Modulating Synchrotron Microbeam Radiation Therapy Doses for Preclinical Brain Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Cell Preparation
2.2. Tumor Implantation and Animal Monitoring
2.3. Tumor Imaging
2.4. MRT Irradiation Setup and Dosimetric Verifcation
2.5. MRT Animal Irradiation
3. Results and Discussion
3.1. MRT Dose Modulation
3.2. Implementation of MRT Dose Modulation and Effect on Survival
3.3. Dose Modulation and Organs at Risk
3.4. Bolus and Hair Recovery
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iacob, G.; Dinca, E.B. Current data and strategy in glioblastoma multiforme. J. Med. Life 2009, 2, 386–393. [Google Scholar] [PubMed]
- Osuka, S.; Van Meir, E.G. Overcoming therapeutic resistance in glioblastoma: The way forward. J. Clin. Investig. 2017, 127, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Kowalski-Chauvel, A.; Modesto, A.; Gouaze-andersson, V.; Baricault, L.; Gilhodes, J.; Delmas, C.; Lemarie, A.; Toulas, C.; Cohen-Jonathan-Moyal, E.; Seva, C. Alpha-6 integrin promotes radioresistance of glioblastoma by modulating DNA damage response and the transcription factor Zeb1. Cell Death Dis. 2018, 9, 872. [Google Scholar] [CrossRef]
- Del Maestro, R. A History of Neuro–Oncology; Montreal DW Medical Consulting Inc.: Westmount, QC, Canada, 2006. [Google Scholar]
- Combs, S.E.; Widmer, V.; Thilmann, C.; Hof, H.; Debus, J.; Schulz-Ertner, D. Stereotactic radiosurgery (SRS): Treatment option for recurrent glioblastoma multiforme (GBM). Cancer 2005, 104, 2168–2173. [Google Scholar] [CrossRef] [PubMed]
- Nwokedi, E.C.; DiBiase, S.J.; Jabbour, S.; Herman, J.; Amin, P.; Chin, L.S. Gamma Knife Stereotactic Radiosurgery for Patients with Glioblastoma Multiforme. Neurosurgery 2002, 50, 41–47. [Google Scholar]
- Potez, M.; Bouchet, A.; Flaender, M.; Rome, C.; Collomb, N.; Grotzer, M.; Krisch, M.; Djonov, V.; Balosso, J.; Brun, E.; et al. Synchrotron X-Ray Boost Delivered by Microbeam Radiation Therapy After Conventional X-Ray Therapy Fractionated in Time Improves F98 Glioma Control. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 360–369. [Google Scholar] [CrossRef]
- Engels, E.; Lerch, M.; Tehei, M.; Konstantinov, K.; Guatelli, S.; Rosenfeld, A.; Corde, S. Synchrotron activation radiotherapy: Effects of dose-rate and energy spectra to tantalum oxide nanoparticles selective tumour cell radiosensitization enhancement. J. Phys. Conf. Ser. 2017, 777, 012011. [Google Scholar] [CrossRef]
- Eling, L.; Bouchet, A.; Nemoz, C.; Djonov, V.; Balosso, J.; Laissue, J.; Bräuer-Krisch, E.; Adam, J.F.; Serduc, R. Ultra high dose rate Synchrotron Microbeam Radiation Therapy. Preclinical evidence in view of a clinical transfer. Radiother. Oncol. 2019, 139, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Eling, L.; Bouchet, A.; Ocadiz, A.; Adam, J.F.; Kershmiri, S.; Elleaume, H.; Krisch, M.; Verry, C.; Laissue, J.A.; Balosso, J.; et al. Unexpected Benefits of Multiport Synchrotron Microbeam Radiation Therapy for Brain Tumors. Cancers 2021, 13, 936. [Google Scholar] [CrossRef]
