Sepia Melanin-Loaded Primary Human Gingival Keratinocytes: An In Vitro Model for Studies on Pigmented Gingiva
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture
2.3. Melanin Feeding Procedure
2.3.1. Phagocytosis of Melanin
2.3.2. Spectrophotometric Analysis of Melanin
2.4. Experiments on Pigmented HGK Model
2.4.1. Preparation of Toothpaste-Conditioned Medium (TCM)
2.4.2. Generation of In Vitro Sepia Melanin-Loaded HGK Model
2.4.3. Viability of Pigmented and Unpigmented HGKs after Treatment with TCM
2.5. Statistical Analysis
3. Results
3.1. Effects of Melanin Loading on HGKs
3.2. Effects of TCM on Pigmented and Unpigmented HGKs
4. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Groeger, S.E.; Meyle, J. Epithelial barrier and oral bacterial infection. Periodontology 2015, 69, 46–67. [Google Scholar] [CrossRef] [PubMed]
- Dummett, C.O.; Barens, G. Pigmentation of the oral tissues: A review of the literature. J. Periodontol. 1967, 38, 369–378. [Google Scholar] [CrossRef]
- Moneim, R.A.A.; El Deeb, M.; Rabea, A.A. Gingival pigmentation (cause, treatment and histological preview). Future Dent. J. 2017, 3, 1–7. [Google Scholar] [CrossRef]
- Masilana, A.; Khammissa, R.A.; Lemmer, J.; Feller, L. Physiological oral melanin pigmentation in a South African sample: A clinical study. J. Investig. Clin. Dent. 2017, 8, e12258. [Google Scholar] [CrossRef]
- Schroeder, H.E. Melanin containing organelles in cells of the human gingiva: II. Keratinocytes. J. Periodontal Res. 1969, 4, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Feller, L.; Masilana, A.; Khammissa, R.A.; Altini, M.; Jadwat, Y.; Lemmer, J. Melanin: The biophysiology of oral melanocytes and physiological oral pigmentation. Head Face Med. 2014, 10, 8. [Google Scholar] [CrossRef]
- Jha, N.; Ryu, J.J.; Wahab, R.; Al-Khedhairy, A.A.; Choi, E.H.; Kaushik, N.K. Treatment of oral hyperpigmentation and gummy smile using lasers and role of plasma as a novel treatment technique in dentistry: An introductory review. Oncotarget 2017, 8, 20496. [Google Scholar] [CrossRef] [Green Version]
- Bergamaschi, O.; Kon, S.; Doine, A.; Ruben, M. Melanin repigmentation after gingivectomy: A 5-year clinical and transmission electron microscopic study in humans. Int. J. Periodontics Restor. Dent. 1993, 13, 85–92. [Google Scholar]
- Rotbeh, A.; Kazeminia, M.; Rajati, F. Global prevalence of oral pigmentation and its related factors: A systematic review and meta-analysis. J. Stomatol. Oral Maxillofac. Surg. 2022, 123, e411–e424. [Google Scholar] [CrossRef]
- Rosebush, M.S.; Briody, A.N.; Cordell, K.G. Black and brown: Non-neoplastic pigmentation of the oral mucosa. Head Neck Pathol. 2019, 13, 47–55. [Google Scholar] [CrossRef]
- Peeran, S.W.; Ramalingam, K.; Peeran, S.A.; Altaher, O.B.; Alsaid, F.M.; Mugrabi, M.H. Gingival pigmentation index proposal of a new index with a brief review of current indices. Eur. J. Dent. 2014, 8, 287–290. [Google Scholar] [CrossRef] [Green Version]
- Nightingale, K.; Chinta, S.; Agarwal, P.; Nemelivsky, M.; Frisina, A.; Cao, Z.; Norman, R.; Fisch, G.; Corby, P. Toothbrush efficacy for plaque removal. Int. J. Dent. Hyg. 2014, 12, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Minwalla, L.; Zhao, Y.; Boissy, R.E.; Le Poole, I.C.; Wickett, R.R. Keratinocytes play a role in regulating distribution patterns of recipient melanosomes in vitro. J. Investig. Dermatol. 2001, 117, 341–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oral Care Market Size & Share to Surpass $51.37 Billion by 2030. Available online: https://www.globenewswire.com/en/news-release/2023/04/11/2644137/0/en/Oral-Care-Market-Size-Share-to-Surpass-51-37-Billion-by-2030-Vantage-Market-Research.html (accessed on 14 May 2023).
