Comparison of Flexural Strength, Hardness, and Surface Roughness of Heat-Cured and 3D-Printed Acrylic Resin Materials After Immersion in Different Disinfectants: An In Vitro Comparative Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Specimens
2.2. Immersion Solutions and Protocol
2.3. Flexural Test
2.4. Microhardness Test
2.5. Surface Roughness Test
2.6. Randomization and Blinding
2.7. Statistical Analysis
3. Results
3.1. Flexural Strength and Flexural Modulus
3.2. Microhardness
3.3. Surface Roughness
4. Discussion
5. Conclusions
- The heat-cured resin showed superior flexural modulus and hardness relative to the 3D-printed resin, with statistical significance.
- Flexural strength and surface roughness did not differ significantly between the materials, although 3D-printed specimens tended to display slightly lower flexural strength and higher surface roughness values.
- Both heat-cured and 3D-printed acrylic resins exhibited clinically acceptable mechanical properties after the immersion protocol used in this study, which simulated six months of routine disinfection.
- Both resins exhibited the highest mechanical properties in distilled water, indicating minimal degradation in the absence of chemical disinfectants.
- Sodium hypochlorite caused the greatest reduction in hardness, particularly in the 3D-printed resin, and increased surface roughness in the heat-cured resin. Its routine use should be avoided.
- Effervescent tablets produced more surface changes in the 3D-printed resin.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3D | Three-Dimensional |
CAD | Computer-Aided Design |
CAM | Computer-Aided Manufacturing |
SPSS | Statistical Package for the Social Sciences |
PMMA | Polymethyl methacrylate |
NaOCl | Sodium hypochlorite |
STL | Standard Tessellation Language |
DLP | Digital Light Processing |
SD | Standard Deviation |
ANOVA | One-Way Analysis of Variance |
MPa | Megapascal |
µm | Micrometer |
UDMA | Urethane dimethacrylate |
References
- Dusmukhamedov, S.; Lee, C.N.; Jeong, S.M.; Choi, B.H. Digital Denture Fabrication: A Technical Note. Appl. Sci. 2021, 11, 8093. [Google Scholar] [CrossRef]
- Hada, T.; Kanazawa, M.; Iwaki, M.; Arakida, T.; Soeda, Y.; Katheng, A.; Otake, R.; Minakuchi, S. Effect of Printing Direction on the Accuracy of 3D-Printed Dentures Using Stereolithography Technology. Materials 2020, 13, 3405. [Google Scholar] [CrossRef] [PubMed]
- Janeva, N.M.; Kovacevska, G.; Elencevski, S.; Panchevska, S.; Mijoska, A.; Lazarevska, B. Advantages of Cad/Cam versus Conventional Complete Dentures-a Review. Open Access Maced. J. Med. Sci. 2018, 6, 1498–1502. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, C.X.; Xu, X.; Wang, J.; Hou, X.; Li, K.; Lu, X.; Shi, H.Y.; Lee, E.S.; Jiang, H.B. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Scanning 2021, 2021, 9950131. [Google Scholar] [CrossRef]
- Singh, S.; Dhawan, P.; Nautiyal, M. Application of Rapid Prototyping in Prosthodontics. Front. Biomed. Technol. 2022, 9, 237–245. [Google Scholar] [CrossRef]
- Revilla-León, M.; Özcan, M. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. J. Prosthodont. 2019, 28, 146–158. [Google Scholar] [CrossRef]
- Qadir, G.; Abdulkareem, J. An In Vitro Comparative Study of Maxillary Denture Base Retention Between Conventional Fabrication and 3D Printed Techniques. Sulaimani Dent. J. 2023, 10, 45–53. [Google Scholar] [CrossRef]
- Emera, R.M.K.; Shady, M.; Alnajih, M.A. Comparison of Retention and Denture Base Adaptation between Conventional and 3D-Printed Complete Dentures. J. Dent. Res. Dent. Clin. Dent. Prospects 2022, 16, 179–185. [Google Scholar] [CrossRef]
