The Management of Hematologic Patients with Bloodstream Infections Due to Multi-Drug Resistant Bacteria: Where Do We Stand? From Antibacterial Prophylaxis to the Treatment of Septic Shock
Abstract
:1. Introduction
1.1. Etiology
1.2. MDR Colonization and BSI
2. Antibiotic Prophylaxis
Guidelines
3. Sepsis/Septic Shock
3.1. Definition
3.2. Diagnosis
4. Treatment
- −
- High-risk patients (those with an expected severe neutropenia duration ≥7 days, for example HSCT recipients or this candidate for intensive chemotherapy);
- −
- Hemodynamic stability and illness severity;
- −
- Previous colonization by MDR bacteria, detected on routine swabs (ESBL or carbapenemases-producing Enterobacteriales (CPE), MRSA, VRE);
- −
- Previous infections by MDR bacteria;
- −
- Local epidemiological resistance patterns [31].
- The 2010 IDSA guidelines recommend that if no risk factors for complicated fever or MDR infection are present or suspected and the patient is stable, an escalation strategy should be performed, starting from a monotherapy with an anti-pseudomonal B-lactam agent, such as cephalosporin (e.g., cefepime), carbapenems (meropenem or imipenem−cilastatin) or piperacillin−tazobactam, covering the most common bacteria (AI) [36]. The guidelines report rising resistance rates among Gram-negative bacteria with the use of ceftazidime monotherapy, with the limited activity of this agent against Gram-positive bacteria. The latest ECIL guidelines are in line with this escalation approach in non-colonized, uncomplicated patients. Monotherapy with piperacillin/tazobactam or cefepime and ceftazidime (the latter not to be used as empirical monotherapy in a setting of high ESBL prevalence) is a valid option (AI). Altogether, in patients without critical presentation and no risk factors for resistance to other agents, ECIL recommends a carbapenem-sparing approach [32].
- Antibacterial spectrum should be broadened in cases of clinical worsening, documented infection, or isolation of resistant microorganisms. An anti-Gram-positive agent should be added if such an infection is suspected: evidence of central venous catether (CVC) dysfunction or infection, pneumonia, hemodynamic instability, soft tissue, or skin infection.
- In case of known colonization with MDR bacteria, mostly consistent with the use of whatever strategy of colonization study, a previous infection with resistant bacteria or a critical clinical presentation, a de-escalation approach is preferred, aiming at covering a wide spectrum of bacteria while awaiting the final etiological diagnosis and the possibility of de-escalate, then reducing the number of antibiotics or the spectrum of antibacterial treatment. Anti-microbial de-escalation is thought to decrease exposure to broad-spectrum antimicrobials and to prevent the emergence of anti-microbial resistance. Valid options of treatment are carbapenem monotherapy, for example in case of suspected ESBL Gram-negative infection, or combinations, as β Lactam/βlactamase inhibitor (BLBLI) plus aminoglycoside. A randomized trial on 379 patients with ESBL Gram-negative BSI (13% neutropenic) showed a survival advantage of meropenem with piperacillin/tazobactam monotherapy, although patients were exposed to very heterogeneous empirical antibiotic regimens before randomization [37]. In confirmed MDR BSI a combination treatment is required and old antibiotics (like fosfomycin and colistin) should not be given as monotherapy but with other drugs regarding the potential risk of generating resistant strains. Figure 2 summarizes bacterial susceptibility to the most relevant antibiotics.
4.1. Carbapenemases, Carbapenem-Resistant Enterobacteriacae, and Novel Antibiotics
- Class A β-lactamases include penicillinases and cephalosporinases, such as TEM, SHV, CTX-M, PER, VEB, GES, and IBC, with development of resistance to carboxypenicillins, ureidopenicillins, and aztreonam [48,49]. This class also comprises Klebsiella pneumoniae carbapenemases (KPC) enzymes and GES-2, which can hydrolyze carbapenems [49,50].
- Class C comprises intrinsic and inducible resistance mechanisms, such as AmpC-type cephalosporinase, not inhibited by clavulanic acid, tazobactam, and sulbactam. The structural modifications of AmpC may confer reduced susceptibility to new b-lactam-b-lactamase inhibitors (BLBLIs), ceftolozane/tazobactam, and ceftazidime/avibactam [50,51,52,53].
- Class D oxacillinases provide resistance to all penicillins, 3- and 4-generation cephalosporines (3GCs) and aztreonam. OXA enzymes such as OXA-198 are known mechanisms of carbapenem resistance [50,54]; other OXA b-lactamases (mainly OXA-48) express low activity against carbapenems, hydrolyzing imipenem better than meropenem [50,54].
