Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = microbeam radiation therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2660 KiB  
Article
Fast and Fractionated: Correlation of Dose Attenuation and the Response of Human Cancer Cells in a New Anthropomorphic Brain Phantom
by Bernd Frerker, Elette Engels, Jason Paino, Vincent de Rover, John Paul Bustillo, Marie Wegner, Matthew Cameron, Stefan Fiedler, Daniel Häusermann, Guido Hildebrandt, Michael Lerch and Elisabeth Schültke
Biomimetics 2025, 10(7), 440; https://doi.org/10.3390/biomimetics10070440 - 3 Jul 2025
Viewed by 456
Abstract
The results of radiotherapy in patients with primary malignant brain tumors are extremely dissatisfactory: the overall survival after a diagnosis of glioblastoma is typically less than three years. The development of spatially fractionated radiotherapy techniques could help to improve this bleak prognosis. In [...] Read more.
The results of radiotherapy in patients with primary malignant brain tumors are extremely dissatisfactory: the overall survival after a diagnosis of glioblastoma is typically less than three years. The development of spatially fractionated radiotherapy techniques could help to improve this bleak prognosis. In order to develop technical equipment and organ-specific therapy plans, dosimetry studies as well as radiobiology studies are conducted. Although perfect spheres are considered optimal phantoms by physicists, this does not reflect the wide variety of head sizes and shapes in our patient community. Depth from surface and X-ray dose absorption by tissue between dose entry point and target, two key parameters in medical physics planning, are largely determined by the shape and thickness of the skull bone. We have, therefore, designed and produced a biomimetic tool to correlate measured technical dose and biological response in human cancer cells: a brain phantom, produced from tissue-equivalent materials. In a first pilot study, utilizing our phantom to correlate technical dose measurements and metabolic response to radiation in human cancer cell lines, we demonstrate why an anthropomorphic phantom is preferable over a simple spheroid phantom. Full article
Show Figures

Graphical abstract

17 pages, 5508 KiB  
Review
Application of Synchrotron Radiation in Fundamental Research and Clinical Medicine
by Chao Xiao, Jinde Zhang, Yang Li, Mingyuan Xie and Dongbai Sun
Biomedicines 2025, 13(6), 1419; https://doi.org/10.3390/biomedicines13061419 - 10 Jun 2025
Viewed by 811
Abstract
Synchrotron radiation light sources have been successfully utilized in material science, biomedicine, and other fields due to their high intensity, excellent monochromaticity, coherence, and collimation. In recent years, synchrotron radiation has significantly expedited the advancement of medical applications, particularly through innovations in imaging [...] Read more.
Synchrotron radiation light sources have been successfully utilized in material science, biomedicine, and other fields due to their high intensity, excellent monochromaticity, coherence, and collimation. In recent years, synchrotron radiation has significantly expedited the advancement of medical applications, particularly through innovations in imaging and radiotherapy. For instance, synchrotron X-ray imaging has enabled high-contrast and spatial–temporal resolution images for early-stage diagnosis of breast cancer and cardiovascular diseases, offering superior diagnostic accuracy compared to conventional methods. Additionally, novel synchrotron radiation-based radiotherapy techniques, such as microbeam therapy and stereotactic radiotherapy, have shown great potential for clinical application by enabling precise tumor targeting while minimizing damage to surrounding healthy tissues. These advancements are projected to redefine imaging diagnostics and therapeutic strategies, particularly for resistant cancers, by offering enhanced precision, reduced radiation doses, and improved therapeutic outcomes. This review provides an overview of synchrotron radiation beamline characteristics, recent breakthroughs in imaging and radiotherapy, and their emerging applications in treating heart, breast, lung, bone, and brain conditions. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