- Srinivasan, M.; Gjengedal, H.; Cattani-Lorente, M.; Moussa, M.; Durual, S.; Schimmel, M.; Müller, F. CAD/CAM Milled Complete Removable Dental Prostheses: An in Vitro Evaluation of Biocompatibility, Mechanical Properties, and Surface Roughness. Dent. Mater. J. 2018, 37, 526–533. [Google Scholar] [CrossRef]
- Al-Dwairi, Z.N.; Al Haj Ebrahim, A.A.; Baba, N.Z. A Comparison of the Surface and Mechanical Properties of 3D Printable Denture-Base Resin Material and Conventional Polymethylmethacrylate (PMMA). J. Prosthodont. 2023, 32, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Al-Qarni, F.D.; Gad, M.M. Printing Accuracy and Flexural Properties of Different 3D-Printed Denture Base Resins. Materials 2022, 15, 2410. [Google Scholar] [CrossRef]
- Lourinho, C.; Salgado, H.; Correia, A.; Fonseca, P. Mechanical Properties of Polymethyl Methacrylate as Denture Base Material: Heat-Polymerized vs. 3D-Printed—Systematic Review and Meta-Analysis of In Vitro Studies. Biomedicines 2022, 10, 2565. [Google Scholar] [CrossRef]
- Mahmoud, M.Y.; Alshimy, A.M.; El-Shabrawy, S.M.; Hanno, K.I. Effect of Disinfectants on Flexure Strength and Surface Roughness of 3D-printed Versus Conventional Denture Base Resins (A Comparative in-vitro Study). Alexandria Dent. J. 2025, in press. [Google Scholar] [CrossRef]
- Perea-Lowery, L.; Gibreel, M.; Vallittu, P.K.; Lassila, L.V. 3D-Printed vs. Heat-Polymerizing and Autopolymerizing Denture Base Acrylic Resins. Materials 2021, 14, 5781. [Google Scholar] [CrossRef]
- Prpić, V.; Schauperl, Z.; Ćatić, A.; Dulčić, N.; Čimić, S. Comparison of Mechanical Properties of 3D-Printed, CAD/CAM, and Conventional Denture Base Materials. J. Prosthodont. 2020, 29, 524–528. [Google Scholar] [CrossRef]
- Alkaltham, N.S.; Aldhafiri, R.A.; Al-Thobity, A.M.; Alramadan, H.; Aljubran, H.; Ateeq, I.S.; Khan, S.Q.; Akhtar, S.; Gad, M.M. Effect of Denture Disinfectants on the Mechanical Performance of 3D-Printed Denture Base Materials. Polymers 2023, 15, 1175. [Google Scholar] [CrossRef] [PubMed]
- Bento, V.A.; Gomes, J.M.; Oliveira-Limirio, J.P.; Rosa, C.D.D.R.D.; Lemos, C.A.; Dos Santos, D.M.; Pellizzer, E.P. Effect of Aging on the Mechanical Properties of CAD/CAM–Milled and 3D-Printed Acrylic Resins for Denture Bases. Int. J. Prosthodont. 2024, 37, S5–S11. [Google Scholar] [CrossRef]
- Chhabra, M.; Nanditha Kumar, M.; RaghavendraSwamy, K.N.; Thippeswamy, H.M. Flexural Strength and Impact Strength of Heat-Cured Acrylic and 3D Printed Denture Base Resins—A Comparative in Vitro Study. J. Oral Biol. Craniofacial Res. 2022, 12, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Elhagali, A.F.; Sharaf, M.Y.; Abd El-Aziz, M.E.-S.A.; Ali Bayiumy, A.S.; Refaei, M.A.A.; Al-Agamy, A.H.; Ali, A.; Elakel, A.; Altayyar, R.; Alzahrani, R.; et al. The Effects of Different Chemical Disinfectants on the Strength, Surface, and Color Properties of Conventional and 3D-Printed Fabricated Denture Base Materials. Prosthesis 2025, 7, 24. [Google Scholar] [CrossRef]
- Falahchai, M.; Ghavami-Lahiji, M.; Rasaie, V.; Amin, M.; Asli, H.N. Comparison of Mechanical Properties, Surface Roughness, and Color Stability of 3D-Printed and Conventional Heat-Polymerizing Denture Base Materials. J. Prosthet. Dent. 2023, 130, e1–e266. [Google Scholar] [CrossRef]
- Fouda, S.M.; Gad, M.M.; Abualsaud, R.; Ellakany, P.; AlRumaih, H.S.; Khan, S.Q.; Akhtar, S.; Al-Qarni, F.D.; Al-Harbi, F.A. Flexural Properties and Hardness of CAD-CAM Denture Base Materials. J Prosthodont. 2023, 32, 318–324. [Google Scholar] [CrossRef]