4.2. Treatment Duration
4.3. Management of Critically Ill Neutropenic Patients
5. Conclusions and Key Points
Funding
Conflicts of Interest
References
- Mikulska, M.; Del Bono, V.; Raiola, A.M.; Bruno, B.; Gualandi, F.; Occhini, D.; di Grazia, C.; Frassoni, F.; Bacigalupo, A.; Viscoli, C. Blood stream infections in allogeneic hematopoietic stem cell transplant recipients: Reemergence of Gram-negative rods and increasing antibiotic resistance. Biol. Blood Marrow Transplant. 2009, 15, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.L.; de Souza, M.; Carvalho-Dias, V.M.; Ruiz, M.A.; Silla, L.; Tanaka, P.Y.; Simões, B.P.; Trabasso, P.; Seber, A.; Lotfi, C.J.; et al. Epidemiology of bacteremia and factors associated with multi-drug-resistant gram-negative bacteremia in hematopoietic stem cell transplant recipients. Bone Marrow Transplant. 2007, 39, 775–781. [Google Scholar] [CrossRef] [Green Version]
- Poutsiaka, D.D.; Munson, D.; Price, L.L.; Chan, G.W.; Snydman, D.R. Blood stream infection (BSI) and acute GVHD after hematopoietic SCT (HSCT) are associated. Bone Marrow Transplant. 2011, 46, 300–307. [Google Scholar] [CrossRef]
- Blennow, O.; Ljungman, P.; Sparrelid, E.; Mattsson, J.; Remberger, M. Incidence, risk factors, and outcome of bloodstream infections during the pre-engraftment phase in 521 allogeneic hematopoietic stem cell transplantations. Transpl. Infect. Dis. 2014, 16, 106–114. [Google Scholar] [CrossRef]
- Young, J.H.; Logan, B.R.; Wu, J.; Wingard, J.R.; Weisdorf, D.J.; Mudrick, C.; Knust, K.; Horowitz, M.M.; Confer, D.L.; Dubberke, E.R.; et al. Infections after Transplantation of Bone Marrow or Peripheral Blood Stem Cells from Unrelated Donors. Biol. Blood Marrow Transplant. 2016, 22, 359–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EORTC. International Antimicrobial Therapy Cooperative Group Gram-positive bacteraemia in granulocytopenic cancer patients. Eur. J. Cancer 1990, 26, 569–574. [Google Scholar] [CrossRef]
- Mikulska, M.; Viscoli, C.; Orasch, C.; Livermore, D.M.; Averbuch, D.; Cordonnier, C.; Akova, M. Aetiology and resistance in bacteraemias among adult and paediatric haematology and cancer patients. J. Infect. 2014, 68, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Tatarelli, P.; Mikulska, M. Multidrug-resistant bacteria in hematology patients: Emerging threats. Future Microbiol. 2016, 11, 767–780. [Google Scholar] [CrossRef]
- Tumbarello, M.; Spanu, T.; Caira, M.; Trecarichi, E.M.; Laurenti, L.; Montuori, E.; Fianchi, L.; Leone, F.; Fadda, G.; Cauda, R.; et al. Factors associated with mortality in bacteremic patients with hematologic malignancies. Diagn. Microbiol. Infect. Dis. 2009, 64, 320–326. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.J.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Viscoli, C.; Varnier, O.; Machetti, M. Infections in patients with febrile neutropenia: Epidemiology, microbiology, and risk stratification. Clin. Infect. Dis. 2005, 40, S240–S245. [Google Scholar] [CrossRef] [PubMed]
- Klastersky, J.; Ameye, L.; Maertens, J.; Georgala, A.; Muanza, F.; Aoun, M.; Ferrant, A.; Rapoport, B.; Rolston, K.; Paesmans, M. Bacteraemia in febrile neutropenic cancer patients. Int. J. Antimicrob. Agents 2007, 30, S51–S59. [Google Scholar] [CrossRef] [PubMed]
- Averbuch, D.; Tridello, G.; Hoek, J.; Mikulska, M.; Akan, H.; Segundo, L.Y.S.; Pabst, T.; Özçelik, T.; Klyasova, G.; Donnini, I.; et al. Antimicrobial Resistance in Gram-Negative Rods Causing Bacteremia in Hematopoietic Stem Cell Transplant Recipients: Intercontinental Prospective Study of the Infectious Diseases Working Party of the European Bone Marrow Transplantation Group. Clin. Infect. Dis. 2017, 65, 1819–1828. [Google Scholar] [CrossRef] [PubMed]
