A Review of Sterilization Methods and Their Commercial Impacts on Polysaccharide-Based Biomaterials
Abstract
1. Introduction
2. Sterilization Mechanisms and Their Effects on Polysaccharide Biomaterials
2.1. Ionizing Radiation
2.2. Electron Beam
2.3. Gamma Radiation
2.4. X-Ray
2.5. Ultraviolet Radiation
2.6. Ethylene Oxide
2.7. Autoclaving
2.8. Dry Heat
2.9. Ozone
2.10. Supercritical Carbon Dioxide
2.11. Cold Plasma
3. Safety and Performance Considerations for Biomaterial Sterilization
3.1. Migratory Effects Caused by Sterilization
Method | Mechanism | Effects on Polysaccharides | Potential Byproducts | Reference |
---|---|---|---|---|
Ethylene Oxide (EtO) | Alkylation, gaseous diffusion | Absorption into hydrophilic matrix; slow desorption | Residual EtO; cytotoxicity; potential DNA alkylation | [111] |
Autoclaving | Moist heat, hydrolysis | Glycosidic bond cleavage; structural degradation | Release of simple sugars; Maillard reaction forms mutagens | [112] |
Dry Heat | High-temperature thermal degradation | Dehydration of plasticizers like glycerol | Acrolein/thermal degradation products | [113] |
Gamma/E-Beam Radiation | Radiolysis via free radicals | Oxidative chain scission; sugar ring opening | Formaldehyde (from formyl radicals); acetic acid | [114] |
Ozone Sterilization | Strong oxidizer surface oxidation | Oxidation of sugar residues and additives | Aldehydes; carboxylic acid degradation of structural groups | [115] |
UV-C Radiation | Surface photolysis, oxidation | Limited penetration; surface oxidation | Surface-level carbonyls; aldehydes (low concentration) | [116] |
Supercritical CO2 | Penetrating, inert under typical conditions | Physically absorbed; minimal chemical reactivity | Minimal unless additives are used (H2O2/peracetic acid) | [81] |
3.2. Alteration of Physiochemical Properties
4. Commercial Advancements in Polysaccharides
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ritchie, H.; Samborska, V.; Roser, M. Plastic Pollution. Our World in Data 2023. Available online: https://ourworldindata.org/plastic-pollution#article-citation (accessed on 13 August 2025).
- Johnson, R. Polymers in Chemistry: Versatile Materials with Diverse Applications. J. Chem. 2023, 12, 002. [Google Scholar]
- Lu, J. Polymer Materials in Daily Life: Classification, Applications, and Future Prospects. E3S Web Conf. 2023, 406, 01034. [Google Scholar] [CrossRef]
- Velazco-Medel, M.A.; Camacho-Cruz, L.A.; Bucio, E. Modification of relevant polymeric materials for medical applications and devices. Med. Devices Sens. 2020, 3, e10073. [Google Scholar] [CrossRef]
- Rudin, A.; Choi, P. Chapter 1—Introductory Concepts and Definitions. In The Elements of Polymer Science & Engineering, 3rd ed.; Rudin, A., Choi, P., Eds.; Academic Press: Boston, MA, USA, 2013; pp. 1–62. [Google Scholar] [CrossRef]
- Speight, J.G. Chapter 14—Monomers, polymers, and plastics. In Handbook of Industrial Hydrocarbon Processes, 2nd ed.; Speight, J.G., Ed.; Gulf Professional Publishing: Boston, MA, USA, 2020; pp. 597–649. [Google Scholar] [CrossRef]
- Smith, O.; Brisman, A. Plastic Waste and the Environmental Crisis Industry. Crit. Criminol. 2021, 29, 289–309. [Google Scholar] [CrossRef]
- Mohanan, N.; Montazer, Z.; Sharma, P.K.; Levin, D.B. Microbial and Enzymatic Degradation of Synthetic Plastics. Front. Microbiol. 2020, 11, 580709. [Google Scholar] [CrossRef] [PubMed]
- Naderi Kalali, E.; Lotfian, S.; Entezar Shabestari, M.; Khayatzadeh, S.; Zhao, C.; Yazdani Nezhad, H. A critical review of the current progress of plastic waste recycling technology in structural materials. Curr. Opin. Green Sustain. Chem. 2023, 40, 100763. [Google Scholar] [CrossRef]
- OECD. Global Plastic Waste Set to Almost Triple by 2060, Says OECD. 2022. Available online: https://www.oecd.org/en/about/news/press-releases/2022/06/global-plastic-waste-set-to-almost-triple-by-2060.html (accessed on 19 August 2024).