- Engels, E.; Li, N.; Davis, J.; Paino, J.; Cameron, M.; Dipuglia, A.; Vogel, S.; Valceski, M.; Khochaiche, A.; O’Keefe, A.; et al. Toward personalized synchrotron microbeam radiation therapy. Sci. Rep. 2020, 10, 8833. [Google Scholar] [CrossRef]
- Vozenin, M.C.; Hendry, J.H.; Limoli, C.L. Biological Benefits of Ultra-high Dose Rate FLASH Radiotherapy: Sleeping Beauty Awoken. Clin. Oncol. 2019, 31, 407–415. [Google Scholar] [CrossRef]
- Slatkin, D.N.; Spanne, P.; Dilmanian, F.A.; Sandborg, M. Microbeam radiation therapy. Med. Phys. 1992, 19, 1395. [Google Scholar] [CrossRef]
- Bräuer-Krisch, E.; Serduc, R.; Siegbahn, E.A.; Le Duc, G.; Prezado, Y.; Bravin, A.; Blattmann, H.; Laissue, J.A. Effects of pulsed, spatially fractionated, microscopic synchrotron X-ray beams on normal and tumoral brain tissue. Mutat. Res. 2010, 704, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Bräuer-Krisch, E.; Adam, J.F.; Alagoz, E.; Bartzsch, S.; Crosbie, J.; DeWagter, C.; Dipuglia, A.; Donzelli, M.; Doran, S.; Fournier, P.; et al. Medical physics aspects of the synchrotron radiation therapies: Microbeam radiation therapy (MRT) and synchrotron stereotactic radiotherapy (SSRT). Phys. Med. 2015, 31, 568–583. [Google Scholar] [CrossRef]
- Stevenson, A.W.; Crosbie, J.C.; Hall, C.J.; Häusermann, D.; Livingstone, J.; Lye, J.E. Quantitative characterization of the X-ray beam at the Australian Synchrotron Imaging and Medical Beamline (IMBL). J. Synchrotron Radiat. 2017, 24, 110–141. [Google Scholar] [CrossRef]
- Dilmanian, F.A.; Qu, Y.; Feinendegen, L.E.; Peña, L.A.; Bacarian, T.; Henn, F.A.; Kalef-Ezra, J.; Liu, S.; Zhong, Z.; McDonald, J.W. Tissue-sparing effect of x-ray microplanar beams particularly in the CNS: Is a bystander effect involved? Exp. Hematol. 2007, 35 (Suppl. S1), 69–77. [Google Scholar] [CrossRef]
- Bouchet, A.; Lemasson, B.; Le Duc, G.; Maisin, C.; Bräuer-Krisch, E.; Siegbahn, E.A.; Renaud, L.; Khalil, E.; Rémy, C.; Poillot, C.; et al. Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 1503–1512. [Google Scholar] [CrossRef]
- Bouchet, A.; Lemasson, B.; Christen, T.; Potez, M.; Rome, C.; Coquery, N.; Le Clec’h, C.; Moisan, A.; Bräuer-Krisch, E.; Le Duc, G.; et al. Synchrotron microbeam radiation therapy induces hypoxia in intracerebral gliosarcoma but not in the normal brain. Radiother. Oncol. 2013, 108, 143–148. [Google Scholar] [CrossRef]
- Sabatasso, S.; Fernandez-Palomo, C.; Hlushchuk, R.; Fazzari, J.; Tschanz, S.; Pellicioli, P.; Krisch, M.; Laissue, J.A.; Djonov, V. Transient and Efficient Vascular Permeability Window for Adjuvant Drug Delivery Triggered by Microbeam Radiation. Cancers 2021, 13, 2103. [Google Scholar] [CrossRef]