- Trecarichi, E.M.; Pagano, L.; Martino, B.; Candoni, A.; Di Blasi, R.; Nadali, G.; Fianchi, L.; Delia, M.; Sica, S.; Perriello, V.; et al. Bloodstream infections caused by Klebsiella pneumoniae in onco-hematological patients: Clinical impact of carbapenem resistance in a multicentre prospective survey. Am. J. Hematol. 2016, 91, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Puerta-Alcalde, P.; Cardozo, C.; Marco, F.; Suárez-Lledó, M.; Moreno, E.; Morata, L.; Fernández-Avilés, F.; Gutiérrez-Garcia, G.; Chumbita, M.; Rosiñol, L.; et al. Changing epidemiology of bloodstream infection in a 25-years hematopoietic stem cell transplant program: Current challenges and pitfalls on empiric antibiotic treatment impacting outcomes. Bone Marrow Transplant. 2020, 55, 603–612. [Google Scholar] [CrossRef]
- Girmenia, C.; Rossolini, G.M.; Piciocchi, A.; Bertaina, A.; Pisapia, G.; Pastore, D.; Sica, S.; Severino, A.; Cudillo, L.; Ciceri, F.; et al. Infections by carbapenem-resistant Klebsiella pneumoniae in SCT recipients: A nationwide retrospective survey from Italy. Bone Marrow Transplant. 2015, 50, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Girmenia, C.; Bertaina, A.; Piciocchi, A.; Perruccio, K.; Algarotti, A.; Busca, A.; Cattaneo, C.; Raiola, A.M.; Guidi, S.; Iori, A.P.; et al. Incidence, Risk Factors and Outcome of Pre-engraftment Gram-Negative Bacteremia After Allogeneic and Autologous Hematopoietic Stem Cell Transplantation: An Italian Prospective Multicenter Survey. Clin. Infect. Dis. 2017, 65, 1884–1896. [Google Scholar] [CrossRef]
- Gafter-Gvili, A.; Fraser, A.; Paul, M.; Vidal, L.; Lawrie, T.A.; Van De Wetering, M.D.; Kremer, L.C.M.; Leibovici, L. Antibiotic prophylaxis for bacterial infections in afebrile neutropenic patients following chemotherapy. Cochrane Database Syst. Rev. 2012, 2012, CD004386. [Google Scholar] [CrossRef]
- Kern, W.V.; Weber, S.; Dettenkofer, M.; Kaier, K.; Bertz, H.; Behnke, M.; Weisser, M.; Götting, T.; Widmer, A.F.; Theilacker, C. Impact of fluoroquinolone prophylaxis during neutropenia on bloodstream infection: Data from a surveillance program in 8755 patients receiving high-dose chemotherapy for haematologic malignancies between 2009 and 2014. J. Infect. 2018, 77, 68–74. [Google Scholar] [CrossRef]
- Owattanapanich, W.; Chayakulkeeree, M. Efficacy of levofloxacin as an antibacterial prophylaxis for acute leukemia patients receiving intensive chemotherapy: A systematic review and meta-analysis. Hematology 2019, 24, 362–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, S.-I.; Akahoshi, Y.; Nakano, H.; Ugai, T.; Wada, H.; Yamasaki, R.; Ishihara, Y.; Kawamura, K.; Sakamoto, K.; Ashizawa, M.; et al. Antibiotic prophylaxis in hematopoietic stem cell transplantation. A meta-analysis of randomized controlled trials. J. Infect. 2014, 69, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Taplitz, R.A.; Kennedy, E.B.; Bow, E.J.; Crews, J.; Gleason, C.; Hawley, D.K.; Langston, A.A.; Nastoupil, L.J.; Rajotte, M.; Rolston, K.V.; et al. Antimicrobial prophylaxis for adult patients with cancer-related immunosuppression: ASCO and IDSA clinical practice guideline update. JCO 2018, 36, 3043–3054. [Google Scholar] [CrossRef] [PubMed]
- Ullmann, A.J.; On behalf of the Infectious Diseases Working Party of the German Society for Hematology and Medical Oncology (AGIHO/DGHO) and the DAG-KBT (German Working Group for Blood and Marrow Transplantation); Schmidt-Hieber, M.; Bertz, H.; Heinz, W.J.; Kiehl, M.; Krüger, W.; Mousset, S.; Neuburger, S.; Neumann, S.; et al. Infectious diseases in allogeneic haematopoietic stem cell transplantation: Prevention and prophylaxis strategy guidelines 2016. Ann. Hematol. 2016, 95, 1435–1455. [Google Scholar] [CrossRef] [Green Version]
- Kochanek, M.; Schalk, E.; von Bergwelt-Baildon, M.; Beutel, G.; Buchheidt, D.; Hentrich, M.; Henze, L.; Kiehl, M.; Liebregts, T.; von Lilienfeld-Toal, M.; et al. Management of sepsis in neutropenic cancer patients: 2018 guidelines from the Infectious Diseases Working Party (AGIHO) and Intensive Care Working Party (iCHOP) of the German Society of Hematology and Medical Oncology (DGHO). Ann. Hematol. 2019, 98, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef]
- Cecconi, M.; Evans, L.; Levy, M.; Rhodes, A. Sepsis and septic shock. Lancet 2018, 392, 75–87. [Google Scholar] [CrossRef]