- Freitas, R.F.C.P.D.; Duarte, S.; Feitosa, S.; Dutra, V.; Lin, W.S.; Panariello, B.H.D.; Carreiro, A.D.F.P. Physical, Mechanical, and Anti-Biofilm Formation Properties of CAD-CAM Milled or 3D Printed Denture Base Resins: In Vitro Analysis. J. Prosthodont. 2023, 32, 38–44. [Google Scholar] [CrossRef]
- Gad, M.M.; Fouda, S.M.; Abualsaud, R.; Alshahrani, F.A.; Al-Thobity, A.M.; Khan, S.Q.; Akhtar, S.; Ateeq, I.S.; Helal, M.A.; Al-Harbi, F.A. Strength and Surface Properties of a 3D-Printed Denture Base Polymer. J. Prosthodont. 2022, 31, 412–418. [Google Scholar] [CrossRef]
- Al-Ameri, A.; Alothman, O.Y.; Alsadon, O.; Bangalore, D. An In-Vitro Evaluation of Strength, Hardness, and Color Stability of Heat-Polymerized and 3D-Printed Denture Base Polymers After Aging. Polymers 2025, 17, 288. [Google Scholar] [CrossRef]
- Di Fiore, A.; Meneghello, R.; Brun, P.; Rosso, S.; Gattazzo, A.; Stellini, E.; Yilmaz, B. Comparison of the Flexural and Surface Properties of Milled, 3D-Printed, and Heat Polymerized PMMA Resins for Denture Bases: An in Vitro Study. J. Prosthodont. Res. 2022, 66, 502–508. [Google Scholar] [CrossRef]
- Neves, C.B.; Chasqueira, A.F.; Rebelo, P.; Fonseca, M.; Portugal, J.; Bettencourt, A. Microhardness and Flexural Strength of Two 3D-Printed Denture Base Resins. Rev. Port. Estomatol. Med. Dent. Cir. Maxilofac. 2022, 63, 198–203. [Google Scholar] [CrossRef]
- Sonam, D.; Dayalan, M.; Rahath Fatima, S.; K, S. Comparative Evaluation of Impact and Flexural Strength of 3D Printed, CAD/CAM Milled and Heat Activated Poylmethyl Methacrylate Resins—An In-Vitro Study. Int. J. Sci. Res. 2021, 10, 194–202. [Google Scholar] [CrossRef]
- Altarazi, A.; Haider, J.; Alhotan, A.; Silikas, N.; Devlin, H. Impact of Artificial Aging on the Physical and Mechanical Characteristics of Denture Base Materials Fabricated via 3D Printing. Int. J. Biomater. 2024, 2024, 8060363. [Google Scholar] [CrossRef] [PubMed]
- Temizci, T.; Bozoğulları, H.N. Effect of Thermal Cycling on the Flexural Strength of 3-D Printed, CAD/CAM Milled and Heat-Polymerized Denture Base Materials. BMC Oral Health 2024, 24, 357. [Google Scholar] [CrossRef] [PubMed]
- Neppelenbroek, K.H.; Pavarina, A.C.; Vergani, C.E.; Giampaolo, E.T. Hardness of Heat-Polymerized Acrylic Resins after Disinfection and Long-Term Water Immersion. J. Prosthet. Dent. 2005, 93, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.L.; Breeding, L.C.; Vergani, C.E.; da Cruz Perez, L.E. Hardness and Surface Roughness of Reline and Denture Base Acrylic Resins after Repeated Disinfection Procedures. J. Prosthet. Dent. 2009, 102, 115–122. [Google Scholar] [CrossRef]
- Arora, O.; Ahmed, N.; Nallaswamy, D.; Ganapathy, D.; Srinivasan, M. Denture Base Materials: An in Vitro Evaluation of the Mechanical and Color Properties. J. Dent. 2024, 145, 104993. [Google Scholar] [CrossRef]
- Baciu, E.R.; Savin, C.N.; Tatarciuc, M.; Mârțu, I.; Butnaru, O.M.; Aungurencei, A.E.; Mihalache, A.M.; Diaconu-Popa, D. Experimental Study on Mechanical Properties of Different Resins Used in Oral Environments. Medicina 2023, 59, 1042. [Google Scholar] [CrossRef]
- Alqanas, S.S.; Alfuhaid, R.A.; Alghamdi, S.F.; Al-Qarni, F.D.; Gad, M.M. Effect of Denture Cleansers on the Surface Properties and Color Stability of 3D Printed Denture Base Materials. J. Dent. 2022, 120, 104089. [Google Scholar] [CrossRef]
- El-Olimy, G.; Salem, A. Effect of Two Cleansing Materials on Hardness and Surface Roughness of Conventional and Three-Dimensional Printed Denture Base Materials. Tanta Dent. J. 2022, 19, 125–131. [Google Scholar] [CrossRef]