- Natesan, S.C.; Ramakrishnan, B.P.; Krishnapillai, R.; Thomas, P. Biophysiology of oral mucosal melanocytes. J. Health Sci. Res. 2019, 10, 47–51. [Google Scholar] [CrossRef]
- Vranic, E.; Lacevic, A.; Mehmedagic, A.; Uzunovic, A. Formulation ingredients for toothpastes and mouthwashes. Bosn. J. Basic Med. Sci. 2004, 4, 51. [Google Scholar] [CrossRef]
- Lippert, F. An introduction to toothpaste-its purpose, history and ingredients. In Toothpastes; Karger Publishers: Basel, Switzerland, 2013; Volume 23, pp. 1–14. [Google Scholar]
- Forward, G.C.; James, A.H.; Barnett, P.; Jackson, R.J. Gum health product formulations: What is in them and why? Periodontology 1997, 15, 32–39. [Google Scholar] [CrossRef]
- Jang, S.-O.; Shim, Y.-S.; Choi, Y.-R. Evaluation of cytotoxicity of child toothpaste. Sci. Adv. Mater. 2016, 8, 331–335. [Google Scholar] [CrossRef]
- Souza-Rodrigues, R.D.; Ferreira, S.d.S.; D’Almeida-Couto, R.S.; Lachowski, K.M.; Sobral, M.Â.P.; Marques, M.M. Choice of toothpaste for the elderly: An in vitro study. Braz. Oral Res. 2015, 29, S1806. [Google Scholar] [CrossRef] [Green Version]
- Kvam, E.; Dahle, J. Pigmented melanocytes are protected against ultraviolet-A-induced membrane damage. J. Investig. Dermatol. 2003, 121, 564–569. [Google Scholar] [CrossRef] [Green Version]
- Svensson, S.P.; Lindgren, S.; Powell, W.; Green, H. Melanin inhibits cytotoxic effects of doxorubicin and daunorubicin in MOLT 4 cells. Pigment. Cell Res. 2003, 16, 351–354. [Google Scholar] [CrossRef]
- Cardinali, G.; Bolasco, G.; Aspite, N.; Lucania, G.; Lotti, L.V.; Torrisi, M.R.; Picardo, M. Melanosome transfer promoted by keratinocyte growth factor in light and dark skin-derived keratinocytes. J. Investig. Dermatol. 2008, 128, 558–567. [Google Scholar] [CrossRef] [Green Version]
- Ebanks, J.P.; Koshoffer, A.; Wickett, R.R.; Schwemberger, S.; Babcock, G.; Hakozaki, T.; Boissy, R.E. Epidermal keratinocytes from light vs. dark skin exhibit differential degradation of melanosomes. J. Investig. Dermatol. 2011, 131, 1226–1233. [Google Scholar] [CrossRef] [Green Version]
- Man, M.-Q.; Lin, T.-K.; Santiago, J.L.; Celli, A.; Zhong, L.; Huang, Z.-M.; Roelandt, T.; Hupe, M.; Sundberg, J.P.; Silva, K.A. Basis for enhanced barrier function of pigmented skin. J. Investig. Dermatol. 2014, 134, 2399–2407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, K.; Aotaki-Keen, A.; Putkey, F.; Hjelmeland, L. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp. Eye Res. 1996, 62, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Boulton, M.E. Studying melanin and lipofuscin in RPE cell culture models. Exp. Eye Res. 2014, 126, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulton, M.; Marshall, J. Repigmentation of human retinal pigment epithelial cells in vitro. Exp. Eye Res. 1985, 41, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A. Melanogenesis in the ink gland of Sepia officinalis. Pigment. Cell Res. 2003, 16, 517–522. [Google Scholar] [CrossRef]