- Levy, M.M.; Evans, L.E.; Rhodes, A. The Surviving Sepsis Campaign Bundle: 2018 Update. Crit. Care Med. 2018, 46, 997–1000. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Nathan, N.; Sculier, J.P.; Ameye, L.; Paesmans, M.; Bogdan-Dragos, G.; Meert, A.P. Sepsis and Septic Shock Definitions in Patients with Cancer Admitted in ICU. J. Intensive Care Med. 2019, 23, 0885066619894933. [Google Scholar] [CrossRef]
- Hansen, B.A.; Wendelbo, Ø.; Bruserud, Ø.; Hemsing, A.L.; Mosevoll, K.A.; Reikvam, H. Febrile Neutropenia in Acute Leukemia. Epidemiology, Etiology, Pathophysiology and Treatment. Mediterr. J. Hematol. Infect. Dis. 2020, 12, e2020009. [Google Scholar] [CrossRef] [PubMed]
- Averbuch, D.; Orasch, C.; Cordonnier, C.; Livermore, D.M.; Mikulska, M.; Viscoli, C.; Gyssens, I.C.; Kern, W.V.; Klyasova, G.; Marchetti, O.; et al. European guidelines for empirical antibacterial therapy for febrile neutropenic patients in the era of growing resistance: Summary of the 2011 4th European Conference on Infections in Leukemia. Haematologica 2013, 98, 1826–1835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Averbuch, D.; Cordonnier, C.; Livermore, D.M.; Mikulska, M.; Orasch, C.; Viscoli, C.; Gyssens, I.C.; Kern, W.V.; Klyasova, G.; Marchetti, O.; et al. Targeted therapy against multi-resistant bacteria in leukemic and hematopoietic stem cell transplant recipients: Guidelines of the 4th European Conference on Infections in Leukemia (ECIL-4, 2011). Haematologica 2013, 98, 1836–1847. [Google Scholar] [CrossRef] [Green Version]
- Scheich, S.; Weber, S.; Reinheimer, C.; Wichelhaus, T.A.; Hogardt, M.; Kempf, V.A.J.; Kessel, J.; Serve, H.; Steffen, B. Bloodstream infections with gram-negative organisms and the impact of multidrug resistance in patients with hematological malignancies. Ann. Hematol. 2018, 97, 2225–2234. [Google Scholar] [CrossRef]
- Gudiol, C.; Tubau, F.; Calatayud, L.; Garcia-Vidal, C.; Cisnal, M.; Sánchez-Ortega, I.; Duarte, R.; Calvo, M.; Carratalà, J. Bacteraemia due to multidrug-resistant Gram-negative bacilli in cancer patients: Risk factors, antibiotic therapy and outcomes. J. Antimicrob. Chemother. 2011, 66, 657–663. [Google Scholar] [CrossRef] [Green Version]
- Freifeld, A.G.; Bow, E.J.; Sepkowitz, K.A.; Boeckh, M.J.; Ito, J.I.; Mullen, C.A.; Raad, I.I.; Rolston, K.V.; Young, J.A.; Wingard, J.R. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin. Infect. Dis. 2011, 52, 56–93. [Google Scholar] [CrossRef] [Green Version]
- Harris, P.N.A.; Tambyah, P.A.; Lye, D.C.; Mo, Y.; Lee, T.H.; Yilmaz, M.; Alenazi, T.H.; Arabi, Y.; Falcone, M.; Bassetti, M.; et al. Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial. JAMA 2018, 320, 984–994. [Google Scholar] [CrossRef] [Green Version]
- Snyder, M.; Pasikhova, Y.; Baluch, A. Early Antimicrobial De-escalation and Stewardship in Adult Hematopoietic Stem Cell Transplantation Recipients: Retrospective Review. Open Forum Infect. Dis. 2017, 4, ofx226. [Google Scholar] [CrossRef]
- Gustinetti, G.; Raiola, A.M.; Varaldo, R.; Galaverna, F.; Gualandi, F.; Del Bono, V.; Bacigalupo, A.; Angelucci, E.; Viscoli, C.; Mikulska, M. De-Escalation and Discontinuation of Empirical Antibiotic Treatment in a Cohort of Allogeneic Hematopoietic Stem Cell Transplantation Recipients during the Pre-Engraftment Period. Biol. Blood Marrow Transplant. 2018, 24, 1721–1726. [Google Scholar] [CrossRef] [Green Version]
- Mokart, D.; Slehofer, G.; Lambert, J.; Sannini, A.; Chow-Chine, L.; Brun, J.P.; Berger, P.; Duran, S.; Faucher, M.; Blache, J.L.; et al. De-escalation of antimicrobial treatment in neutropenic patients with severe sepsis: Results from an observational study. Intensive Care Med. 2014, 40, 41–49. [Google Scholar] [CrossRef]
- Gutiérrez-Gutiérrez, B.; Salamanca, E.; de Cueto, M.; Hsueh, P.R.; Viale, P.; Paño-Pardo, J.R.; Venditti, M.; Tumbarello, M.; Daikos, G.; Cantón, R.; et al. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): A retrospective cohort study. Lancet Infect. Dis. 2017, 17, 726–734. [Google Scholar] [CrossRef]
