; Byers, M.R.; Pham, T.T.; Darveau, R.P.; Dale, B.A. Differential regulation of immune responses by odontoblasts. Oral Microbiol. Immunol. 2007, 22, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Horst, O.V.; Horst, J.A.; Samudrala, R.; Dale, B.A. Caries induced cytokine network in the odontoblast layer of human teeth. BMC Immunol. 2011, 12, 9. [Google Scholar] [CrossRef]
- Elsalhy, M.; Azizieh, F.; Raghupathy, R. Cytokines as diagnostic markers of pulpal inflammation. Int. Endod. J. 2013, 46, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, L.L.; Kim, E.; Bortolatto, J.F.; Buzalaf, M.R.; Alreshaid, L.; Prakki, A. Insights on the role of cytokines in carious lesions. Braz. Dent. Sci. 2023, 26, e366. [Google Scholar] [CrossRef]
- Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H.A.; Liu, G. Cytokines: From Clinical Significance to Quantification. Adv. Sci. 2021, 8, e2004433. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rinderknecht, C.; Filippi, C.; Ritz, N.; Fritschi, N.; Simmen, U.; Filippi, A.; Diesch-Furlanetto, T. Associations between salivary cytokines and oral health, age, and sex in healthy children. Sci. Rep. 2022, 12, 15991. [Google Scholar] [CrossRef]
- Biria, M.; Sattari, M.; Iranparvar, P.; Eftekhar, L. Relationship between the salivary concentrations of proteinase-3 and interleukin-8 and severe early childhood caries. Dent. Med. Probl. 2023, 60, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Gornowicz, A.; Bielawska, A.; Bielawski, K.; Grabowska, S.Z.; Wójcicka, A.; Zalewska, M.; Maciorkowska, E. Pro-inflammatory cytokines in saliva of adolescents with dental caries disease. Ann. Agric. Environ. Med. 2012, 19, 711–716. [Google Scholar]
- Sharma, V.; Gupta, N.; Srivastava, N.; Rana, V.; Chandna, P.; Yadav, S.; Sharma, A. Diagnostic potential of inflammatory biomarkers in early childhood caries-A case control study. Clin. Chim. Acta 2017, 471, 158–163. [Google Scholar] [CrossRef]
- Børsting, T.; Venkatraman, V.; Fagerhaug, T.N.; Skeie, M.S.; Stafne, S.N.; Feuerherm, A.J.; Sen, A. Systematic assessment of salivary inflammatory markers and dental caries in children: An exploratory study. Acta Odontol. Scand. 2022, 80, 338–345. [Google Scholar] [CrossRef]
- Seyedmajidi, M.; Khodadadi, E.; Maliji, G.; Zaghian, M.; Bijani, A. Neutrophil count and level of interleukin-1β and interleukin-8 in the saliva of three to five year olds with and without dental caries. J. Dent. 2015, 12, 662. [Google Scholar]
- Ramirez-De los Santos, S.; López-Pulido, E.I.; Medrano-Gonzalez, I.d.C.; Becerra-Ruiz, J.S.; Alonso-Sanchez, C.C.; Vázquez-Jiménez, S.I.; Guerrero-Velázquez, C.; Guzmán-Flores, J.M. Alteration of cytokines in saliva of children with caries and obesity. Odontology 2021, 109, 11–17. [Google Scholar] [CrossRef]
- Vignali, D.; Collison, L.; Workman, C. How regulatory T cells work. Nat. Rev. Immunol. 2008, 8, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Gur, E.; Keles, S.; Cevik, O. Concentrations of interleukin-32, interleukin− 10, interleukin− 6, and TNF-alfa are higher in saliva of children with early childhood caries. Pediatr. Dent. J. 2023, 33, 116–124. [Google Scholar] [CrossRef]
- Cogulu, D.; Onay, H.; Ozdemir, Y.; Aslan, G.I.; Ozkinay, F.; Kutukculer, N.; Eronat, C. Associations of interleukin (IL)-1β, IL-1 receptor antagonist, and IL-10 with dental caries. J. Oral Sci. 2015, 57, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Indrawati, R.; Luthfi, M.; Oki, A.S.; Sosiawan, A.; Rachmadi, P.; Rifai, M. Analysis of interleukin-10 anti-inflammatory cytokines in salivary lymphocyte surface: A cross sectional study. J. Int. Oral Health 2020, 12, 439–442. [Google Scholar]