- Magarelli, M.; Passamonti, P.; Renieri, C. Purification, characterization and analysis of sepia melanin from commercial sepia ink (Sepia Officinalis). Rev. CES Med. Vet. Y Zootec. 2010, 5, 18–28. [Google Scholar]
- Koeberle, M.J.; Hughes, P.M.; Skellern, G.G.; Wilson, C.G. Binding of memantine to melanin: Influence of type of melanin and characteristics. Pharm. Res. 2003, 20, 1702–1709. [Google Scholar] [CrossRef]
- Schroeder, R.L.; Double, K.L.; Gerber, J.P. Using Sepia melanin as a PD model to describe the binding characteristics of neuromelanin–A critical review. J. Chem. Neuroanat. 2015, 64, 20–32. [Google Scholar] [CrossRef]
- Müller, M.; Elsässer, H.P. Alterations in the secretory pattern of dermal dendritic cells following melanin uptake. Cell Tissue Res. 2013, 352, 599–610. [Google Scholar] [CrossRef]
- Song, Q.; Risco, R.; Latina, M.; Berthiaume, F.; Nahmias, Y.; Yarmush, M. Selective targeting of pigmented retinal pigment epithelial (RPE) cells by a single pulsed laser irradiation: An in vitro study. Opt. Express 2008, 16, 10518–10528. [Google Scholar] [CrossRef]
- Seagle, B.-L.L.; Gasyna, E.M.; Mieler, W.F.; Norris, J.R. Photoprotection of human retinal pigment epithelium cells against blue light-induced apoptosis by melanin free radicals from Sepia officinalis. Proc. Natl. Acad. Sci. USA 2006, 103, 16644–16648. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Wang, T.-M.; Ming, Y.-C.; Yeh, Y.-M.; Chen, T.-Y.; Pang, J.-H.S. Melanin uptake reduces cell proliferation of human epidermal keratinocytes. J. Cosmet. Dermatol. Sci. Appl. 2015, 5, 300. [Google Scholar] [CrossRef] [Green Version]
- Goenka, S.; Simon, S.R. Depigmenting effect of Xanthohumol from hop extract in MNT-1 human melanoma cells and normal human melanocytes. Biochem. Biophys. Rep. 2021, 26, 100955. [Google Scholar] [CrossRef]
- Östergren, A.; Lindquist, N.G.; Brittebo, E.B. Differential effects of dopamine melanin on norharman-induced toxicity in PC12 cells. J. Neural Transm. 2007, 114, 909–918. [Google Scholar] [CrossRef]
- Östergren, A.; Svensson, A.L.; Lindquist, N.G.; Brittebo, E.B. Dopamine melanin-loaded PC12 cells: A model for studies on pigmented neurons. Pigment. Cell Res. 2005, 18, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Eves, P.; Smith-Thomas, L.; Hedley, S.; Wagner, M.; Balafa, C.; Neil, S.M. A comparative study of the effect of pigment on drug toxicity in human choroidal melanocytes and retinal pigment epithelial cells. Pigment. Cell Res. 1999, 12, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Yun, C.-Y.; Choi, N.; Lee, J.U.; Lee, E.J.; Kim, J.Y.; Choi, W.J.; Oh, S.H.; Sung, J.-H. Marliolide derivative induces melanosome degradation via Nrf2/p62-mediated autophagy. Int. J. Mol. Sci. 2021, 22, 3995. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.-I.; Sohn, K.-C.; Hong, D.-K.; Lee, Y.; Kim, C.D.; Yoon, T.-J.; Park, J.W.; Jung, S.; Lee, J.-H.; Lee, Y.H. Melanosome uptake is associated with the proliferation and differentiation of keratinocytes. Arch. Dermatol. Res. 2014, 306, 59–66. [Google Scholar] [CrossRef]