- Paul, M.; Soares-Weiser, K.; Leibovici, L. Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for fever with neutropenia: Systematic review and meta-analysis. BMJ 2003, 326, 1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Zarychanski, R.; Light, B.; Parrillo, J.; Maki, D.; Simon, D.; Laporta, D.; Lapinsky, S.; Ellis, P.; Mirzanejad, Y.; et al. Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: A propensity-matched analysis. Crit. Care Med. 2010, 38, 1773–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- René, L.; Rello, J.; Silvio, T.F.; Salem, O.B.H.; Bauer, P.R.; Séguin, A.; van de Louw, A.; Metaxa, V.; Klouche, K.; Ignacio, M.L.; et al. Aminoglycosides in Immunocompromised Critically Ill Patients with Bacterial Pneumonia and Septic Shock: A Post-Hoc Analysis of a Prospective Multicenter Multinational Cohort. Shock 2020, 2. [Google Scholar] [CrossRef]
- Rello, J.; Sarda, C.; Mokart, D.; Arvaniti, K.; Akova, M.; Tabah, A.; Azoulay, E. Antimicrobial Stewardship in Hematological Patients at the intensive care unit: A global cross-sectional survey from the Nine-i Investigators Network. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 385–392. [Google Scholar] [CrossRef]
- Legrand, M.; Max, A.; Schlemmer, B.; Azoulay, E.; Gachot, B. The strategy of antibiotic use in critically ill neutropenic patients. Ann. Intensive Care 2011, 1, 2110–5820. [Google Scholar] [CrossRef] [Green Version]
- Vossen, M.G.; Milacek, C.; Thalhammer, F. Empirical antimicrobial treatment in haemato-/oncological patients with neutropenic sepsis. ESMO Open 2018, 3, e000348. [Google Scholar] [CrossRef] [Green Version]
- Wilson, H.; Török, M.E. Extended-spectrum b-lactamase-producing and carbapenemase-producing Enterobacteriaceae. Microb. Genom. 2018, 4. [Google Scholar] [CrossRef]
- Porreca, A.M.; Sullivan, K.V.; Gallagher, J.C. The epidemiology, evolution, and treatment of KPC-producing organisms. Curr. Infect. Dis. Rep. 2018, 20, 13. [Google Scholar] [CrossRef]
- Bush, K. Past and present perspectives on β-lactamases. Antimicrob. Agents Chemother. 2018, 62, e01076-18. [Google Scholar] [CrossRef] [Green Version]
- Walsh, T.R. The emergence and implications of metallo-beta-lactamases in Gram-negative bacteria. Clin. Microbiol. Infect. 2005, 11 (Suppl. 6), 2–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, T.R.; Toleman, M.A.; Poirel, L.; Nordmann, P. Metallo-beta-lactamases: The quiet before the storm? Clin. Microbiol. Rev. 2005, 18, 306–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacoby, G.A. AmpC β-Lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagacé-Wiens, P.R.S.; Walkty, A.; Denisuik, A.; Golden, A.; et al. Imipenem-relebactam and meropenem-vaborbactam: Two novel carbapenem-b-lactamase inhibitor combinations. Drugs 2018, 78, 65–98. [Google Scholar] [CrossRef]
- Bidair, M.; Zervos, M.; Sagan, O.S.; Zaitsev, V.; Loutit, J.S.; Dudley, M.N.; Vazquez, V. Clinical outcomes in adults with complicated urinary tract infections (cUTI), including acute pyelonephritis (AP) in TANGO 1, a phase 3 randomized, double-blind, double-dummy trial comparing meropenem–vaborbactam (M-V) with piperacillin-tazobactam (PT) [abstract no. P1289 plus poster]. In Proceedings of the 27th European Congress of Clinical Microbiology and Infectious Diseases, Vienna, Austria, 22–25 April 2007. [Google Scholar]
- Kaye, K.S.; Vazquez, J.; Mathers, A.; Daikos, G.; Alexander, E.; Loutit, J.S.; Zhang, S.; Dudley, M.N.; Cornely, O. Clinical outcomes of serious infections due to carbapenem-resistant enterobacteriaceae (CRE) in TANGO II a phase 3 randomized multinational open-label trial of meropenem–vaborbactam (MV) versus best available therapy (BAT). [abstract no. 1862]. In Proceedings of the IDWeek, San Diego, CA, USA, 4–8 October 2017. [Google Scholar]
- A Study of Meropenem-Vaborbactam Versus Piperacillin/Tazobactam in Participants with Hospital-Acquired and Ventilator-Associated Bacterial Pneumonia (TANGOIII), Clinicaltrials.gov, NCT02687906. Available online: https://clinicaltrials.gov/ct2/show/NCT03006679 (accessed on 10 November 2020).