- Berger, J.C.; Driscoll, C.F.; Romberg, E.; Luo, Q.; Thompson, G. Surface Roughness of Denture Base Acrylic Resins after Processing and after Polishing. J. Prosthodont. 2006, 15, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Takhtdar, M.; Azizimoghadam, N.; Kalantari, M.H.; Mohaghegh, M. Effect of Denture Cleansers on Color Stability and Surface Roughness of Denture Bases Fabricated from Three Different Techniques: Conventional Heat-Polymerizing, CAD/CAM Additive, and CAD/CAM Subtractive Manufacturing. Clin. Exp. Dent. Res. 2023, 9, 840–850. [Google Scholar] [CrossRef] [PubMed]
- Dhamande, M.; Pakhan, A.; Thombare, R.; Ghodpage, S. Evaluation of Efficacy of Commercial Denture Cleansing Agents to Reduce the Fungal Biofilm Activity from Heat Polymerized Denture Acrylic Resin: An in Vitro Study. Contemp. Clin. Dent. 2012, 3, 168–172. [Google Scholar] [CrossRef]
- Bae, C.-H.; Lim, Y.-K.; Kook, J.-K.; Son, M.-K.; Heo, Y.-R. Evaluation of Antibacterial Activity against Candida Albicans According to the Dosage of Various Denture Cleansers. J. Adv. Prosthodont. 2021, 13, 100–106. [Google Scholar] [CrossRef]
- Porwal, A.; Khandelwal, M.; Punia, V.; Sharma, V. Effect of Denture Cleansers on Color Stability, Surface Roughness, and Hardness of Different Denture Base Resins. J. Indian Prosthodont. Soc. 2017, 17, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.M.; Abualsaud, R.; Fouda, S.M.; Rahoma, A.; Al-Thobity, A.M.; Khan, S.Q.; Akhtar, S.; Al-Harbi, F.A. Effects of Denture Cleansers on the Flexural Strength of PMMA Denture Base Resin Modified with ZrO2 Nanoparticles. J. Prosthodont. 2021, 30, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Garg, S.; Kalra, N.M. Effect of Denture Cleansers on Surface Roughness and Flexural Strength of Heat Cure Denture Base Resin—An in Vitro Study. J. Clin. Diagnostic Res. 2017, 11, ZC94–ZC97. [Google Scholar] [CrossRef] [PubMed]
- Savabi, O.; Attar, K.; Nejatidanesh, F.; Goroohi, H.; Badrian, H. Effect of Different Chemical Disinfectants on the Flexural Strength of Heat-Polymerized Acrylic Resins. Eur. J. Prosthodont. Restor. Dent. 2013, 21, 105–108. [Google Scholar]
- Peracini, A.; Davi, L.R.; de Queiroz Ribeiro, N.; de Souza, R.F.; da Silva, C.H.L.; Paranhos, H.D.F.O. Effect of Denture Cleansers on Physical Properties of Heat-Polymerized Acrylic Resin. J. Prosthodont. Res. 2010, 54, 78–83. [Google Scholar] [CrossRef]
- Costa, R.T.F.; Pellizzer, E.P.; Vasconcelos, B.C.D.E.; Gomes, J.M.L.; Lemos, C.A.A.; de Moraes, S.L.D. Surface Roughness of Acrylic Resins Used for Denture Base after Chemical Disinfection: A Systematic Review and Meta-Analysis. Gerodontology 2021, 38, 242–251. [Google Scholar] [CrossRef]
- Al-Thobity, A.M.; Gad, M.; ArRejaie, A.; Alnassar, T.; Al-Khalifa, K.S. Impact of Denture Cleansing Solution Immersion on Some Properties of Different Denture Base Materials: An In Vitro Study. J. Prosthodont. 2019, 28, 913–919. [Google Scholar] [CrossRef]
- Goiato, M.C.; Dos Santos, D.M.; Andreotti, A.M.; Nobrega, A.S.; Moreno, A.; Haddad, M.F.; Pesqueira, A.A. Effect of Beverages and Mouthwashes on the Hardness of Polymers Used in Intraoral Prostheses. J. Prosthodont. 2014, 23, 559–564. [Google Scholar] [CrossRef]
- Goiato, M.C.; Dos Santos, D.M.; Baptista, G.T.; Moreno, A.; Andreotti, A.M.; Dekon, S.F. de C. Effect of Thermal Cycling and Disinfection on Microhardness of Acrylic Resin Denture Base. J. Med. Eng. Technol. 2013, 37, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Ozyilmaz, O.Y.; Akin, C. Effect of Cleansers on Denture Base Resins’ Structural Properties. J. Appl. Biomater. Funct. Mater. 2019, 17, 2280800019827797. [Google Scholar] [CrossRef]
- ISO 20795-1; Dentistry—Base Polymers—Part 1, Denture Base Polymers; 2nd ed. International Organization for Standardization: Geneva, Switzerland, 2013.