12 pages, 1619 KiB  
Article
The Combination of Temporal and Spatial Dose Fractionation in Microbeam Radiation Therapy
by Jessica Stolz, Kristina Rogal, Sandra Bicher, Johanna Winter, Mabroor Ahmed, Susanne Raulefs, Stephanie E. Combs, Stefan H. Bartzsch and Thomas E. Schmid
Biomedicines 2025, 13(3), 678; https://doi.org/10.3390/biomedicines13030678 - 10 Mar 2025
Viewed by 941
Abstract
Background: Microbeam radiation therapy (MRT) is an advanced preclinical approach in radiotherapy that utilizes spatially fractionated dose distributions by collimating x-rays into micrometer-wide, planar beams. While the benefits of temporal fractionation are well established and widely incorporated into conventional radiotherapy protocols, the [...] Read more.
Background: Microbeam radiation therapy (MRT) is an advanced preclinical approach in radiotherapy that utilizes spatially fractionated dose distributions by collimating x-rays into micrometer-wide, planar beams. While the benefits of temporal fractionation are well established and widely incorporated into conventional radiotherapy protocols, the interplay between MRT and temporal dose fractionation remains largely unexplored. In this study, we investigate the effects of combining temporal and spatial dose fractionation by assessing clonogenic cell survival following temporally fractionated MRT with varying irradiation angles, compared to conventional broad-beam (BB) irradiation. Methods: A lung tumor cell line (A549) and a normal lung cell line (MRC-5) were irradiated with a total number of four fractions with a 24 h interval between each fraction. We compared a temporally fractionated BB regime to two temporally fractionated MRT schemes with either overlapping MRT fields or MRT fields with a 45° rotation per fraction. Subsequently, the clonogenic cell survival assay was used by analyzing the corresponding survival fractions (SFs). Results: The clonogenic survival of A549 tumor cells differed significantly between microbeam radiation therapy with rotation (MRT + R) and overlapping MRT. However, neither MRT + R nor overlapping MRT showed statistically significant differences compared to the broad-beam (BB) irradiation for A549. In contrast, the normal tissue cell line MRC-5 exhibited significantly higher clonogenic survival following both MRT + R and overlapping MRT compared to BB. Conclusions: This study demonstrates that combining temporal and spatial fractionation enhances normal tissue cell survival while maintaining equivalent tumor cell kill, potentially increasing the therapeutic index. Our findings support the feasibility of delivering temporally fractionated doses using different MRT modalities and provide clear evidence of the therapeutic benefits of temporally fractionated MRT. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

11 pages, 2333 KiB  
Article
Superior Anti-Tumor Response After Microbeam and Minibeam Radiation Therapy in a Lung Cancer Mouse Model
by Narayani Subramanian, Aleksandra Čolić, Marina Santiago Franco, Jessica Stolz, Mabroor Ahmed, Sandra Bicher, Johanna Winter, Rainer Lindner, Susanne Raulefs, Stephanie E. Combs, Stefan Bartzsch and Thomas E. Schmid
Cancers 2025, 17(1), 114; https://doi.org/10.3390/cancers17010114 - 1 Jan 2025
Cited by 2 | Viewed by 1698
Abstract
Objectives: The present study aimed to compare the tumor growth delay between conventional radiotherapy (CRT) and the spatially fractionated modalities of microbeam radiation therapy (MRT) and minibeam radiation therapy (MBRT). In addition, we also determined the influence of beam width and the peak-to-valley [...] Read more.
Objectives: The present study aimed to compare the tumor growth delay between conventional radiotherapy (CRT) and the spatially fractionated modalities of microbeam radiation therapy (MRT) and minibeam radiation therapy (MBRT). In addition, we also determined the influence of beam width and the peak-to-valley dose ratio (PVDR) on tumor regrowth. Methods: A549, a human non-small-cell lung cancer cell line, was implanted subcutaneously into the hind leg of female CD1-Foxn1nu mice. The animals were irradiated with sham, CRT, MRT, or MBRT. The spatially fractionated fields were created using two specially designed multislit collimators with a beam width of 50 μm and a center-to-center distance (CTC) of 400 μm for MRT and a beam width of 500 μm and 2000 μm CTC for MBRT. Additionally, the concept of the equivalent uniform dose (EUD) was chosen in our study. A dose of 20 Gy was applied to all groups with a PVDR of 20 for MBRT and MRT. Tumor growth was recorded until the tumors reached at least a volume that was at least three-fold of their initial value, and the growth delay was calculated. Results: We saw a significant reduction in tumor regrowth following all radiation modalities. A growth delay of 11.1 ± 8 days was observed for CRT compared to the sham, whereas MBRT showed a delay of 20.2 ± 7.3 days. The most pronounced delay was observed in mice irradiated with MRT PVDR 20, with 34.9 ± 26.3 days of delay. Conclusions: The current study highlights the fact that MRT and MBRT modalities show a significant tumor growth delay in comparison to CRT at equivalent uniform doses. Full article
(This article belongs to the Section Clinical Research of Cancer)
Show Figures