- Olchawa, M.M.; Szewczyk, G.M.; Zadlo, A.C.; Krzysztynska-Kuleta, O.I.; Sarna, T.J. The effect of aging and antioxidants on photoreactivity and phototoxicity of human melanosomes: An in vitro study. Pigment. Cell Melanoma Res. 2021, 34, 670–682. [Google Scholar] [CrossRef] [PubMed]
- Hellinen, L.; Hagström, M.; Knuutila, H.; Ruponen, M.; Urtti, A.; Reinisalo, M. Characterization of artificially re-pigmented ARPE-19 retinal pigment epithelial cell model. Sci. Rep. 2019, 9, 13761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Calle, I.; Soto-Gómez, D.; Pérez-Rodríguez, P.; López-Periago, J.E. Particle size characterization of sepia ink eumelanin biopolymers by SEM, DLS, and AF4-MALLS: A comparative study. Food Anal. Methods 2019, 12, 1140–1151. [Google Scholar] [CrossRef]
- Mbonyiryivuze, A.; Nuru, Z.; Ngom, B.D.; Mwakikunga, B.W.; Dhlamini, S.M.; Park, E.; Maaza, M. Morphological and chemical composition characterization of commercial sepia melanin. Am. J. Nanomater. 2015, 3, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Mbonyiryivuze, A.; Mwakikunga, B.W.; Dhlamini, S.M.; Maaza, M. Fourier transform infrared spectroscopy for sepia melanin. Phys. Mater. Chem. 2015, 3, 25–29. [Google Scholar]
- Katritzky, A.R.; Akhmedov, N.G.; Denisenko, S.N.; Denisko, O.V. 1H NMR spectroscopic characterization of solutions of Sepia melanin, Sepia melanin free acid and human hair melanin. Pigment. Cell Res. 2002, 15, 93–97. [Google Scholar] [CrossRef]
- Qi, C.; Peng, X.; Yuan, S.; Zhang, M.; Xu, X.; Cheng, X. Evaluation of the Antibacterial and Anti-Inflammatory Effects of a Natural Products-Containing Toothpaste. Front. Cell. Infect. Microbiol. 2022, 98, 827643. [Google Scholar] [CrossRef]
- Ando, H.; Niki, Y.; Yoshida, M.; Ito, M.; Akiyama, K.; Kim, J.H.; Yoon, T.J.; Lee, J.H.; Matsui, M.S.; Ichihashi, M. Keratinocytes in culture accumulate phagocytosed melanosomes in the perinuclear area. Pigment. Cell Melanoma Res. 2010, 23, 129–133. [Google Scholar] [CrossRef]
- Yussif, N.M.; Koranyb, N.; Abbassc, M. Evidence of the effect of intraepidermic vitamin C injection on melanocytes and keratinocytes in gingival tissues: In vivo study. Dentistry 2017, 7, 2161-1122. [Google Scholar] [CrossRef]
- Bridelli, M.; Ciati, A.; Crippa, P. Binding of chemicals to melanins re-examined: Adsorption of some drugs to the surface of melanin particles. Biophys. Chem. 2006, 119, 137–145. [Google Scholar] [CrossRef]
- Wiernek, B.K.; Pilawa, B.; Zdybel, M.; Buszman, E.; Wrześniok, D. Interaction of free radicals of DOPA-melanin-streptomycin complexes with paramagnetic oxygen O2. J. Appl. Biomed. 2014, 12, 161–169. [Google Scholar] [CrossRef]
- Gallagher, A.; Sowinski, J.; Bowman, J.; Barrett, K.; Lowe, S.; Patel, K.; Bosma, M.L.; Creeth, J.E. The effect of brushing time and dentifrice on dental plaque removal in vivo. Am. Dent. Hyg. Assoc. 2009, 83, 111–116. [Google Scholar]