- Ghasemlou, M.; Barrow, C.J.; Adhikari, B. The future of bioplastics in food packaging: An industrial perspective. Food Packag. Shelf Life 2024, 43, 101279. [Google Scholar] [CrossRef]
- Wellenreuther, C.; Wolf, A.; Zander, N. Cost competitiveness of sustainable bioplastic feedstocks—A Monte Carlo analysis for polylactic acid. Clean. Eng. Technol. 2022, 6, 100411. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, B.; Yang, G.; Gauthier, M. Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications. In Biomedical Science, Engineering and Technology; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Azevedo, H.S.; Reis, R.L. Enzymatic Degradation of Biodegradable Polymers and Strategies to Control Their Degradation Rate. In Biodegradable Systems in Tissue Engineering and Regenerative Medicine; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Apriyanto, A.; Compart, J.; Fettke, J. A review of starch, a unique biopolymer—Structure, metabolism and in planta modifications. Plant Sci. 2022, 318, 111223. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S. Major factors affecting the characteristics of starch based biopolymer films. Eur. Polym. J. 2021, 160, 110788. [Google Scholar] [CrossRef]
- De Luca, S.; Milanese, D.; Gallichi-Nottiani, D.; Cavazza, A.; Sciancalepore, C. Poly(lactic acid) and Its Blends for Packaging Application: A Review. Clean Technol. 2023, 5, 1304–1343. [Google Scholar] [CrossRef]
- Bhaskar, R.; Zo, S.M.; Narayanan, K.B.; Purohit, S.D.; Gupta, M.K.; Han, S.S. Recent development of protein-based biopolymers in food packaging applications: A review. Polym. Test. 2023, 124, 108097. [Google Scholar] [CrossRef]
- Ibrahim, N.I.; Shahar, F.S.; Sultan, M.T.H.; Shah, A.U.M.; Safri, S.N.A.; Mat Yazik, M.H. Overview of Bioplastic Introduction and Its Applications in Product Packaging. Coatings 2021, 11, 1423. [Google Scholar] [CrossRef]
- Atanase, L.-I. Biopolymers for Enhanced Health Benefits. Int. J. Mol. Sci. 2023, 24, 16251. [Google Scholar] [CrossRef]
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef]
- Royer, S.-J.; Greco, F.; Kogler, M.; Deheyn, D.D. Not so biodegradable: Polylactic acid and cellulose/plastic blend textiles lack fast biodegradation in marine waters. PLoS ONE 2023, 18, e0284681. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, W.; Huang, Y.; Wen, Y.; Chu, Y.; Zhao, C. Global seaweed farming and processing in the past 20 years. Food Prod. Process. Nutr. 2022, 4, 23. [Google Scholar] [CrossRef]
- Thiviya, P.; Gamage, A.; Liyanapathiranage, A.; Makehelwala, M.; Dassanayake, R.S.; Manamperi, A.; Merah, O.; Mani, S.; Koduru, J.R.; Madhujith, T. Algal polysaccharides: Structure, preparation and applications in food packaging. Food Chem. 2023, 405, 134903. [Google Scholar] [CrossRef]
- Sarangi, M.K.; Rao, M.E.B.; Parcha, V.; Yi, D.K.; Nanda, S.S. Chapter 22—Marine polysaccharides for drug delivery in tissue engineering. In Natural Polysaccharides in Drug Delivery and Biomedical Applications; Hasnain, M.S., Nayak, A.K., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 513–530. [Google Scholar] [CrossRef]
- Beaumont, M.; Tran, R.; Vera, G.; Niedrist, D.; Rousset, A.; Pierre, R.; Shastri, V.P.; Forget, A. Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications. Biomacromolecules 2021, 22, 1027–1052. [Google Scholar] [CrossRef]
- Mišurcová, L.; Škrovánková, S.; Samek, D.; Ambrožová, J.; Machů, L. Chapter 3—Health Benefits of Algal Polysaccharides in Human Nutrition. In Advances in Food and Nutrition Research; Henry, J., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 66, pp. 75–145. [Google Scholar] [CrossRef]
- Sionkowska, A. Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Prog. Polym. Sci. 2011, 36, 1254–1276. [Google Scholar] [CrossRef]
- Ashfaq, A.; Clochard, M.-C.; Coqueret, X.; Dispenza, C.; Driscoll, M.S.; Ulański, P.; Al-Sheikhly, M. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers 2020, 12, 2877. [Google Scholar] [CrossRef]
- Liang, W.; Zhao, W.; Liu, X.; Zheng, J.; Sun, Z.; Ge, X.; Shen, H.; Ospankulova, G.; Muratkhan, M.; Li, W. Understanding how electron beam irradiation doses and frequencies modify the multiscale structure, physicochemical properties, and in vitro digestibility of potato starch. Food Res. Int. 2022, 162, 111947. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Ye, X.; He, J.; Wang, R.; Jin, Z. Effects of electron beam irradiation on the properties of waxy maize starch and its films. Int. J. Biol. Macromol. 2020, 151, 239–246. [Google Scholar] [CrossRef]
- Cleland, M.; Galloway, R.; Genin, F.; Lindholm, M. The use of dose and charge distributions in electron beam processing. Radiat. Phys. Chem. 2002, 63, 729–733. [Google Scholar] [CrossRef]
- Driscoll, M.; Stipanovic, A.; Winter, W.; Cheng, K.; Manning, M.; Spiese, J.; Galloway, R.A.; Cleland, M.R. Electron beam irradiation of cellulose. Radiat. Phys. Chem. 2009, 78, 539–542. [Google Scholar] [CrossRef]
- Clinical Applicable Carboxymethyl Chitosan with Gel-Forming and Stabilizing Properties Based on Terminal Sterilization Methods of Electron Beam Irradiation|ACS Omega. Available online: https://pubs.acs.org/doi/full/10.1021/acsomega.4c01299 (accessed on 15 April 2025).