- Adam, J.F.; Balosso, J.; Bayat, S.; Berkvens, P.; Berruyer, G.; Bräuer-Krisch, E.; Brochard, T.; Chamel, G.; Desagneaux, A.; Drevon-Gaud, R.; et al. Toward Neuro-Oncologic Clinical Trials of High-Dose-Rate Synchrotron Microbeam Radiation Therapy: First Treatment of a Spontaneous Canine Brain Tumor. Int. J. Radiat. Oncol. Biol. Phys. 2022, 113, 967–973. [Google Scholar] [CrossRef]
- Cameron, M.; Cornelius, I.; Cutajar, D.; Davis, J.A.; Rosenfeld, A.; Lerch, M.; Guatelli, S. Comparison of phantom materials for use in quality assurance of microbeam radiation therapy. J. Synchrotron Radiat. 2017, 24, 866–876. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.A.; Paino, J.R.; Dipuglia, A.; Cameron, M.; Siegele, R.; Pastuovic, Z.; Petasecca, M.; Perevertaylo, V.L.; Rosenfeld, A.B.; Lerch, M.L.F. Characterisation and evaluation of a PNP strip detector for synchrotron microbeam radiation therapy. Biomed. Phys. Eng. Express 2018, 4, 044002. [Google Scholar] [CrossRef]
- Dipuglia, A.; Cameron, M.; Davis, J.A.; Cornelius, I.M.; Stevenson, A.W.; Rosenfeld, A.B.; Petasecca, M.; Corde, S.; Guatelli, S.; Lerch, M.L.F. Validation of a Monte Carlo simulation for Microbeam Radiation Therapy on the Imaging and Medical Beamline at the Australian Synchrotron. Sci. Rep. 2019, 9, 17696. [Google Scholar] [CrossRef]
- Siegbahn, E.A.; Stepanek, J.; Bräuer-Krisch, E.; Bravin, A. Determination of dosimetrical quantities used in microbeam radiation therapy (MRT) with Monte Carlo simulations. Med. Phys. 2006, 33, 3248–3259. [Google Scholar] [CrossRef] [PubMed]
- Nettelbeck, H.; Takacs, G.J.; Lerch, M.L.; Rosenfeld, A.B. Microbeam radiation therapy: A Monte Carlo study of the influence of the source, multislit collimator, and beam divergence on microbeams. Med. Phys. 2009, 36, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Schültke, E.; Juurlink, B.H.; Ataelmannan, K.; Laissue, J.; Blattmann, H.; Bräuer-Krisch, E.; Bravin, A.; Minczewska, J.; Crosbie, J.; Taherian, H.; et al. Memory and survival after microbeam radiation therapy. Eur. J. Radiol. 2008, 68 (Suppl. S3), S142–S146. [Google Scholar] [CrossRef]
- Schültke, E.; Balosso, J.; Breslin, T.; Cavaletti, G.; Djonov, V.; Esteve, F.; Grotzer, M.; Hildebrandt, G.; Valdman, A.; Laissue, J. Microbeam radiation therapy—Grid therapy and beyond: A clinical perspective. Br. J. Radiol. 2017, 90, 20170073. [Google Scholar] [CrossRef]
- Di Pietro, P.; Bucci, D.; De Fusco, A.; Le Duc, G.; Bräuer-Krisch, E.; Battaglia, G.; Romanelli, P.; Bravin, A. Evaluation of long-term effects of synchrotron-generated microbeams on rat hippocampal neurogenesis. Radiother. Oncol. 2016, 118, S14–S15. [Google Scholar] [CrossRef]