Figure 1

23 pages, 3368 KiB  
Article
Microbeam Radiation Therapy Bio-Dosimetry Enhanced by Novel Radiosensitiser Combinations in the Treatment of Brain Cancer
by Michael Valceski, Elette Engels, Sarah Vogel, Jason Paino, Dylan Potter, Carolyn Hollis, Abass Khochaiche, Micah Barnes, Alice O’Keefe, Matthew Cameron, Kiarn Roughley, Anatoly Rosenfeld, Michael Lerch, Stéphanie Corde and Moeava Tehei
Cancers 2024, 16(24), 4231; https://doi.org/10.3390/cancers16244231 - 19 Dec 2024
Cited by 2 | Viewed by 5307
Abstract
Background/Objectives: Brain cancer is notoriously resistant to traditional treatments, including radiotherapy. Microbeam radiation therapy (MRT), arrays of ultra-fast synchrotron X-ray beams tens of micrometres wide (called peaks) and spaced hundreds of micrometres apart (valleys), is an effective alternative to conventional treatments. MRT’s [...] Read more.
Background/Objectives: Brain cancer is notoriously resistant to traditional treatments, including radiotherapy. Microbeam radiation therapy (MRT), arrays of ultra-fast synchrotron X-ray beams tens of micrometres wide (called peaks) and spaced hundreds of micrometres apart (valleys), is an effective alternative to conventional treatments. MRT’s advantage is that normal tissues can be spared from harm whilst maintaining tumour control. Combining MRT with targeted radiosensitisers, such as nanoparticles, chemotherapeutic drugs, and halogenated pyrimidine drugs, can further improve radiotherapy by enhancing radiation damage. However, the underlying mechanisms of MRT are still being understood, which is essential to ensuring the reliable and successful use of MRT. Methods: An in vitro study was performed using γH2AX imaging, and quantification was performed via confocal microscopy and a clonogenic cell survival assay. Results: We show that methotrexate chemotherapeutics and iododeoxyuridine enhance MRT cell-killing and thulium oxide nanoparticles (TmNPs) broaden MRT peaks, and using γH2AX immunofluorescent confocal microscopy to quantify DNA damage, we further our knowledge of MRT mechanisms. γH2AX images verify the biological responses of cells aligning with the physical collimation of MRT, and we can accurately measure MRT microbeam characteristics bio-dosimetrically. The peak-to-valley dose ratio (PVDR), the ratio of the peak dose to the valley dose that characterises an MRT field, was accurately measured biologically using γH2AX imaging, despite studies previously finding this challenging. Conclusions: The measurement of biological PVDR has been performed for the first time with high-Z radiosensitisers, including nanoparticles, and several novel radiosensitiser-enhanced MRT mechanisms were discovered. Our results deepen our understanding of MRT with radiosensitisers, and can contribute to its accurate and future successful use in treating cancer. Full article
(This article belongs to the Special Issue Application of Fluorescence Imaging in Cancer)
Show Figures