- Gryczka, U. Long-Term Radiation-Induced Effects on Solid State Chitosan. Prog. Chem. Appl. Chitin Its Deriv. 2021, 26, 80. [Google Scholar] [CrossRef]
- Iuliano, A.; Fabiszewska, A.; Kozik, K.; Rzepna, M.; Ostrowska, J.; Dębowski, M.; Plichta, A. Effect of Electron-Beam Radiation and Other Sterilization Techniques on Structural, Mechanical and Microbiological Properties of Thermoplastic Starch Blend. J. Polym. Environ. 2021, 29, 1489–1504. [Google Scholar] [CrossRef]
- Farno, M.; Lamarche, C.; Tenailleau, C.; Cavalié, S.; Duployer, B.; Cussac, D.; Parini, A.; Sallerin, B.; Girod Fullana, S. Low-energy electron beam sterilization of solid alginate and chitosan, and their polyelectrolyte complexes. Carbohydr. Polym. 2021, 261, 117578. [Google Scholar] [CrossRef]
- Lim, L.-Y.; Khor, E.; Koo, O. γ Irradiation of chitosan. J. Biomed. Mater. Res. 1998, 43, 282–290. [Google Scholar] [CrossRef]
- Li, B.; Li, J.; Xia, J.; Kennedy, J.F.; Yie, X.; Liu, T.G. Effect of gamma irradiation on the condensed state structure and mechanical properties of konjac glucomannan/chitosan blend films. Carbohydr. Polym. 2011, 83, 44–51. [Google Scholar] [CrossRef]
- Malinowski, M. Using X-ray Technology to Sterilize Medical Devices. Am. J. Biomed. Sci. Res. 2021, 12, 272–276. [Google Scholar] [CrossRef]
- Chung, K.-H.; Othman, Z.; Lee, J.-S. Gamma irradiation of corn starches with different amylose-to-amylopectin ratio. J. Food Sci. Technol. 2015, 52, 6218–6229. [Google Scholar] [CrossRef]
- Ibrahim, S.M. Characterization, mechanical, and thermal properties of gamma irradiated starch films reinforced with mineral clay. J. Appl. Polym. Sci. 2011, 119, 685–692. [Google Scholar] [CrossRef]
- Atrous, H.; Benbettaieb, N.; Chouaibi, M.; Attia, H.; Ghorbel, D. Changes in wheat and potato starches induced by gamma irradiation: A comparative macro and microscopic study. Int. J. Food Prop. 2017, 20, 1532–1546. [Google Scholar] [CrossRef]
- Abad, L.V.; Aranilla, C.T.; Relleve, L.S.; Dela Rosa, A.M. Emerging applications of radiation-modified carrageenans. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2014, 336, 167–172. [Google Scholar] [CrossRef]
- Choi, J.; Gu Lee, S.; Jong Han, S.; Cho, M.; Cheon Lee, P. Effect of gamma irradiation on the structure of fucoidan. Radiat. Phys. Chem. 2014, 100, 54–58. [Google Scholar] [CrossRef]
- Choi, J.; Kim, H.-J. Preparation of low molecular weight fucoidan by gamma-irradiation and its anticancer activity. Carbohydr. Polym. 2013, 97, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Choi, W.-S.; Byun, M.; Park, H.; Yu, Y.-M.; Lee, C. Effect of γ-Irradiation on Degradation of Alginate. J. Agric. Food Chem. 2003, 51, 4819–4823. [Google Scholar] [CrossRef]
- L’annunziata, M.F. (Ed.) Chapter 1—Nuclear Radiation, Its Interaction with Matter and Radioisotope Decay. In Handbook of Radioactivity Analysis, 2nd ed.; Academic Press: San Diego, CA, USA, 2003; pp. 1–121. [Google Scholar] [CrossRef]
- Tafti, D.; Maani, C.V. X-ray Production. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- De Kerf, M.; Mondelaers, W.; Lahorte, P.; Vervaet, C.; Remon, J.P. Characterisation and disintegration properties of irradiated starch. Int. J. Pharm. 2001, 221, 69–76. [Google Scholar] [CrossRef]
- Boardman, E.A.; Huang, L.S.; Robson-Hemmings, J.J.; Smeeton, T.M.; Hooper, S.E.; Heffernan, J. Deep Ultraviolet (UVC) Laser for Sterilisation and Fluorescence Applications; Sharp Technical Report: Sakai, Japan, 2012. [Google Scholar]
- de Almeida, M.T.G.; de Almeida, B.G.; Siqueira, J.P.Z.; Byzynski Soares, G.; Sigari Morais, V.; Mitsue Yasuoka, F.M.; Ghiglieno, F. Ultraviolet-C Light-emitting Device Against Microorganisms in Beauty Salons. Pathog. Immun. 2022, 7, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Bajer, D.; Kaczmarek, H.; Bajer, K. The structure and properties of different types of starch exposed to UV radiation: A comparative study. Carbohydr. Polym. 2013, 98, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Kurdziel, M.; Łabanowska, M.; Pietrzyk, S.; Pająk, P.; Królikowska, K.; Szwengiel, A. The effect of UV-B irradiation on structural and functional properties of corn and potato starches and their components. Carbohydr. Polym. 2022, 289, 119439. [Google Scholar] [CrossRef]
- Nowak, E.; Wisła-Świder, A.; Leszczyńska, T.; Koronowicz, A. Physicochemical and Molecular Properties of Spelt and Wheat Starches Illuminated with UV Light. Appl. Sci. 2023, 13, 2360. [Google Scholar] [CrossRef]
- Sedayu, B.B.; Cran, M.J.; Bigger, S.W. Effects of surface photocrosslinking on the properties of semi-refined carrageenan film. Food Hydrocoll. 2021, 111, 106196. [Google Scholar] [CrossRef]
- Prasetyaningrum, A.; Widayat, W.; Jos, B.; Dharmawan, Y.; Ratnawati, R. UV Irradiation and Ozone Treatment of κ-Carrageenan: Kinetics and Products Characteristics. Bull. Chem. React. Eng. Catal. 2020, 15, 319–330. [Google Scholar] [CrossRef]
- Wang, L.; Jayawardena, T.U.; Hyun, J.; Wang, K.; Fu, X.; Xu, J.; Gao, X.; Park, Y.; Jeon, Y.-J. Antioxidant and anti-photoaging effects of a fucoidan isolated from Turbinaria ornata. Int. J. Biol. Macromol. 2023, 225, 1021–1027. [Google Scholar] [CrossRef]