- Winterfeld, T.; Schlueter, N.; Harnacke, D.; Illig, J.; Margraf-Stiksrud, J.; Deinzer, R.; Ganss, C. Toothbrushing and flossing behaviour in young adults—A video observation. Clin. Oral Investig. 2015, 19, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Camargo, S.E.A.; Milhan, N.V.M.; Saraiva, F.d.O.; Oliveira, J.R.d.; Oliveira, L.D.d.; Camargo, C.H.R. Are Desensitizing Toothpastes Equally Biocompatible and Effective Against Microorganisms? Braz. Dent. J. 2017, 28, 604–611. [Google Scholar] [CrossRef] [Green Version]
- Hicks, S.P.; Swindells, K.J.; Middelkamp-Hup, M.A.; Sifakis, M.A.; González, E.; González, S. Confocal histopathology of irritant contact dermatitis in vivo and the impact of skin color (black vs. white). J. Am. Acad. Dermatol. 2003, 48, 727–734. [Google Scholar] [CrossRef] [Green Version]
- Berardesca, E.; Maibach, H.I. Racial differences in sodium lauryl sulphate induced cutaneous irritation: Black and white. Contact Dermat. 1988, 18, 65–70. [Google Scholar] [CrossRef]
- Lee, E.; Kim, S.; Lee, J.; Cho, S.A.; Shin, K. Ethnic differences in objective and subjective skin irritation response: An international study. Ski. Res. Technol. 2014, 20, 265–269. [Google Scholar] [CrossRef]
- Groeger, S.; Schott, S.; Windhorst, A.; Meyle, J. Effects of Toothpaste on the Gingival Barrier Function in vitro. Oral Health Dent. Manag. 2016, 15, 3–4. [Google Scholar]
- Kalia, S.; Zhao, J.; Zeng, H.; McLean, D.; Kollias, N.; Lui, H. Melanin quantification by in vitro and in vivo analysis of near-infrared fluorescence. Pigment. Cell Melanoma Res. 2018, 31, 31–38. [Google Scholar] [CrossRef]
- Haywood, R.M.; Lee, M.; Linge, C. Synthetic melanin is a model for soluble natural eumelanin in UVA-photosensitised superoxide production. J. Photochem. Photobiol. B Biol. 2006, 82, 224–235. [Google Scholar] [CrossRef]
- Pecci-Lloret, M.P.; López-García, S.; Rodríguez-Lozano, F.J.; Álvarez-Novoa, P.; García-Bernal, D. In Vitro Biocompatibility of Several Children’s Toothpastes on Human Gingival Fibroblasts. Int. J. Environ. Res. Public Health 2022, 19, 2954. [Google Scholar] [CrossRef] [PubMed]
- Klausner, M.; Handa, Y.; Aizawa, S. In vitro three-dimensional organotypic culture models of the oral mucosa. In Vitro Cell. Dev. Biol. Anim. 2021, 57, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, B.; Yang, J.; Roohpour, N. Biologic evaluation of devices with chronic exposure using 3D human gingival model. Front. Bioeng. Biotech. 2016, 4, 01671. [Google Scholar]
- Brown, J.L.; Johnston, W.; Delaney, C.; Rajendran, R.; Butcher, J.; Khan, S.; Bradshaw, D.; Ramage, G.; Culshaw, S. Biofilm-stimulated epithelium modulates the inflammatory responses in co-cultured immune cells. Sci. Rep. 2019, 9, 15779. [Google Scholar] [CrossRef] [Green Version]