- ASTM D2240-15; Standard Test Methods for Rubber Property-Durometer Hardness. American Society for Testing and Materials: West Conshohocken, PA, USA, 2015.
- Çakmak, G.; Hess, J.A.; Dönmez, M.B.; Yılmaz, D.; Alhotan, A.; Schimmel, M.; Peutzfeldt, A.; Yilmaz, B. Effect of Polishing and Denture Cleansers on the Surface Roughness of New-Generation Denture Base Materials and Their Color Change after Cleansing. J. Prosthodont. 2024, 33, 783–790. [Google Scholar] [CrossRef]
- Ali, A.M.; Raghdaa, K.J. Evaluation and Comparison of The Effect of Repeated Microwave Irradiations on Some Mechanical and Physical Properties of Heat Cure Acrylic Resin and Valplast (Nylon) Denture Base Materials. J. Bagh Coll. Dent. 2011, 23, 6–10. [Google Scholar]
- Anwar, D.; Al-Kaisy, N.; Azhdar, B. Influence of Activated Bentonite Nanoclay/TiO2 on Antibiofilm and Mechanical Properties of PMMA Denture Base Nanocomposite. Mater. Res. Express 2025, 12, 045402. [Google Scholar] [CrossRef]
- Saen-Isara, T.; Dechkunakorn, S.; Anuwongnukroh, N.; Srikhirin, T.; Tanodekaew, S.; Wichai, W. Influence of the Cross-Linking Agent on Mechanical Properties of PMMA Powder with Compromised Particle Morphology. Int. Orthod. 2017, 15, 151–164. [Google Scholar] [CrossRef]
- Revilla-León, M.; Meyers, M.J.; Zandinejad, A.; Özcan, M. A Review on Chemical Composition, Mechanical Properties, and Manufacturing Work Flow of Additively Manufactured Current Polymers for Interim Dental Restorations. J. Esthet. Restor. Dent. 2019, 31, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Bayarsaikhan, E.; Lim, J.-H.; Shin, S.-H.; Park, K.-H.; Park, Y.-B.; Lee, J.-H.; Kim, J.-E. Effects of Postcuring Temperature on the Mechanical Properties and Biocompatibility of Three-Dimensional Printed Dental Resin Material. Polymers 2021, 13, 1180. [Google Scholar] [CrossRef] [PubMed]
- Hassanpour, M.; Narongdej, P.; Alterman, N.; Moghtadernejad, S.; Barjasteh, E. Effects of Post-Processing Parameters on 3D-Printed Dental Appliances: A Review. Polymers 2024, 16, 2795. [Google Scholar] [CrossRef] [PubMed]
- Gharechahi, J.; Asadzadeh, N.; Shahabian, F.; Gharechahi, M. Flexural Strength of Acrylic Resin Denture Bases Processed by Two Different Methods. J. Dent. Res. Dent. Clin. Dent. Prospects 2014, 8, 148–152. [Google Scholar] [CrossRef]
- Gad, M.M.; Fouda, S.M. Factors Affecting Flexural Strength of 3D-Printed Resins: A Systematic Review. J. Prosthodont. 2023, 32, 96–110. [Google Scholar] [CrossRef]
- Al-Dulaijan, Y.A.; Alsulaimi, L.; Alotaibi, R.; Alboainain, A.; Akhtar, S.; Khan, S.Q.; Al-Ghamdi, M.; Gad, M.M. Effect of Printing Orientation and Postcuring Time on the Flexural Strength of 3D-Printed Resins. J. Prosthodont. 2023, 32, 45–52. [Google Scholar] [CrossRef]
- An, S.; Tazikeh, M.; Sa, S.; Wang, T.; Cameron, A. Impact of Isopropanol Post-Washing Duration and Post-Polymerization Devices on Flexural Properties of 3D-Printed Denture Base: An in-Vitro Study. Digit. Dent. J. 2025, 2, 100020. [Google Scholar] [CrossRef]