- Habibi, M.; Golmakani, M.-T.; Eskandari, M.H.; Hosseini, S.M.H. Potential prebiotic and antibacterial activities of fucoidan from Laminaria japonica. Int. J. Biol. Macromol. 2024, 268, 131776. [Google Scholar] [CrossRef] [PubMed]
- Meynaud, S.; Huet, G.; Brulé, D.; Gardrat, C.; Poinssot, B.; Coma, V. Impact of UV Irradiation on the Chitosan Bioactivity for Biopesticide Applications. Molecules 2023, 28, 4954. [Google Scholar] [CrossRef]
- Sionkowska, A.; Kaczmarek, B.; Gnatowska, M.; Kowalonek, J. The influence of UV-irradiation on chitosan modified by the tannic acid addition. J. Photochem. Photobiol. B Biol. 2015, 148, 333–339. [Google Scholar] [CrossRef]
- Chansoria, P.; Narayanan, L.K.; Wood, M.; Alvarado, C.; Lin, A.; Shirwaiker, R.A. Effects of Autoclaving, EtOH, and UV Sterilization on the Chemical, Mechanical, Printability, and Biocompatibility Characteristics of Alginate. ACS Biomater. Sci. Eng. 2020, 6, 5191–5201. [Google Scholar] [CrossRef]
- Iskandar, H.; Ramlan, E.; Zaman, W.S.W.K. (PDF) A Preliminary Investigation of UV Crosslinked Alginate-Based Hydrogel for Cardiac-Tissue Mimicking Material Potential. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Li, J.; Han, W.; Zhang, B.; Zhao, S.; Du, H. Structure and Physicochemical Properties of Resistant Starch Prepared by Autoclaving-Microwave. Starch-Stärke 2018, 70, 1800060. [Google Scholar] [CrossRef]
- Freeman, D.E. Chapter 10—Sterilization and Antiseptics. In Equine Surgery, 3rd ed.; Auer, J.A., Stick, J.A., Eds.; W.B. Saunders: Saint Louis, MO, USA, 2006; pp. 112–123. [Google Scholar] [CrossRef]
- Lachenmeier, D.W. Chapter 24—Antiseptic Drugs and Disinfectants. In Side Effects of Drugs Annual; Ray, S.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 36, pp. 339–346. [Google Scholar] [CrossRef]
- Mendes, G.C.C.; Brandão, T.R.S.; Silva, C.L.M. Ethylene oxide sterilization of medical devices: A review. Am. J. Infect. Control. 2007, 35, 574–581. [Google Scholar] [CrossRef]
- Lorson, T.; Ruopp, M.; Nadernezhad, A.; Eiber, J.; Vogel, U.; Jungst, T.; Lühmann, T. Sterilization Methods and Their Influence on Physicochemical Properties and Bioprinting of Alginate as a Bioink Component. ACS Omega 2020, 5, 6481–6486. [Google Scholar] [CrossRef] [PubMed]
- Stoppel, W.L.; White, J.C.; Horava, S.D.; Henry, A.C.; Roberts, S.C.; Bhatia, S.R. Terminal sterilization of alginate hydrogels: Efficacy and impact on mechanical properties. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Marreco, P.R.; Moreira, P.d.L.; Genari, S.C.; Moraes, Â.M. Effects of different sterilization methods on the morphology, mechanical properties, and cytotoxicity of chitosan membranes used as wound dressings. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2004, 71B, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhang, Y.; Cheng, J.-H.; Sun, D.-W. Inactivation of Listeria Monocytogenes at various growth temperatures by ultrasound pretreatment and cold plasma. LWT 2020, 118, 108635. [Google Scholar] [CrossRef]
- Liew, K.J.; Zhang, X.; Cai, X.; Ren, D.; Chen, J.; Chang, Z.; Chong, K.L.; Tan, M.C.Y.; Chong, C.S. The Biological Responses of Staphylococcus aureus to Cold Plasma Treatment. Processes 2023, 11, 1188. [Google Scholar] [CrossRef]
- Misra, N.N.; Yadav, B.; Roopesh, M.S.; Jo, C. Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 106–120. [Google Scholar] [CrossRef]
- Hofmann, S.; Stok, K.S.; Kohler, T.; Meinel, A.J.; Müller, R. Effect of sterilization on structural and material properties of 3-D silk fibroin scaffolds. Acta Biomater. 2014, 10, 308–317. [Google Scholar] [CrossRef]
- Hashimoto, T.; Nakamura, Y.; Tamada, Y.; Kurosu, H.; Kameda, T. The influence of thermal treatments on the secondary structure of silk fibroin scaffolds and their interaction with fibroblasts. PeerJ Mater. Sci. 2020, 2, e8. [Google Scholar] [CrossRef]
- Zheng, M.; Xiao, Y.; Yang, S.; Liu, H.; Liu, M.; Yaqoob, S.; Xu, X.; Liu, J. Effects of heat–moisture, autoclaving, and microwave treatments on physicochemical properties of proso millet starch. Food Sci. Nutr. 2020, 8, 735–743. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, L.; Sun, Z.; Ji, Y.; Wang, D.; Mei, L.; Shen, P.; Li, Z.; Tang, S.; Zhang, H.; et al. Fucoidan as a marine-origin prebiotic modulates the growth and antibacterial ability of Lactobacillus rhamnosus. Int. J. Biol. Macromol. 2021, 180, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Ofori-Kwakye, K.; Martin, G.P. Viscoelastic characterisation of calcium alginate gels intended for wound healing. J. Sci. Technol. 2005, 25, 46–52. [Google Scholar] [CrossRef]
- Juan, A.S.; Montembault, A.; Gillet, D.; Say, J.P.; Rouif, S.; Bouet, T.; Royaud, I.; David, L. Degradation of chitosan-based materials after different sterilization treatments. IOP Conf. Ser. Mater. Sci. Eng. 2012, 31, 012007. [Google Scholar] [CrossRef]