- Millhouse, E.; Jose, A.; Sherry, L.; Lappin, D.F.; Patel, N.; Middleton, A.M.; Pratten, J.; Culshaw, S.; Ramage, G. Development of an in vitro periodontal biofilm model for assessing antimicrobial and host modulatory effects of bioactive molecules. BMC Oral Health 2014, 14, 80. [Google Scholar] [CrossRef] [Green Version]
- Peyyala, R.; Kirakodu, S.; Novak, K.; Ebersole, J.L. Epithelial interleukin-8 responses to oral bacterial biofilms. Clin. Vaccine Immunol. 2011, 18, 1770–1772. [Google Scholar] [CrossRef] [Green Version]
- John, S.; Arun, K.; Talwar, A.; Ittycheria, P.G.; Cherian, S.A.; Clements, J. Assessment of Parameters Influencing Physiologic Gingival Pigmentation Using a Novel Classification System. Avicenna J. Dent. Res. 2019, 11, 111–115. [Google Scholar] [CrossRef]
- Batra, P.; Daing, A.; Azam, I.; Miglani, R.; Bhardwaj, A. Impact of altered gingival characteristics on smile esthetics: Laypersons’ perspectives by Q sort methodology. Am. J. Orthod. Dentofac. Orthop. 2018, 154, 82–90.e2. [Google Scholar] [CrossRef]
Toothpaste | Active Ingredients | Inactive Ingredients |
---|---|---|
Crest 3DWhite | Sodium fluoride 0.243% (0.15% w/v fluoride ion) | Water, sorbitol, hydrated silica, disodium pyrophosphate, sodium hydroxide, flavor, sodium lauryl sulfate, cellulose gum, sodium saccharin, carbomer, polysorbate 80, mica, titanium dioxide, blue 1 |
Sensodyne | Sodium fluoride 0.243% (0.15% w/v fluoride ion), Potassium nitrate 5% | Water, sorbitol, hydrated silica, glycerin, pentasodium triphosphate, PEG-8, sodium hydroxide, flavor, titanium dioxide, cocamidopropyl betaine, sodium methyl cocoyl taurate, xanthan gum, sodium saccharin, sucralose |
Colgate Optic White | Sodium fluoride 0.24% (0.15% w/v fluoride ion) | Water, sorbitol, hydrated silica, glycerin, pentasodium triphosphate, tetrapotassium pyrophosphate, PEG-12, sodium hydroxide, sodium saccharin, sodium lauryl sulfate, xanthan gum, cocamidopropyl betaine, flavor, cellulose gum, titanium dioxide |
Toothpaste | Unpigmented IC50 (% w/v) | Pigmented IC50 (% w/v) |
---|---|---|
Crest 3DWhite | 0.05 ± 0.04 a,b | 0.04 ± 0.01 c,d |
Sensodyne | 0.24 ± 0.01 | 0.20 ± 0.06 |
Colgate Optic White | 0.31 ± 0.11 | 0.28 ± 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goenka, S. Sepia Melanin-Loaded Primary Human Gingival Keratinocytes: An In Vitro Model for Studies on Pigmented Gingiva. Oral 2023, 3, 254-265. https://doi.org/10.3390/oral3020021
Goenka S. Sepia Melanin-Loaded Primary Human Gingival Keratinocytes: An In Vitro Model for Studies on Pigmented Gingiva. Oral. 2023; 3(2):254-265. https://doi.org/10.3390/oral3020021
Chicago/Turabian StyleGoenka, Shilpi. 2023. "Sepia Melanin-Loaded Primary Human Gingival Keratinocytes: An In Vitro Model for Studies on Pigmented Gingiva" Oral 3, no. 2: 254-265. https://doi.org/10.3390/oral3020021
APA StyleGoenka, S. (2023). Sepia Melanin-Loaded Primary Human Gingival Keratinocytes: An In Vitro Model for Studies on Pigmented Gingiva. Oral, 3(2), 254-265. https://doi.org/10.3390/oral3020021