- Low, J.M.; Lee, N.J.H.; Sprow, G.; Chlebik, A.; Olch, A.; Darrow, K.; Bowlin, K.; Wong, K.K. Scalp and Cranium Radiation Therapy Using Modulation (SCRUM) and Bolus. Adv. Radiat. Oncol. 2020, 5, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Kudchadker, R.J.; Antolak, J.A.; Morrison, W.H.; Wong, P.F.; Hogstrom, K.R. Utilization of custom electron bolus in head and neck radiotherapy. J. Appl. Clin. Med. Phys. 2003, 4, 321–333. [Google Scholar] [CrossRef]
- National Health and Medical Research Council. Australian Code for the Care and Use of Animals for Scientific Purposes, 8th ed.; National Health and Medical Research Council: Canberra, Australia, 2013. [Google Scholar]
- Cunliffe-Beamer, T. Surgical Techniques. Guidelines for the Well Being of Rodents in Research. Bethesda, Maryland; Scientists Center for Animal Welfare: Bend, OR, USA, 1990; pp. 86–92. [Google Scholar]
- Pritchett-Corning, K.R.; Mulder, G.B.; Luo, Y.; White, W.J. Principles of Rodent Surgery for the New Surgeon. J. Vis. Exp. 2011, 47, e2586. [Google Scholar]
- Paino, J.; Barnes, M.; Engels, E.; Davis, J.; Guatelli, S.; de Veer, M.; Hall, C.; Häusermann, D.; Tehei, M.; Corde, S.; et al. Incorporating Clinical Imaging into the Delivery of Microbeam Radiation Therapy. Appl. Sci. 2021, 11, 9101. [Google Scholar] [CrossRef]
- Petasecca, M.; Cullen, A.; Fuduli, I.; Espinoza, A.; Porumb, C.; Stanton, C.; Aldosari, A.H.; Brauer-Krisch, E.; Requardt, H.; Bravin, A.; et al. X-Tream: A novel dosimetry system for Synchrotron Microbeam Radiation Therapy. J. Instrum. 2012, 7, P07022. [Google Scholar] [CrossRef]
- Fournier, P.; Cornelius, I.; Dipuglia, A.; Cameron, M.; Davis, J.A.; Cullen, A.; Petasecca, M.; Rosenfeld, A.B.; Bräuer-Krisch, E.; Häusermann, D.; et al. X-Tream dosimetry of highly brilliant X-ray microbeams in the MRT hutch of the Australian Synchrotron. Radiat. Meas. 2017, 106, 405–411. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 505, 250–303. [Google Scholar] [CrossRef]
- Barnes, M.J.; Paino, J.; Day, L.R.; Butler, D.; Hausermann, D.; Pelliccia, D.; Crosbie, J.C. SyncMRT: A solution to image-guided synchrotron radiotherapy for quality assurance and pre-clinical trials. J. Synchrotron Radiat. 2022, 29, 1074–1084. [Google Scholar] [CrossRef] [PubMed]
- Joel, D.D.; Fairchild, R.G.; Laissue, J.A.; Saraf, S.K.; Kalef-Ezra, J.A.; Slatkin, D.N. Boron neutron capture therapy of intracerebral rat gliosarcomas. Proc. Natl. Acad. Sci. USA 1990, 87, 9808–9812. [Google Scholar] [CrossRef]
- Brönnimann, D.; Bouchet, A.; Schneider, C.; Potez, M.; Serduc, R.; Bräuer-Krisch, E.; Graber, W.; von Gunten, S.; Laissue, J.A.; Djonov, V. Synchrotron microbeam irradiation induces neutrophil infiltration, thrombocyte attachment and selective vascular damage in vivo. Sci. Rep. 2016, 6, 33601. [Google Scholar] [CrossRef]
- Bouchet, A.; Serduc, R.; Laissue, J.A.; Djonov, V. Effects of microbeam radiation therapy on normal and tumoral blood vessels. Phys. Med. 2015, 31, 634–641. [Google Scholar] [CrossRef]