- Gossla, E.; Tonndorf, R.; Bernhardt, A.; Kirsten, M.; Hund, R.-D.; Aibibu, D.; Cherif, C.; Gelinsky, M. Electrostatic flocking of chitosan fibres leads to highly porous, elastic and fully biodegradable anisotropic scaffolds. Acta Biomater. 2016, 44, 267–276. [Google Scholar] [CrossRef]
- Ribeiro, N.; Soares, G.C.; Santos-Rosales, V.; Concheiro, A.; Alvarez-Lorenzo, C.; García-González, C.A.; Oliveira, A.L. A new era for sterilization based on supercritical CO2 technology. J. Biomed. Mater. Res. 2020, 108, 399–428. [Google Scholar] [CrossRef]
- Pflug, J.J.; Holcomb, R.; Gomez, M. Principles of thermal destruction of microorganisms. In Disinfection, Sterilization and Preservation, 5th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001. [Google Scholar]
- Rogers, W.J. Chapter 4—The effects of sterilization on medical materials and welded devices. In Joining and Assembly of Medical Materials and Devices; Zhou, Y., Breyen, M.D., Eds.; Woodhead Publishing: Cambridge, UK, 2013; pp. 79–130. [Google Scholar] [CrossRef]
- Green, H.; Kidd, J.; Jackson, L.S. Novel and Emerging Cleaning and Sanitization Technologies. In Encyclopedia of Food Safety, 2nd ed.; Smithers, G.W., Ed.; Academic Press: Oxford, UK, 2024; pp. 739–745. [Google Scholar] [CrossRef]
- Mohd Adzahan, N.; Dzulkifly, M.H.; Abdul Rahman, R. Effect of heat treatment on the physico-chemical properties of starch from different botanical sources. Int. Food Res. J. 2010, 17, 127–135. [Google Scholar]
- Liu, K.; Hao, Y.; Chen, Y.; Gao, Q. Effects of dry heat treatment on the structure and physicochemical properties of waxy potato starch. Int. J. Biol. Macromol. 2019, 132, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Eha, K.; Pehk, T.; Heinmaa, I.; Kaleda, A.; Laos, K. Impact of short-term heat treatment on the structure and functional properties of commercial furcellaran compared to commercial carrageenans. Heliyon 2021, 7, e06640. [Google Scholar] [CrossRef]
- Ouyang, Q.-Q.; Hu, Z.; Li, S.-D.; Quan, W.-Y.; Wen, L.-L.; Yang, Z.-M.; Li, P.-W. Thermal degradation of agar: Mechanism and toxicity of products. Food Chem. 2018, 264, 277–283. [Google Scholar] [CrossRef]
- Mao, B.; Bentaleb, A.; Louerat, F.; Divoux, T.; Snabre, P. Heat-induced aging of agar solutions: Impact on the structural and mechanical properties of agar gels. Food Hydrocoll. 2017, 64, 59–69. [Google Scholar] [CrossRef]
- Soazo, M.; Báez, G.; Barboza, A.; Busti, P.A.; Rubiolo, A.; Verdini, R.; Delorenzi, N.J. Heat treatment of calcium alginate films obtained by ultrasonic atomizing: Physicochemical characterization. Food Hydrocoll. 2015, 51, 193–199. [Google Scholar] [CrossRef]
- Lim, L.Y.; Khor, E.; Ling, C.E. Effects of dry heat and saturated steam on the physical properties of chitosan. J. Biomed. Mater. Res. 1999, 48, 111–116. [Google Scholar] [CrossRef]
- Epelle, E.I.; Macfarlane, A.; Cusack, M.; Burns, A.; Okolie, J.A.; Vichare, P.; Rolland, L.; Yaseen, M. Ozone Decontamination of Medical and Nonmedical Devices: An Assessment of Design and Implementation Considerations. Ind. Eng. Chem. Res. 2023, 62, 4191–4209. [Google Scholar] [CrossRef]
- Jerrett, M.; Burnett, R.T.; Pope, C.A.; Ito, K.; Thurston, G.; Krewski, D.; Shi, Y.; Calle, E.; Thun, M. Long-Term Ozone Exposure and Mortality. N. Engl. J. Med. 2009, 360, 1085–1095. [Google Scholar] [CrossRef]
- Middleton, J.; Burks, B.; Wells, T.; Setters, A.M.; Jasiuk, I.; Predecki, P.; Hoffman, J.; Kumosa, M. The effect of ozone on polymer degradation in Polymer Core Composite Conductors. Polym. Degrad. Stab. 2013, 98, 436–445. [Google Scholar] [CrossRef]
- Rediguieri, C.F.; de Jesus Andreoli Pinto, T.; Bou-Chacra, N.A.; Galante, R.; de Araújo, G.L.B.; do Nascimento Pedrosa, T.; Maria-Engler, S.S.; De Bank, P.A. Ozone Gas as a Benign Sterilization Treatment for PLGA Nanofiber Scaffolds. Tissue Eng. Part. C Methods 2016, 22, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Tyubaeva, P.; Zykova, A.; Podmasteriev, V.; Olkhov, A.; Popov, A.; Iordanskii, A. The Investigation of the Structure and Properties of Ozone-Sterilized Nonwoven Biopolymer Materials for Medical Applications. Polymers 2021, 13, 1268. [Google Scholar] [CrossRef]
- McHugh, M.; Krukonis, V. Supercritical Fluid Extraction: Principles and Practice; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Zhang, J.; Davis, T.A.; Matthews, M.A.; Drews, M.J.; LaBerge, M.; An, Y.H. Sterilization using high-pressure carbon dioxide. J. Supercrit. Fluids 2006, 38, 354–372. [Google Scholar] [CrossRef]
- Shyam, R.; Palaniappan, A. Effect of sterilization techniques on biomaterial inks’ properties and 3D bioprinting parameters. Bioprinting 2023, 33, e00294. [Google Scholar] [CrossRef]
- Rubi, R.V.C.; Quitain, A.T.; Agutaya, J.K.C.N.; Doma, B.T.; Soriano, A.N.; Auresenia, J.; Kida, T. Synergy of in-situ formation of carbonic acid and supercritical CO2-expanded liquids: Application to extraction of andrographolide from Andrographis paniculata. J. Supercrit. Fluids 2019, 152, 104546. [Google Scholar] [CrossRef]
- Li, Y.; Peng, X.; Zhou, X.; Ren, B.; Xiao, L.; Li, Y.; Li, M.; Guo, Q. Chapter 1—Basic Biology of Oral Microbes. In Atlas of Oral Microbiology; Zhou, X., Li, Y., Eds.; Academic Press: Oxford, UK, 2015; pp. 1–14. [Google Scholar] [CrossRef]