- Lucasti, C.; Vasile, L.; Sandesc, D.; Venskutonis, D.; McLeroth, P.; Lala, M.; Rizk, M.L.; Brown, M.L.; Losada, M.C.; Pedley, A.; et al. Phase 2, dose-ranging study of relebactam with imipenem-cilastatin in subjects with complicated intra-abdominal infection. Antimicrob. Agents Chemother. 2016, 60, 6234–6243. [Google Scholar] [CrossRef] [Green Version]
- Motsch, J.; de Oliveira, C.; Stus, V.; Köksal, I.; Lyulko, O.; Boucher, H.W.; Kaye, K.S.; File, T.M.; Brown, M.L.; Khan, I. RESTORE-IMI 1: A multicenter, randomized, double-blind, comparator-controlled trial comparing the efficacy and safety of imipenem/relebactam versus colistin plus imipenem in patients with imipenem nonsusceptible bacterial infections. In Proceedings of the 28th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), Madrid, Spain, 21–24 April 2018. [Google Scholar]
- Imipenem/Relebactam/Cilastatin Versus Piperacillin/Tazobactam for Treatment of Participants with Bacterial Pneumonia (MK-7655A-014) (RESTORE-IMI 2), Clinicaltrial.gov, NCT02493764. Available online: https://clinicaltrials.gov/ct2/show/NCT02493764 (accessed on 10 November 2020).
- Bassetti, M.; Ariyasu, M.; Binkowitz, B.; Nagata, T.D.; Echols, R.M.; Matsunaga, Y.; Toyoizumi, K.; Doi, Y. Designing A Pathogen-Focused Study to Address the High Unmet Medical Need Represented By Carbapenem-Resistant Gram-Negative Pathogens—The International, Multicenter, Randomized, Open-Label, Phase 3 CREDIBLE-CR Study. Infect. Drug Resist. 2019, 12, 3607–3623. [Google Scholar] [CrossRef] [Green Version]
- Echols, R.; Ariyasu, M.; Nagata, T.D. Pathogen-focused Clinical Development to Address Unmet Medical Need: Cefiderocol Targeting Carbapenem Resistance. Clin. Infect. Dis. 2019, 69, S559–S564. [Google Scholar] [CrossRef] [Green Version]
- Hsueh, S.C.; Lee, Y.J.; Huang, Y.T.; Liao, C.H.; Tsuji, M.; Hsueh, P.R. In vitro activities of cefiderocol, ceftolozane/tazobactam, ceftazidime/avibactam and other comparative drugs against imipenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, and Stenotrophomonas maltophilia, all associated with bloodstream infections in Taiwan. J. Antimicrob. Chemother. 2019, 74, 380–386. [Google Scholar]
- Gudiol, C.; Cuervo, G.; Carratalà, J. Optimizing therapy of bloodstream infection due to extended-spectrum β-lactamase-producing Enterobacteriaceae. Curr. Opin. Crit. Care 2019, 25, 438–448. [Google Scholar] [CrossRef]
- Voulgaris, G.L.; Voulgari, M.L.; Falagas, M.E. Developments on antibiotics for multidrug resistant bacterial Gram-negative infections. Expert Rev. Anti-Infect. Ther. 2019, 17, 387–401. [Google Scholar] [CrossRef]
- Van de Wyngaert, Z.; Berthon, C.; Debarri, H.; Bories, C.; Bonnet, S.; Nudel, M.; Carpentier, B.; Legrand, C.; Barbieux, S.; Chauvet, P.; et al. Discontinuation of antimicrobial therapy in adult neutropenic haematology patients: A prospective cohort. Int. J. Antimicrob. Agents 2019, 53, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Guisado, M.; Espigado, I.; Martín-Peña, A.; Gudiol, C.; Royo-Cebrecos, C.; Falantes, J.; Vázquez-López, L.; Montero, M.I.; Rosso-Fernández, C.; de la Luz Martino, M.; et al. Optimisation of empirical antimicrobial therapy in patients with haematological malignancies and febrile neutropenia (How Long study): An open-label, randomised, controlled phase 4 trial. Lancet Haematol. 2017, 4, e573–e583. [Google Scholar] [CrossRef]
- Schmidt-Hieber, M.; Teschner, D.; Maschmeyer, G.; Schalk, E. Management of febrile neutropenia in the perspective of antimicrobial de-escalation and discontinuation. Expert Rev. Anti-Infect. Ther. 2019, 17, 983–995. [Google Scholar] [CrossRef] [PubMed]