- Song, C.W.; Terezakis, S.; Park, W.Y.; Paek, S.H.; Kim, M.S.; Cho, L.C.; Griffin, R.J. Preferential Tumor Vascular Damage Is the Common Antitumor Mechanism of High-Dose Hypofractionated Radiation Therapy: SABR, Spatially Fractionated Radiation Therapy, and FLASH Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2023, 17, 701–704. [Google Scholar] [CrossRef]
- Kozin, S.V. Vascular damage in tumors: A key player in stereotactic radiation therapy? Trends Cancer 2022, 8, 806–819. [Google Scholar] [CrossRef]
- Menegakis, A.; Klompmaker, R.; Vennin, C.; Arbusà, A.; Damen, M.; van den Broek, B.; Zips, D.; van Rheenen, J.; Krenning, L.; Medema, R.H. Resistance of Hypoxic Cells to Ionizing Radiation Is Mediated in Part via Hypoxia-Induced Quiescence. Cells 2021, 10, 610. [Google Scholar] [CrossRef] [PubMed]
- Koonce, N.A.; Levy, J.; Hardee, M.E.; Jamshidi-Parsian, A.; Vang, K.B.; Sharma, S.; Raleigh, J.A.; Dings, R.P.; Griffin, R.J. Targeting Artificial Tumor Stromal Targets for Molecular Imaging of Tumor Vascular Hypoxia. PLoS ONE 2005, 10, e0135607. [Google Scholar] [CrossRef]
- Le Duc, G.; Miladi, I.; Alric, C.; Mowat, P.; Bräuer-Krisch, E.; Bouchet, A.; Khalil, E.; Billotey, C.; Janier, M.; Lux, F.; et al. Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano 2011, 5, 9566–9574. [Google Scholar] [CrossRef]
- Engels, E.; Corde, S.; McKinnon, S.; Incerti, S.; Konstantinov, K.; Rozenfeld, A.; Tehei, M.; Lerch, M.; Guatelli, S. Optimizing dose enhancement with Ta2O5 nanoparticles for synchrotron microbeam activated radiation therapy. Phys. Med. 2016, 32, 1852–1861. [Google Scholar] [CrossRef] [PubMed]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 6th ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Shaw, E.; Scott, C.; Souhami, L.; Dinapoli, R.; Kline, R.; Loeffler, J.; Farnan, N. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: Final report of RTOG protocol 90-05. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yang, J.; Guoqian, L.; Yi, L.; Rong, W.; Cheng, J.; Tang, Y. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury. Mol. Neurobiol. 2017, 54, 1022–1032. [Google Scholar] [CrossRef] [PubMed]
- Scoccianti, S.; Detti, B.; Gadda, D.; Greto, D.; Furfaro, I.; Meacci, F.; Simontacchi, G.; Di Brina, L.; Bonomo, P.; Giacomelli, I.; et al. Organs at risk in the brain and their dose-constraints in adults and in children: A radiation oncologist’s guide for delineation in everyday practice. Radiother. Oncol. 2015, 114, 230–238. [Google Scholar] [CrossRef]
Treatment Program | Target Depth (mm) | Valley Dose (Gy) | Valley Dose Rate (Gy/s) | PVDR at Target Depth | Wiggler (T) | Weighted Mean Energy (keV) | Bolus (Y/N) |
---|---|---|---|---|---|---|---|
1 | N/A | 0 | N/A | N/A | N/A | N/A | N |
2 | 5.5 | 8 | 4 | 70 | 3 | 81 | N |
3 | 16 | 8 | 100 | 33 | 4 | 58 | Y |
4 | 5.5 | 13.8 | 4 | 70 | 3 | 81 | N |
5 | 5.5 | 15 | 4 | 70 | 3 | 81 | N |