- Dillow, A.K.; Dehghani, F.; Hrkach, J.S.; Foster, N.R.; Langer, R. Bacterial inactivation by using near- and supercritical carbon dioxide. Proc. Natl. Acad. Sci. USA 1999, 96, 10344–10348. [Google Scholar] [CrossRef]
- Spilimbergo, S.; Elvassore, N.; Bertucco, A. Microbial inactivation by high-pressure. J. Supercrit. Fluids 2002, 22, 55–63. [Google Scholar] [CrossRef]
- Bento, C.S.A.; Alarico, S.; Empadinhas, N.; de Sousa, H.C.; Braga, M.E.M. Sequential scCO2 drying and sterilisation of alginate-gelatine aerogels for biomedical applications. J. Supercrit. Fluids 2022, 184, 105570. [Google Scholar] [CrossRef]
- Donegan, M.; Milosavljević, V.; Dowling, D.P. Activation of PET Using an RF Atmospheric Plasma System. Plasma Chem. Plasma Process. 2013, 33, 941–957. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Bueno-Ferrer, C.; Misra, N.N.; Milosavljević, V.; O’Donnell, C.P.; Bourke, P.; Keener, K.M.; Cullen, P.J. Applications of cold plasma technology in food packaging. Trends Food Sci. Technol. 2014, 35, 5–17. [Google Scholar] [CrossRef]
- Sobhan, A.; Sher, M.; Muthukumarappan, K.; Zhou, R.; Wei, L. Cold plasma treatment for E. coli inactivation and characterization for fresh food safety. J. Agric. Food Res. 2024, 18, 101403. [Google Scholar] [CrossRef]
- Guo, Z.; Gou, Q.; Yang, L.; Yu, Q.; Han, L. Dielectric barrier discharge plasma: A green method to change structure of potato starch and improve physicochemical properties of potato starch films. Food Chem. 2022, 370, 130992. [Google Scholar] [CrossRef]
- Sifuentes-Nieves, I.; Mendez-Montealvo, G.; Flores-Silva, P.C.; Nieto-Pérez, M.; Neira-Velazquez, G.; Rodriguez-Fernandez, O.; Hernández-Hernández, E.; Velazquez, G. Dielectric barrier discharge and radio-frequency plasma effect on structural properties of starches with different amylose content. Innov. Food Sci. Emerg. Technol. 2021, 68, 102630. [Google Scholar] [CrossRef]
- Aronson, J.K. (Ed.) Ethylene oxide. In Meyler’s Side Effects of Drugs, 16th ed.; Elsevier: Oxford, UK, 2016; pp. 198–202. [Google Scholar] [CrossRef]
- Rederstorff, E.; Fatimi, A.; Sinquin, C.; Ratiskol, J.; Merceron, C.; Vinatier, C.; Weiss, P.; Colliec-Jouault, S. Sterilization of Exopolysaccharides Produced by Deep-Sea Bacteria: Impact on Their Stability and Degradation. Mar. Drugs 2011, 9, 224–241. [Google Scholar] [CrossRef]
- Mäkelä, N.M. Cereal β-Glucan in Aqueous Solutions: Oxidation and Structure Formation. PhD Thesis, University of Helsinki, Helsinki, Finland, 2017. [Google Scholar]
- Wang, L.; Cardenas, R.B.; Watson, C. An isotope dilution ultra high performance liquid chromatography-tandem mass spectrometry method for the simultaneous determination of sugars and humectants in tobacco products. J. Chromatogr. A 2017, 1514, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Abad, L.V.; Kudo, H.; Saiki, S.; Nagasawa, N.; Tamada, M.; Katsumura, Y.; Aranilla, C.T.; Relleve, L.S.; De La Rosa, A.M. Radiation degradation studies of carrageenans. Carbohydr. Polym. 2009, 78, 100–106. [Google Scholar] [CrossRef]
- Mzoughi, Z.; Chakroun, I.; Hamida, S.B.; Rihouey, C.; Mansour, H.B.; Le Cerf, D.; Majdoub, H. Ozone treatment of polysaccharides from Arthrocnemum indicum: Physico-chemical characterization and antiproliferative activity. Int. J. Biol. Macromol. 2017, 105, 1315–1323. [Google Scholar] [CrossRef]
- Uyarcan, M.; Güngör, S.C. Improving functional properties of starch-based films by ultraviolet (UV-C) technology: Characterization and application on minced meat packaging. Int. J. Biol. Macromol. 2024, 282, 137085. [Google Scholar] [CrossRef]
- Kang, J.-H.; Kaneda, J.; Jang, J.-G.; Sakthiabirami, K.; Lui, E.; Kim, C.; Wang, A.; Park, S.-W.; Yang, Y.P. The Influence of Electron Beam Sterilization on In Vivo Degradation of β-TCP/PCL of Different Composite Ratios for Bone Tissue Engineering. Micromachines 2020, 11, 273. [Google Scholar] [CrossRef]
- Grosvenor, E.C.; Hughes, J.C.; Stanfield, C.W.; Blanchard, R.L.; Fox, A.C.; Mihok, O.L.; Lee, K.; Brodsky, J.R.; Hoy, A.; Uniyal, A.; et al. On the Mechanism of Electron Beam Radiation-Induced Modification of Poly(lactic acid) for Applications in Biodegradable Food Packaging. Appl. Sci. 2022, 12, 1819. [Google Scholar] [CrossRef]
- De Azevedo, A.M.; da Silveira, P.H.P.M.; Lopes, T.J.; da Costa, O.L.B.; Monteiro, S.N.; Veiga-Júnior, V.F.; Silveira, P.C.R.; Cardoso, D.D.; Figueiredo, A.B.-H.d.S. Ionizing Radiation and Its Effects on Thermoplastic Polymers: An Overview. Polymers 2025, 17, 1110. [Google Scholar] [CrossRef] [PubMed]
- Chlup, H.; Skočilas, J.; Štancl, J.; Houška, M.; Žitný, R. Effects of Extrusion and Irradiation on the Mechanical Properties of a Water–Collagen Solution. Polymers 2022, 14, 578. [Google Scholar] [CrossRef]
- Friday, D. Effect of Gamma Irradiation in Food Biopolymers. J. Nutraceuticals Food Sci. 2020, 5, 9. Available online: https://nutraceuticals.imedpub.com/articles/effect-of-gamma-irradiation-in-foodbiopolymers.php?aid=32580 (accessed on 15 April 2025).