Graphical abstract

14 pages, 5756 KiB  
Article
Neuro-Oncologic Veterinary Trial for the Clinical Transfer of Microbeam Radiation Therapy: Acute to Subacute Radiotolerance after Brain Tumor Irradiation in Pet Dogs
by Laura Eling, Samy Kefs, Sarvenaz Keshmiri, Jacques Balosso, Susan Calvet, Gabriel Chamel, Renaud Drevon-Gaud, Isabelle Flandin, Maxime Gaudin, Lucile Giraud, Jean Albert Laissue, Paolo Pellicioli, Camille Verry, Jean-François Adam and Raphaël Serduc
Cancers 2024, 16(15), 2701; https://doi.org/10.3390/cancers16152701 - 29 Jul 2024
Cited by 2 | Viewed by 2015
Abstract
Synchrotron Microbeam Radiation Therapy (MRT) has repeatedly proven its superiority compared with conventional radiotherapy for glioma control in preclinical research. The clinical transfer phase of MRT has recently gained momentum; seven dogs with suspected glioma were treated under clinical conditions to determine the [...] Read more.
Synchrotron Microbeam Radiation Therapy (MRT) has repeatedly proven its superiority compared with conventional radiotherapy for glioma control in preclinical research. The clinical transfer phase of MRT has recently gained momentum; seven dogs with suspected glioma were treated under clinical conditions to determine the feasibility and safety of MRT. We administered a single fraction of 3D-conformal, image-guided MRT. Ultra-high-dose rate synchrotron X-ray microbeams (50 µm-wide, 400 µm-spaced) were delivered through five conformal irradiation ports. The PTV received ~25 Gy peak dose (within microbeams) per port, corresponding to a minimal cumulated valley dose (diffusing between microbeams) of 2.8 Gy. The dogs underwent clinical and MRI follow-up, and owner evaluations. One dog was lost to follow-up. Clinical exams of the remaining six dogs during the first 3 months did not indicate radiotoxicity induced by MRT. Quality of life improved from 7.3/10 [±0.7] to 8.9/10 [±0.3]. Tumor-induced seizure activity decreased significantly. A significant tumor volume reduction of 69% [±6%] was reached 3 months after MRT. Our study is the first neuro-oncologic veterinary trial of 3D-conformal Synchrotron MRT and reveals that MRT does not induce acute to subacute radiotoxicity in normal brain tissues. MRT improves quality of life and leads to remarkable tumor volume reduction despite low valley dose delivery. This trial is an essential step towards the forthcoming clinical application of MRT against deep-seated human brain tumors. Full article
(This article belongs to the Special Issue Steps towards the Clinics in Spatially Fractionated Radiation Therapy)
Show Figures

Figure 1

14 pages, 6937 KiB  
Article
In Vivo Microbeam Radiation Therapy at a Conventional Small Animal Irradiator
by Mabroor Ahmed, Sandra Bicher, Stephanie Elisabeth Combs, Rainer Lindner, Susanne Raulefs, Thomas E. Schmid, Suzana Spasova, Jessica Stolz, Jan Jakob Wilkens, Johanna Winter and Stefan Bartzsch
Cancers 2024, 16(3), 581; https://doi.org/10.3390/cancers16030581 - 30 Jan 2024
Cited by 3 | Viewed by 2610
Abstract
Microbeam radiation therapy (MRT) is a still pre-clinical form of spatially fractionated radiotherapy, which uses an array of micrometer-wide, planar beams of X-ray radiation. The dose modulation in MRT has proven effective in the treatment of tumors while being well tolerated by normal [...] Read more.
Microbeam radiation therapy (MRT) is a still pre-clinical form of spatially fractionated radiotherapy, which uses an array of micrometer-wide, planar beams of X-ray radiation. The dose modulation in MRT has proven effective in the treatment of tumors while being well tolerated by normal tissue. Research on understanding the underlying biological mechanisms mostly requires large third-generation synchrotrons. In this study, we aimed to develop a preclinical treatment environment that would allow MRT independent of synchrotrons. We built a compact microbeam setup for pre-clinical experiments within a small animal irradiator and present in vivo MRT application, including treatment planning, dosimetry, and animal positioning. The brain of an immobilized mouse was treated with MRT, excised, and immunohistochemically stained against γH2AX for DNA double-strand breaks. We developed a comprehensive treatment planning system by adjusting an existing dose calculation algorithm to our setup and attaching it to the open-source software 3D-Slicer. Predicted doses in treatment planning agreed within 10% with film dosimetry readings. We demonstrated the feasibility of MRT exposures in vivo at a compact source and showed that the microbeam pattern is observable in histological sections of a mouse brain. The platform developed in this study will be used for pre-clinical research of MRT. Full article
(This article belongs to the Special Issue Steps towards the Clinics in Spatially Fractionated Radiation Therapy)
Show Figures