- Mohammed, I.J.; Sarhat, E.R.; Hamied, M.A.S.; Sarhat, T.R. Assessment of salivary interleukin (IL)-6, IL-10, oxidative stress, antioxidant status, pH, and flow rate in dental caries experience patients in Tikrit Province. Sys. Rev. Pharm. 2021, 12, 55–59. [Google Scholar]
- Charan, J.; Biswas, T. How to calculate sample size for different study designs in medical research? Indian J. Psychol. Med. 2013, 35, 121–126. [Google Scholar] [CrossRef]
- Feng, Q.; Bešević, J.; Conroy, M.; Omiyale, W.; Woodward, M.; Lacey, B.; Allen, N. Waist-to-height ratio and body fat percentage as risk factors for ischemic cardiovascular disease: A prospective cohort study from UK Biobank. Am. J. Clin. Nutr. 2024, 119, 1386–1396. [Google Scholar] [CrossRef]
- Rai, A.; Sundas, S.; Dhakal, N.; Khapung, A. Assessment of dental caries based on ICDAS and WHO criteria: A comparative study. Int. J. Paediatr. Dent. 2024, 34, 77–84. [Google Scholar] [CrossRef]
- Bagley, S.C.; White, H.; Golomb, B.A. Logistic regression in the medical literature: Standards for use and reporting, with particular attention to one medical domain. J. Clin. Epidemiol. 2001, 54, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Kawashita, Y.; Kitamura, M.; Saito, T. Early childhood caries. Int. J. Dent. 2011, 2011, 725320. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.M. Childhood caries management. Int. J. Environ. Res. Public Health 2022, 19, 8527. [Google Scholar] [CrossRef]
- Pang, L.; Zhi, Q.; Jian, W.; Liu, Z.; Lin, H. The oral microbiome impacts the link between sugar consumption and caries: A preliminary study. Nutrients 2022, 14, 3693. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Sohn, W.; Lim, S.; Willem, J. Predictors of dental caries progression in primary teeth. J. Dent. Res. 2009, 88, 270–275. [Google Scholar] [CrossRef]
- Curnow, M.; Pine, C.; Burnside, G.; Nicholson, J.; Chesters, R.; Huntington, E. A randomised controlled trial of the efficacy of supervised toothbrushing in high-caries-risk children. Caries Res. 2002, 36, 294–300. [Google Scholar] [CrossRef]
- Andrew, L.; Wallace, R.; Wickens, N.; Patel, J. Early childhood caries, primary caregiver oral health knowledge and behaviours and associated sociological factors in Australia: A systematic scoping review. BMC Oral Health 2021, 21, 521. [Google Scholar] [CrossRef]
- Zhang, R.; Hou, B. Immune responses of pulpodentinal complex during caries progression. Zhonghua Kou Qiang Yi Xue Za Zhi Zhonghua Kouqiang Yixue Za Zhi Chin. J. Stomatol. 2024, 59, 966–970. [Google Scholar]
- Alarcón-Sánchez, M.A.; Becerra-Ruiz, J.S.; Avetisyan, A.; Heboyan, A. Activity and levels of TNF-α, IL-6 and IL-8 in saliva of children and young adults with dental caries: A systematic review and meta-analysis. BMC Oral Health 2024, 24, 816. [Google Scholar] [CrossRef] [PubMed]
- Pakdemirli, A.; Çalıbaşı Kocal, G.; Kılınç, G.; Daşkın, E.; Kemaloğlu, H.; Başbınar, Y.; Ellidokuz, H. Salivary Pro-Inflammatory Cytokines and Salivary Bacterial Challenge Effect on Dental Caries: A Clinico-Molecular Cross-Sectional Study. J. Basic Clin. Health Sci. 2020, 1, 77–81. [Google Scholar]
- Deng, Q.; Wong, H.M.; Peng, S. Alterations in salivary profile in individuals with dental caries and/or obesity: A systematic review and meta-analysis. J. Dent. 2024, 151, 105451. [Google Scholar] [CrossRef]
- Sabella, F.M.; Katzenelson, R.T.; de Carvalho, F.G.; Duque, C.; Darrieux, M.; Marson, F.A.L.; Parisotto, T.M. Exploring Salivary Biomarkers in Pediatric Obesity: A Scoping Review. Int. J. Mol. Sci. 2025, 26, 5789. [Google Scholar] [CrossRef]
- Nishide, R.; Mizutani, M.; Tanimura, S.; Kudo, N.; Nishii, T.; Hatashita, H. Homecare protective and risk factors for early childhood caries in Japan. Environ. Health Prev. Med. 2018, 23, 57. [Google Scholar] [PubMed]