- Bento, C.S.A.; Gaspar, M.C.; Coimbra, P.; de Sousa, H.C.; Braga, M.E.M. A review of conventional and emerging technologies for hydrogels sterilization. Int. J. Pharm. 2023, 634, 122671. [Google Scholar] [CrossRef]
- Grzelak, A.W.; Jeffkins, S.; Luo, L.; Stilwell, J.; Hathcock, J. Impact of X-ray irradiation as an equivalent alternative to gamma for sterilization of single-use bioprocessing polymers. Biotechnol. Prog. 2023, 39, e3339. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.G.; Gan, C.Y. Optimized extraction and characterization of ramie leaf polysaccharides using deep eutectic solvent and microwave: Antioxidant, metal chelation, and UV protection properties. Int. J. Biol. Macromol. 2024, 282, 136927. [Google Scholar] [CrossRef]
- Heo, S.; Hwang, H.S.; Jeong, Y.; Na, K. Skin protection efficacy from UV irradiation and skin penetration property of polysaccharide-benzophenone conjugates as a sunscreen agent. Carbohydr. Polym. 2018, 195, 534–541. [Google Scholar] [CrossRef]
- Xu, X.; Ding, Z.; Pu, C.; Kong, C.; Chen, S.; Lu, W.; Zhang, J. The structural characterization and UV-protective properties of an exopolysaccharide from a Paenibacillus isolate. Front. Pharmacol. 2024, 15, 1434136. [Google Scholar] [CrossRef] [PubMed]
- Marta, H.; Hasya, H.N.L.; Lestari, Z.I.; Cahyana, Y.; Arifin, H.R.; Nurhasanah, S. Study of Changes in Crystallinity and Functional Properties of Modified Sago Starch (Metroxylon sp.) Using Physical and Chemical Treatment. Polymers 2022, 14, 4845. [Google Scholar] [CrossRef]
- Leo, W.J.; McLoughlin, A.J.; Malone, D.M. Effects of sterilization treatments on some properties of alginate solutions and gels. ACS Publ. 1990, 6, 51–53. [Google Scholar] [CrossRef]
- Verwilghen, D. Chapter 9—Instrument Preparation, Antisepsis, and Disinfection. In Equine Surgery, 5th ed.; Auer, J.A., Stick, J.A., Kümmerle, J.M., Prange, T., Eds.; W.B. Saunders: Saint Louis, MO, USA, 2019; pp. 123–143. [Google Scholar] [CrossRef]
- Bernhardt, A.; Wehrl, M.; Paul, B.; Hochmuth, T.; Schumacher, M.; Schütz, K.; Gelinsky, M. Improved Sterilization of Sensitive Biomaterials with Supercritical Carbon Dioxide at Low Temperature. PLoS ONE 2015, 10, e0129205. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.-Q.; Leamy, P.; Brittingham, J.; Pomerleau, J.; Kabaria, N.; Connor, J. Inactivation of bacterial spores and viruses in biological material using supercritical carbon dioxide with sterilant. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2009, 91B, 572–578. [Google Scholar] [CrossRef]
- Gryczka, U.; Dondi, D.; Chmielewski, A.G.; Migdal, W.; Buttafava, A.; Faucitano, A. The mechanism of chitosan degradation by gamma and e-beam irradiation. Radiat. Phys. Chem. 2009, 78, 543–548. [Google Scholar] [CrossRef]
- Lee, Y.; Cho, J.; Sohn, J.; Kim, C. Health Effects of Microplastic Exposures: Current Issues and Perspectives in South Korea. Yonsei Med. J. 2023, 64, 301. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, Z.; Lai, B.; Wang, C.; Wu, H. Recent advances in marine-derived protein/polysaccharide hydrogels: Classification, fabrication, characterization, mechanism and food applications. Trends Food Sci. Technol. 2024, 151, 104637. [Google Scholar] [CrossRef]
- Jeong, G.-J.; Khan, F.; Kim, D.-K.; Cho, K.-J.; Tabassum, N.; Choudhury, A.; Hassan, M.I.; Jung, W.-K.; Kim, H.-W.; Kim, Y.-M. Marine polysaccharides for antibiofilm application: A focus on biomedical fields. Int. J. Biol. Macromol. 2024, 283, 137786. [Google Scholar] [CrossRef]
- Chegu Krishnamurthi, M.; Tiwari, S.; Veera Bramhachari, P.; Swarnalatha, G.V. Exploitation of Marine-Derived Multifunctional Biomaterials in Biomedical Engineering and Drug Delivery. In Marine Bioactive Molecules for Biomedical and Pharmacotherapeutic Applications; Veera Bramhachari, P., Berde, C.V., Eds.; Springer Nature: Singapore, 2023; pp. 231–250. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Deng, Y.; Chen, G. Effect of extraction method on the structure and bioactivity of polysaccharides from activated sludge. Water Res. 2024, 253, 121196. [Google Scholar] [CrossRef] [PubMed]
- Sacramento, M.M.A.; Borges, J.; Correia, F.J.S.; Calado, R.; Rodrigues, J.M.M.; Patrício, S.G.; Mano, J.F. Green approaches for extraction, chemical modification and processing of marine polysaccharides for biomedical applications. Front. Bioeng. Biotechnol. 2022, 10, 1041102. [Google Scholar] [CrossRef] [PubMed]
- Premarathna, A.D.; Ahmed, T.A.E.; Kulshreshtha, G.; Humayun, S.; Shormeh Darko, C.N.; Rjabovs, V.; Hammami, R.; Critchley, A.T.; Tuvikene, R.; Hincke, M.T. Polysaccharides from red seaweeds: Effect of extraction methods on physicochemical characteristics and antioxidant activities. Food Hydrocoll. 2024, 147, 109307. [Google Scholar] [CrossRef]
- Akbal, A.; Şahin, S.; Güroy, B. Optimization of ultrasonic-assisted extraction of polysaccharides from Ulva rigida and evaluation of their antioxidant activity. Algal Res. 2024, 77, 103356. [Google Scholar] [CrossRef]
- Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A review. Carbohydr. Polym. Technol. Appl. 2024, 7, 100396. [Google Scholar] [CrossRef]