- Alifui-Segbaya, F.; Bowman, J.; White, A.R.; George, R.; Fidan, I. Characterization of the Double Bond Conversion of Acrylic Resins for 3D Printing of Dental Prostheses. Compend. Contin. Educ. Dent. 2019, 40, e7–e11. [Google Scholar]
- Gad, M.M.; Alshehri, S.Z.; Alhamid, S.A.; Albarrak, A.; Khan, S.Q.; Alshahrani, F.A.; Alqarawi, F.K. Water Sorption, Solubility, and Translucency of 3D-Printed Denture Base Resins. Dent. J. 2022, 10, 42. [Google Scholar] [CrossRef]
- Abdulwahhab, S.S. High-Impact Strength Acrylic Denture Base Material Processed by Autoclave. J. Prosthodont. Res. 2013, 57, 288–293. [Google Scholar] [CrossRef]
- Amin, F.; Akram, S.; Shaikh, A.A. Denture Cleansers Affect the Mechanical Behavior of Heat Polymerized Acrylic Resins. J. Pakistan Dent. Assoc. 2015, 24, 87–92. [Google Scholar]
- Aziz, H.K. Comparisons the Microhardness of Different Cured Acrylic Denture Base Systems after Subjected to Chemical Cleaning Solutions. Mustansiria Dent. J. 2013, 10, 77–87. [Google Scholar] [CrossRef]
- Rapone, B.; Pedone, S.; Carnevale, A.; Plantamura, P.; Scarano, A.; Demelio, A.; Demelio, G.P.; Corsalini, M. Profilometer Comparison of the Surface Roughness of Four Denture Base Resins: An In Vitro Study. Appl. Sci. 2022, 12, 1837. [Google Scholar] [CrossRef]
- Gad, M.M.; Fouda, S.M.; ArRejaie, A.S.; Al-Thobity, A.M. Comparative Effect of Different Polymerization Techniques on the Flexural and Surface Properties of Acrylic Denture Bases. J. Prosthodont. 2019, 28, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Fotovat, F.; Abassi, S.; Nikanjam, S.; Alafchi, B.; Baghiat, M. Effects of Various Disinfectants on Surface Roughness and Color Stability of Thermoset and 3D-Printed Acrylic Resin. Eur. J. Transl. Myol. 2024, 34, 11701. [Google Scholar] [CrossRef]
- Elbanna, A.A.A.; Harby, N.M.; Hamam, F.A. 3D-Printed Resin Showed Higher Water Sorption than Heat-Cured PMMA and Polyamide. J. Angiother. 2024, 8, 1–5. [Google Scholar] [CrossRef]
- Dimitrova, M.; Vlahova, A.; Hristov, I.; Kazakova, R.; Chuchulska, B.; Kazakov, S.; Forte, M.; Granberg, V.; Barile, G.; Capodiferro, S.; et al. Evaluation of Water Sorption and Solubility of 3D-Printed, CAD/CAM Milled, and PMMA Denture Base Materials Subjected to Artificial Aging. J. Compos. Sci. 2023, 7, 339. [Google Scholar] [CrossRef]
Immersion Solution/Manufacturer | Composition | Preparation and Immersion |
---|---|---|
Distilled water (D.W.) | - | Specimens were placed in distilled water at room temperature throughout the study, which was changed every 8 h. |
HYPOSOL® 5% Sodium Hypochlorite, Prevest DenPro Limited, Jammu, India (NaOCl) | Sodium hypochlorite solution, 5% active chlorine. | Diluted to 1% by mixing 50 mL of the solution with 200 mL of water, immersion time of 10 min at room temperature [16,19,34,37]. |
Superdent tablet, Reckitt Benckiser Healthcare Ltd., Hull, UK | Sodium sulphate, sodium bicarbonate, citric acid, malic acid, sodium carbonate, potassium caroate, sodium carbonate peroxide, PEG-150, PEG-90, sulfamic acid, aroma, aqua, sodium chloride, potassium persulfate, sodium C10-13 alkyl benzenesulfonate, CL 45430. | One tablet is prepared in 200 mL of 35 °C water, with an immersion time of 15 min at room temperature, according to the manufacturer’s instructions. |