- Verlinden, A.; Mikulska, M.; Knelange, N.S.; Averbuch, D.; Styczynski, J. Current antimicrobial practice in febrile neutropenia across Europe and Asia: The EBMT Infectious Disease Working Party survey. Bone Marrow Transplant. 2020, 55, 1588–1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legrand, M.; Max, A.; Peigne, V.; Mariotte, E.; Canet, E.; Debrumetz, A.; Lemiale, V.; Seguin, A.; Darmon, M.; Schlemmer, B.; et al. Survival in neutropenic patients with severe sepsis or septic shock. Crit. Care Med. 2012, 40, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Azoulay, E.; Mokart, D.; Pène, F.; Lambert, J.; Kouatchet, A.; Mayaux, J.; Vincent, F.; Nyunga, M.; Bruneel, F.; Laisne, L.M.; et al. Outcomes of critically ill patients with hematologic malignancies: Prospective multicenter data from France and Belgium--a groupe de recherche respiratoire en réanimation onco-hématologique study. J. Clin. Oncol. 2013, 31, 2810–2818. [Google Scholar] [CrossRef] [PubMed]
- Mokart, D.; Lambert, J.; Schnell, D.; Fouché, L.; Rabbat, A.; Kouatchet, A.; Lemiale, V.; Vincent, F.; Lengliné, E.; Bruneel, F.; et al. Delayed intensive care unit admission is associated with increased mortality in patients with cancer with acute respiratory failure. Leuk. Lymphoma 2013, 54, 1724–1729. [Google Scholar] [CrossRef]
- Azoulay, E.; Schellongowski, P.; Darmon, M.; Bauer, P.R.; Benoit, D.; Depuydt, P.; Divatia, J.V.; Lemiale, V.; van Vliet, M.; Meert, A.P.; et al. The Intensive Care Medicine research agenda on critically ill oncology and hematology patients. Intensive Care Med. 2017, 43, 1366–1382. [Google Scholar] [CrossRef]
- Azoulay, E.; Pène, F.; Darmon, M.; Lengliné, E.; Benoit, D.; Soares, M.; Vincent, F.; Bruneel, F.; Perez, P.; Lemiale, V.; et al. Managing critically Ill hematology patients: Time to think differently. Blood Rev. 2015, 29, 359–367. [Google Scholar] [CrossRef]
- Peyrony, O.; Chevret, S.; Meert, A.P.; Perez, P.; Kouatchet, A.; Pène, F.; Mokart, D.; Lemiale, V.; Demoule, A.; Nyunga, M.; et al. Direct admission to the intensive care unit from the emergency department and mortality in critically ill hematology patients. Ann. Intensive Care 2019, 9, 110. [Google Scholar] [CrossRef] [Green Version]
- Shimabukuro-Vornhagen, A.; Böll, B.; Kochanek, M.; Azoulay, É.; von Bergwelt-Baildon, M.S. Critical care of patients with cancer. CA Cancer J. Clin. 2016, 66, 496–517. [Google Scholar] [CrossRef] [PubMed]
- Wise, M.P.; Barnes, R.A.; Baudouin, S.V.; Howell, D.; Lyttelton, M.; Marks, D.I.; Morris, E.C.; Parry-Jones, N. Guidelines on the management and admission to intensive care of critically ill adult patients with haematological malignancy in the UK. Br. J. Haematol. 2015, 171, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Lengliné, E.; Mirouse, A.; Azoulay, E. Top ten tips for the management of critically ill hematopoietic stem cell transplantation recipients. Intensive Care Med. 2019, 45, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Lemiale, V.; Pons, S.; Mirouse, A.; Tudesq, J.J.; Hourmant, Y.; Mokart, D.; Pène, F.; Kouatchet, A.; Mayaux, J.; Nyunga, M.; et al. Sepsis and Septic Shock in Patients With Malignancies: A Groupe de Recherche Respiratoire en Réanimation Onco-Hématologique Study. Crit. Care Med. 2020, 48, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Bouteloup, M.; Perinel, S.; Bourmaud, A.; Azoulay, E.; Mokart, D.; Darmon, M. Outcomes in adult critically ill cancer patients with and without neutropenia: A systematic review and meta-analysis of the Groupe de Recherche en Réanimation Respiratoire du patient d’Onco-Hématologie (GRRR-OH). Oncotarget 2017, 8, 1860–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saillard, C.; Darmon, M.; Bisbal, M.; Sannini, A.; Chow-Chine, L.; Faucher, M.; Lengline, E.; Vey, N.; Blaise, D.; Azoulay, E.; et al. Critically ill allogenic HSCT patients in the intensive care unit: A systematic review and meta-analysis of prognostic factors of mortality. Bone Marrow Transplant. 2018, 53, 1233–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
MRSA | VRE | CRE | MDR PA | AB |
---|---|---|---|---|
Age (HA-MRSA > 65 ys, CA-MRSA younger) | Advanced age (>65 ys) | Advanced age (>65 ys) | Advanced age (>65 ys) | Advanced age (>65 ys) |