- Riseh, R.S.; Vazvani, M.G.; Hassanisaadi, M.; Thakur, V.K. Agricultural wastes: A practical and potential source for the isolation and preparation of cellulose and application in agriculture and different industries. Ind. Crops Prod. 2024, 208, 117904. [Google Scholar] [CrossRef]
- Dorantes-Fuertes, M.-G.; López-Méndez, M.C.; Martínez-Castellanos, G.; Meléndez-Armenta, R.Á.; Jiménez-Martínez, H.-E. Starch Extraction Methods in Tubers and Roots: A Systematic Review. Agronomy 2024, 14, 865. [Google Scholar] [CrossRef]
- Sheridan, E.; Filonenko, S.; Volikov, A.; Sirviö, J.A.; Antonietti, M. A systematic study on the processes of lignin extraction and nanodispersion to control properties and functionality. Green Chem. 2024, 26, 2967–2984. [Google Scholar] [CrossRef]
- Wibowo, C.H.; Ariawan, D.; Surojo, E.; Sunardi, S. Microcrystalline Cellulose as Composite Reinforcement: Assessment and Future Prospects. MSF 2024, 1122, 65–80. [Google Scholar] [CrossRef]
- Gorgun, E.; Ali, A.; Islam, M.S. Biocomposites of Poly(Lactic Acid) and Microcrystalline Cellulose: Influence of the Coupling Agent on Thermomechanical and Absorption Characteristics. ACS Omega 2024, 9, 11523–11533. [Google Scholar] [CrossRef] [PubMed]
- Abar, E.S.; Vandghanooni, S.; Torab, A.; Jaymand, M.; Eskandani, M. A comprehensive review on nanocomposite biomaterials based on gelatin for bone tissue engineering. Int. J. Biol. Macromol. 2024, 254, 127556. [Google Scholar] [CrossRef]
- He, H.; Wu, Z.; Xiao, S.; Yin, P. Characterization of corn starch/chitosan composite films incorporated with amino-, carboxyl-, and hydroxyl-terminated hyperbranched dendrimers: A comparative study. Int. J. Biol. Macromol. 2024, 283, 137573. [Google Scholar] [CrossRef]
- Shi, B.; Hao, Z.; Du, Y.; Jia, M.; Xie, S. Mechanical and Barrier Properties of Chitosan-based Composite Film as Food Packaging: A Review. BioResources 2024, 19, 4001–4014. [Google Scholar] [CrossRef]
Sterilization Method | Mechanical | Morphological | Thermal | Molecular | Reference |
---|---|---|---|---|---|
E-Beam | Increased elastic modulus at moderate–high doses; reduced flexibility | Chain scission reduces crystallinity; crosslinking increases rigidity | Potential increase in solubility and density | Increased modifiability; oxidative degradation; WVP increases | [132] |
Gamma | Sometimes improves mechanical performance without sacrificing elongation | Backbone cleavage; enhanced gelling behavior in some polymers | Effects vary by dose and polymer | Reduced chain scission at sterilization doses crosslinking observed | [132] |
X-ray | Undocumented but likely less severe than gamma due to shorter exposure | Effects inferred to be similar to those of gamma radiation | Not well characterized | Expected ionizing radiation effects; more research required | [40] |
UV | Mechanical improvement with photo-crosslinking agents | Surface degradation in sensitive materials | Not widely observed due to surface-limited effects | Limited degradation in UV-resistant polymers like amylopectin | [53] |
Autoclaving | Generally negative; reduced mechanical integrity | Complete loss of crystallinity in starches; hydrolytic breakdown | Thermally induced degradation in hydrophilic polymers | Glycosidic bond cleavage; sugar leaching; Maillard reactions | [76] |
Dry Heat | Not well documented; likely poor due to thermal sensitivity | Loss of crystallinity varies without humidity | Distinct from autoclave; less hydrolysis | Thermal dehydration of plasticizers; acrolein formation possible | [86] |
EtO | Slight increase in mechanical strength; increased brittleness | Unclear due to limited data | Minimal thermal impact | Trace residues require long aeration and slow desorption | [70] |
Ozone | Mechanical improvement in some fibers like PHB | Reduction in crystallinity; minimal impact on PLGA | Alters thermal behavior in degraded fibers | Chain scission; aldehyde and carboxylic acid formation | [96] |
ScCO2 | Maintains mechanical performance | Minimal structural degradation | Operates at low temperature; thermally gentle | Negligible chemical changes unless oxidative additives are used | [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moore, E.; Cortese, Y.J.; Colbert, D.M. A Review of Sterilization Methods and Their Commercial Impacts on Polysaccharide-Based Biomaterials. Macromol 2025, 5, 45. https://doi.org/10.3390/macromol5040045
Moore E, Cortese YJ, Colbert DM. A Review of Sterilization Methods and Their Commercial Impacts on Polysaccharide-Based Biomaterials. Macromol. 2025; 5(4):45. https://doi.org/10.3390/macromol5040045
Chicago/Turabian StyleMoore, Evan, Yvonne J. Cortese, and Declan Mary Colbert. 2025. "A Review of Sterilization Methods and Their Commercial Impacts on Polysaccharide-Based Biomaterials" Macromol 5, no. 4: 45. https://doi.org/10.3390/macromol5040045
APA StyleMoore, E., Cortese, Y. J., & Colbert, D. M. (2025). A Review of Sterilization Methods and Their Commercial Impacts on Polysaccharide-Based Biomaterials. Macromol, 5(4), 45. https://doi.org/10.3390/macromol5040045