- Dongiovanni, P.; Meroni, M.; Casati, S.; Goldoni, R.; Thomaz, D.V.; Kehr, N.S.; Galimberti, D.; Del Fabbro, M.; Tartaglia, G.M. Salivary biomarkers: Novel noninvasive tools to diagnose chronic inflammation. Int. J. Oral Sci. 2023, 15, 27. [Google Scholar] [CrossRef]
- Malin, A.J.; Wang, Z.; Khan, D.; McKune, S.L. The potential systemic role of diet in dental caries development and arrest: A narrative review. Nutrients 2024, 16, 1463. [Google Scholar] [CrossRef]
- Córdova-Carrillo, K.; De la Peña-Lobato, C.; Cuevas-González, M.V.; Cuevas-González, J.C.; Espinosa-Cristóbal, L.F.; Tovar-Carrillo, K.L.; Saucedo-Acuña, R.A.; Zambrano-Galván, G.; Reyes-López, S.Y. Importance of Human Breast Milk in the Early Colonization of Streptococcus mutans. Medicina 2024, 60, 1308. [Google Scholar] [CrossRef]
- Pandey, N.; Bodduluri, S.; Mathis, S.; Bodduluri, H.; Kumar, A. Role of Oral Microbiota in Preserving Health and Disease Management. J. Clin. Immunol. Microbiol. 2024, 5, 1–17. [Google Scholar] [CrossRef]
- Tsai, H.; Tsai, T.; Wang, Y.; Chen, H.; Lee, C.; Tsai, S. Sleep and its association with dental caries or myopia in first graders. Nurs Open. 2024, 11, e2063. [Google Scholar] [PubMed]
- Zhang, Q.; Bai, X.; Jin, H.; Dong, N. Combined effect of dietary calcium consumption and physical activity on dental caries in children and adolescents: A study of the NHANES database. BMC Oral Health 2024, 24, 281. [Google Scholar] [CrossRef]
- Nakano, R.; Ohshima, T.; Mukai, Y.; Tsurumoto, A.; Maeda, N. Association between dental caries prevalence and stress levels in Japanese children. Cureus 2022, 14, e31074. [Google Scholar] [CrossRef]
- Zaror, C.; Matamala-Santander, A.; Ferrer, M.; Rivera-Mendoza, F.; Espinoza-Espinoza, G.; Martínez-Zapata, M.J. Impact of early childhood caries on oral health-related quality of life: A systematic review and meta-analysis. Int. J. Dent. Hyg. 2022, 20, 120–135. [Google Scholar]
- Davidovich, E.; Sarne, H.; Shmueli, A.; Polak, D. Is there an association between salivary immune and microbial profile with dental health in systematically healthy children? Clin. Oral Investig. 2024, 28, 564. [Google Scholar] [CrossRef]
- Luo, S.C.; Wei, S.M.; Luo, X.T.; Yang, Q.Q.; Wong, K.H.; Cheung, P.C.; Zhang, B.B. How probiotics, prebiotics, synbiotics, and postbiotics prevent dental caries: An oral microbiota perspective. NPJ Biofilms Microbiomes 2024, 10, 14. [Google Scholar]
- Grier, A.; Myers, J.; O’Connor, T.; Quivey, R.; Gill, S.; Kopycka-Kedzierawski, D. Oral microbiota composition predicts early childhood caries onset. J. Dent. Res. 2021, 100, 599–607. [Google Scholar] [CrossRef]
- Hung, H.V.; Ngoc, V.T.N.; Vu Thi, H.; Chu, D.T. Early childhood caries in obese children: The status and associated factors in the suburban areas in Hanoi, Vietnam. Int. J. Environ. Res. Public Health 2021, 18, 8844. [Google Scholar] [PubMed]
- Li, Y.; Oosting, M.; Deelen, P.; Ricaño-Ponce, I.; Smeekens, S.; Jaeger, M.; Matzaraki, V.; Swertz, M.A.; Xavier, R.J.; Franke, L.; et al. Inter-individual variability and genetic influences on cytokine responses to bacteria and fungi. Nat. Med. 2016, 22, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Aziz, N.; Detels, R.; Quint, J.J.; Gjertson, D.; Ryner, T.; Butch, A.W. Biological variation of immunological blood biomarkers in healthy individuals and quality goals for biomarker tests. BMC Immunol. 2019, 20, 33. [Google Scholar] [CrossRef]
- Alwarawrah, Y.; Kiernan, K.; MacIver, N.J. Changes in nutritional status impact immune cell metabolism and function. Front. Immunol. 2018, 9, 1055. [Google Scholar] [CrossRef]