6 | 12.5 | 15 | 7 | 62 | 3 | 81 | Y |
Treatment Condition | MeST (days) | MST (days) | ILS (%) | IMLS (%) | SE (days) | p (Log-Rank) |
---|---|---|---|---|---|---|
15 Gy, no bolus, 3T (#5) | 37 | 38 | 84 | 81 | 9.9 | 0.047 |
15 Gy, bolus, 3T (#6) | 49 | 45 | 129 | 148 | 7.6 | 0.019 |
13.8 Gy, no bolus (#4) | 47 | 34 | 68 | 124 | 9.0 | 0.150 |
8 Gy, no bolus, 3T (#2) | 26 | 24 | 20 | 24 | 3.0 | 0.019 |
8 Gy, bolus, 4T (#3) | 28 | 27 | 38 | 42 | 0.6 | 0.001 |
0 Gy (trial 1) (#1) | 21 | 20 | N/A | N/A | 0.6 | N/A |
0 Gy (trial 2) (#1) | 20 | 20 | N/A | N/A | 0.2 | N/A |
Treatment Condition | MST (Days) | SE (Days) | Min Peak Dose (Gy) | Min Valley Dose (Gy) |
---|---|---|---|---|
8 Gy, no bolus, 3T (#2) | 24 | 3 | 544 | 6.6 |
8 Gy, bolus, 4T (#3) | 27 | 0.6 | 219 | 8.0 |
13.8 Gy, no bolus (#4) | 34 | 9 | 921 | 11.6 |
15 Gy, no bolus, 3T (#5) | 37 | 8.6 | 1044 | 12.9 |
15 Gy, bolus, 3T (#6) | 45 | 7.6 | 950 | 14.8 |
Treatment Program | Target Valley Dose (Gy) | Mean Dose to 90% Tumor volume (Gy) | H%Vol Target Dose | WB%Vol Target Dose |
---|---|---|---|---|
2 | 8 | 7.3 | 1.2% | 9% |
3 | 8 | 8.0 | 9.3% | 17% |
4 | 13.8 | 13.1 | 1.2% | 9% |
5 | 15 | 14.3 | 1.2% | 9% |
6 | 15 | 15.3 | 9.3% | 13% |
Treatment Condition | Day after Tumor Implantation (Days after MRT) |
---|---|
15 Gy, no bolus, 3T (#5) | 39 ± 2 (28 ± 2) |
15 Gy, bolus, 3T (#6) | 39 ± 2 (28 ± 2) |
13.8 Gy, no bolus, 3T (#4) | 37 ± 2 (25 ± 2) |
8 Gy, no bolus, 3T (#3) | 28 (16) * |
8 Gy, bolus, 4T (#2) | 28 (16) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Engels, E.; Paino, J.R.; Vogel, S.E.; Valceski, M.; Khochaiche, A.; Li, N.; Davis, J.A.; O’Keefe, A.; Dipuglia, A.; Cameron, M.; et al. Modulating Synchrotron Microbeam Radiation Therapy Doses for Preclinical Brain Cancer. Radiation 2023, 3, 183-202. https://doi.org/10.3390/radiation3040015
Engels E, Paino JR, Vogel SE, Valceski M, Khochaiche A, Li N, Davis JA, O’Keefe A, Dipuglia A, Cameron M, et al. Modulating Synchrotron Microbeam Radiation Therapy Doses for Preclinical Brain Cancer. Radiation. 2023; 3(4):183-202. https://doi.org/10.3390/radiation3040015
Chicago/Turabian StyleEngels, Elette, Jason R. Paino, Sarah E. Vogel, Michael Valceski, Abass Khochaiche, Nan Li, Jeremy A. Davis, Alice O’Keefe, Andrew Dipuglia, Matthew Cameron, and et al. 2023. "Modulating Synchrotron Microbeam Radiation Therapy Doses for Preclinical Brain Cancer" Radiation 3, no. 4: 183-202. https://doi.org/10.3390/radiation3040015
APA StyleEngels, E., Paino, J. R., Vogel, S. E., Valceski, M., Khochaiche, A., Li, N., Davis, J. A., O’Keefe, A., Dipuglia, A., Cameron, M., Barnes, M., Stevenson, A. W., Rosenfeld, A., Lerch, M., Corde, S., & Tehei, M. (2023). Modulating Synchrotron Microbeam Radiation Therapy Doses for Preclinical Brain Cancer. Radiation, 3(4), 183-202. https://doi.org/10.3390/radiation3040015