Prolonged or prior hospitalization (>HA-MRSA) | Transplant recipient | Transplant recipient | Neutropenia/immunosuppression | Critically ill patients admitted to ICU |
ICU admission | HD | Prior and prolonged ATB use last 90 days (notably glycopeptides, FQ, CIII-IV, anti-anaerobes, carbapenems) | Use of broad spectrum antibiotics | Prior and prolonged atb use last 90 days (notably AG, FQ, CIII and carbapenems) |
HD | Prolonged or prior hospitalization | Presence of invasive devices | Malnutrition | Burns and surgical wounds |
Indwelling line, catheters | ICU admission | ICU admission (with or without MV) | Structural lung disease | High CCI (notably diabetes, chronic lung, liver and renal diseases) |
Invasive procedures or recent surgery | Surgery | Decubitus ulcer | Malignancy | Prolonged or prior hospitalization |
Institutionalization | High CCI | Prolonged or prior hospitalization | Prolonged or prior hospitalization | Malignancy |
High CCI | Invasive devices | Poor functional state | Prior and prolonged ATB use last 90 days (notably AG, FQ, CIII and carbapenems) | Transplant recipient |
PWID | Prior and prolonged atb use last 90 days (notably vancomycin, FQ, CIII, anti-anaerobes, carbapenems) | Indwelling devices | Presence of invasive devices | Presence of invasive devices |
Athletes (>CA-MRSA) | Malignancy | Surgical interventions | Transplant recipient | HD |
Prior and prolonged ATB use last 90 days (>HA-MRSA) | Neutropenia/immunosuppression | Transfer between units | High CCI (notably diabetes, chronic lung, liver and renal diseases) | Severe underlying illness |
Crowded Living Enviroment (>CA-MRSA) | Institutionalization | High CCI (notably diabetes, chronic lung, liver and renale diseases) | ICU admission | Neutropenia/immunosuppression |
Bloodstream infections due to
|
Persistent infection despite ≥72 h of effective therapy |
Clinical instability despite anti-microbial therapy |
Sepsis and septic shock |
Severe complications (Endocarditis, septic thrombosis, abscess) |
Tunnel infection or port pocket site infection |
Main Objective | Intervention |
---|---|
Identify colonized patients with MDR bacteria | Monitor patients with rectal swab for ESBL, KPC, and PA MDR bacteria |
Initial anti-microbial treatment: escalation vs. de-escaltion strategy | Knowledge of the local epidemiology |
Source control | Consider CVC removal timely radiologic evaluation (CT scan, MRI etc.) |
Antibiotic stewardship programs | Education, audit, guidelines implementation, antibiotic cycling/restriction |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Secreto, C.; Busca, A.; Lupia, T.; Corcione, S.; De Rosa, F.G. The Management of Hematologic Patients with Bloodstream Infections Due to Multi-Drug Resistant Bacteria: Where Do We Stand? From Antibacterial Prophylaxis to the Treatment of Septic Shock. Hemato 2020, 1, 60-76. https://doi.org/10.3390/hemato1020010
Secreto C, Busca A, Lupia T, Corcione S, De Rosa FG. The Management of Hematologic Patients with Bloodstream Infections Due to Multi-Drug Resistant Bacteria: Where Do We Stand? From Antibacterial Prophylaxis to the Treatment of Septic Shock. Hemato. 2020; 1(2):60-76. https://doi.org/10.3390/hemato1020010
Chicago/Turabian StyleSecreto, Carolina, Alessandro Busca, Tommaso Lupia, Silvia Corcione, and Francesco Giuseppe De Rosa. 2020. "The Management of Hematologic Patients with Bloodstream Infections Due to Multi-Drug Resistant Bacteria: Where Do We Stand? From Antibacterial Prophylaxis to the Treatment of Septic Shock" Hemato 1, no. 2: 60-76. https://doi.org/10.3390/hemato1020010
APA StyleSecreto, C., Busca, A., Lupia, T., Corcione, S., & De Rosa, F. G. (2020). The Management of Hematologic Patients with Bloodstream Infections Due to Multi-Drug Resistant Bacteria: Where Do We Stand? From Antibacterial Prophylaxis to the Treatment of Septic Shock. Hemato, 1(2), 60-76. https://doi.org/10.3390/hemato1020010