- Fakhruddin, K.S.; Samaranayake, L.P.; Egusa, H.; Ngo, H.C.; Pesee, S. Profuse diversity and acidogenicity of the candida-biome of deep carious lesions of Severe Early Childhood Caries (S-ECC). J. Oral Microbiol. 2021, 13, 1964277. [Google Scholar] [CrossRef] [PubMed]
- Astuti, E.S.Y.; Sukrama, I.D.M.; Mahendra, A.N. Innate immunity signatures of early childhood caries (ECC) and severe early childhood caries (S-ECC). Biomed. Pharmacol. J. 2019, 12, 1129–1134. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, Z. Cross-sectional studies: Strengths, weaknesses, and recommendations. Chest 2020, 158, S65–S71. [Google Scholar] [CrossRef] [PubMed]
Groups | Control Group (n = 36) | With Dental Caries (n = 40) | |
---|---|---|---|
Variables | Frequency (%) | p Value | |
Age distribution (years) | 0.2407 | ||
3 | 5 (14) | 5 (12) | |
4 | 17 (47) | 12 (30) | |
5 | 14 (39) | 23 (58) | |
Gender | 0.9807 | ||
Female | 17 (47) | 19 (48) | |
Male | 19 (53) | 21 (52) | |
Decayed teeth | 0 (100) | 40 (100) | 0.0001 * |
Missing teeth | 0 (100) | 0 (100) | |
Filled teeth | 0 (100) | 0 (100) | |
Caries (ICDAS codes) | 0.0001 * | ||
0 | 36 (100) | 0 | |
1 | 0 | 1 (2) | |
2 | 0 | 4 (10) | |
3 | 0 | 6 (15) | |
4 | 0 | 9 (23) | |
5 | 0 | 10 (25) | |
6 | 0 | 10 (25) | |
ICDAS code groups | 0.0001 * | ||
0 | 36 (100) | 0 | |
1–2 | 0 | 5 (12) | |
3–4 | 0 | 15 (38) | |
5–6 | 0 | 20 (50) | |
Visible plaque presence | 30 (83) | 31 (78) | 0.5221 |
Fluoride toothpaste use | 29 (80) | 35 |
Groups | Control Group (n = 36) | With Dental Caries (n = 40) | |
---|---|---|---|
Variables (pg/mL) | Mean (Rango) ± Standard Deviation | p Value | |
IL-8 | 45 (0–293) ± 74 | 85 (0–530) ± 119 | 0.3613 |
IL-10 | 11 (0.7–268) ± 44 | 3 (0.7–9) ±1 | 0.6481 |
Difference between IL-8 and IL-10 | 17 (0–154) ± 33 | 27 (0–190) ± 41 | 0.1709 |
Variable | IL-8 (pg/mL) | IL-10 (pg/mL) | ||||
---|---|---|---|---|---|---|
ICDAS | Mean ± Standard Deviation | p Value | Mean ± Standard Deviation | p Value | Difference Between IL-8 and IL-10 | p Value |
0 (n = 36) | 45 ± 74 | 0.6843 | 11 ± 44 | 0.4444 | 17 ± 33 | 0.3876 |
1–2 (n = 5) | 39 ± 46 | 3 ± 1 | 13 ± 2 | |||
3–4 (n = 15) | 76 ± 142 | 3 ± 2 | 20 ± 31 | |||
5–6 (n = 20) | 103 ± 114 | 3 ± 2 | 35 ± 51 | |||
Caries free or not cavitated carious lesions (n = 41) | 44 ± 71 | 0.4928 | 10 ± 41 | 0.2530 | 17 ± 33 | 0.2530 |
Cavitated carious lesions (n = 35) | 92 ± 125 | 3 ± 2 | 29 ± 44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández Cabanillas, J.C.; Patiño-Marín, N.; Martel Gallegos, M.G.; Salas Orozco, M.F.; Ubaldo Reyes, L.M.; Maldonado Cervantes, M.I.; Castillo Hernández, J.R. Difference Between Pro- and Anti-Inflammatory Interleukins in Saliva of Children with Early Childhood Caries. Oral 2025, 5, 82. https://doi.org/10.3390/oral5040082
Hernández Cabanillas JC, Patiño-Marín N, Martel Gallegos MG, Salas Orozco MF, Ubaldo Reyes LM, Maldonado Cervantes MI, Castillo Hernández JR. Difference Between Pro- and Anti-Inflammatory Interleukins in Saliva of Children with Early Childhood Caries. Oral. 2025; 5(4):82. https://doi.org/10.3390/oral5040082
Chicago/Turabian StyleHernández Cabanillas, Juan Carlos, Nuria Patiño-Marín, María Guadalupe Martel Gallegos, Marco Felipe Salas Orozco, Laura Matilde Ubaldo Reyes, Martha Imelda Maldonado Cervantes, and Jesús Ramón Castillo Hernández. 2025. "Difference Between Pro- and Anti-Inflammatory Interleukins in Saliva of Children with Early Childhood Caries" Oral 5, no. 4: 82. https://doi.org/10.3390/oral5040082
APA StyleHernández Cabanillas, J. C., Patiño-Marín, N., Martel Gallegos, M. G., Salas Orozco, M. F., Ubaldo Reyes, L. M., Maldonado Cervantes, M. I., & Castillo Hernández, J. R. (2025). Difference Between Pro- and Anti-Inflammatory Interleukins in Saliva of Children with Early Childhood Caries. Oral, 5(4), 82. https://doi.org/10.3390/oral5040082