KIN Oro tablet, Helago-Pharma GmbH & Co. KG, Parchim, Germany | Sodium bicarbonate, sodium carbonate, citric acid, potassium caroate, sodium lauryl sulfate, sorbitol, sodium lauryl sulfatoacetate, PVP/VA copolymer, aroma, Cl73015. |
Tested Properties | Immersion Solutions | Resins Mean ± SD | ||
---|---|---|---|---|
Heat-Cured | 3D-Printed | p-Value | ||
Flexural strength (MPa) | Distilled Water | 129.91 ± 15.95 | 118.82 ± 6.45 | 0.057 |
Sodium Hypochlorite | 119.27 ± 9.78 | 112.46 ± 8.82 | 0.119 | |
Superdent Tablet | 124.12 ± 15.63 | 111.48 ± 12.31 | 0.060 | |
Kin Oro Tablet | 124.28 ± 15.34 | 116.43 ± 9.95 | 0.123 | |
p-value | 0.445 | 0.204 | ||
Flexural modulus (MPa) | Distilled Water | 4331.27 ± 241.87 | 3276.88 ± 167.43 | 0.000 |
Sodium Hypochlorite | 4227.73 ± 176.37 | 3242.78 ± 226.97 | 0.000 | |
Superdent Tablet | 4246.02 ± 240.29 | 3293.79 ± 185.59 | 0.000 | |
Kin Oro Tablet | 4211.28 ± 191.76 | 3332.17 ± 168.89 | 0.000 | |
p-value | 0.484 | 0.763 | ||
Hardness (Shore-D) | Distilled Water | 91.73 ± 1.08 | 88.84 ± 0.60 | 0.000 |
Sodium Hypochlorite | 89.93 ± 0.96 * | 86.97 ± 0.99 *a | 0.000 | |
Superdent Tablet | 89.62 ± 1.41 * | 88.11 ± 0.83 a | 0.009 | |
Kin Oro Tablet | 88.81 ± 1.13 * | 87.88 ± 1.18 | 0.088 | |
p-value | 0.000 | 0.001 | ||
Roughness (Ra, µm) | Distilled Water | 0.0616 ± 0.0145 | 0.0654 ± 0.0041 | 0.455 |
Sodium Hypochlorite | 0.0678 ± 0.0117 | 0.0680 ± 0.0053 | 0.966 | |
Superdent Tablet | 0.0624 ± 0.0124 | 0.0701 ± 0.0034 | 0.085 | |
Kin Oro Tablet | 0.0646 ± 0.0094 | 0.0702 ± 0.0036 | 0.106 | |
p-value | 0.677 | 0.043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khasraw, S.A.; Abdulkareem, J.F. Comparison of Flexural Strength, Hardness, and Surface Roughness of Heat-Cured and 3D-Printed Acrylic Resin Materials After Immersion in Different Disinfectants: An In Vitro Comparative Study. Oral 2025, 5, 81. https://doi.org/10.3390/oral5040081
Khasraw SA, Abdulkareem JF. Comparison of Flexural Strength, Hardness, and Surface Roughness of Heat-Cured and 3D-Printed Acrylic Resin Materials After Immersion in Different Disinfectants: An In Vitro Comparative Study. Oral. 2025; 5(4):81. https://doi.org/10.3390/oral5040081
Chicago/Turabian StyleKhasraw, Sanar A., and Jwan F. Abdulkareem. 2025. "Comparison of Flexural Strength, Hardness, and Surface Roughness of Heat-Cured and 3D-Printed Acrylic Resin Materials After Immersion in Different Disinfectants: An In Vitro Comparative Study" Oral 5, no. 4: 81. https://doi.org/10.3390/oral5040081
APA StyleKhasraw, S. A., & Abdulkareem, J. F. (2025). Comparison of Flexural Strength, Hardness, and Surface Roughness of Heat-Cured and 3D-Printed Acrylic Resin Materials After Immersion in Different Disinfectants: An In Vitro Comparative Study. Oral, 5(4), 81. https://doi.org/10.3390/oral5040081