Figure 1

20 pages, 3270 KiB  
Article
Modulating Synchrotron Microbeam Radiation Therapy Doses for Preclinical Brain Cancer
by Elette Engels, Jason R. Paino, Sarah E. Vogel, Michael Valceski, Abass Khochaiche, Nan Li, Jeremy A. Davis, Alice O’Keefe, Andrew Dipuglia, Matthew Cameron, Micah Barnes, Andrew W. Stevenson, Anatoly Rosenfeld, Michael Lerch, Stéphanie Corde and Moeava Tehei
Radiation 2023, 3(4), 183-202; https://doi.org/10.3390/radiation3040015 - 14 Oct 2023
Cited by 3 | Viewed by 2996
Abstract
Synchrotron Microbeam Radiation Therapy (MRT) is an innovative technique that spatially segments the synchrotron radiation field for cancer treatment. A microbeam peak dose is often hundreds of times the dose in the valley (the sub-millimeter region between the peaks of the microbeams). Peak [...] Read more.
Synchrotron Microbeam Radiation Therapy (MRT) is an innovative technique that spatially segments the synchrotron radiation field for cancer treatment. A microbeam peak dose is often hundreds of times the dose in the valley (the sub-millimeter region between the peaks of the microbeams). Peak and valley doses vary with increasing depth in tissue which effects tumor dose coverage. It remains to be seen whether the peak or valley is the primary factor in MRT cancer control. This study investigates how unilateral MRT doses can be modulated using a bolus, and identifies the valley dose as a primary factor in MRT cancer control. Fischer rats bearing 9 L gliosarcoma tumors were irradiated with MRT at the Imaging and Medical Beam Line of the Australian Synchrotron. MRT valley doses of 8–15 Gy (250–1040 Gy peak doses) were used to treat tumors with and without a 5 mm dose-modulating bolus. Long-term survival depended on the valley dose primarily (92% correlation), and the use of the bolus reduced the variance in animal survival and improved to the mean survival of rats treated with MRT by 47% and 18% using 15 Gy and 8 Gy valley doses, respectively. Full article
Show Figures

Figure 1

15 pages, 5203 KiB  
Article
DoseMRT: A Software Package for Individualised Monte Carlo Dose Calculations of Synchrotron-Generated Microbeam Radiation Therapy
by Jason Paino, Matthew Cameron, Matthew Large, Micah Barnes, Elette Engels, Sarah Vogel, Moeava Tehei, Stéphanie Corde, Susanna Guatelli, Anatoly Rosenfeld and Michael Lerch
Radiation 2023, 3(2), 123-137; https://doi.org/10.3390/radiation3020011 - 20 Jun 2023
Cited by 5 | Viewed by 2767
Abstract
This work describes the creation and experimental validation of DoseMRT, a new software package, and its associated workflow for dose calculations in synchrotron-generated broad beam and microbeam radiation treatment fields. The [...] Read more.
This work describes the creation and experimental validation of DoseMRT, a new software package, and its associated workflow for dose calculations in synchrotron-generated broad beam and microbeam radiation treatment fields. The DoseMRT software package allows users to import CT DICOM datasets into Geant4 for Monte Carlo dose calculations. It also provides basic treatment planning capabilities, simplifying the complexity of performing Geant4 simulations and making our Monte Carlo dose calculation algorithm accessible to a broader range of users. To demonstrate the new package, dose calculations are validated against experimental measurements performed in homogeneous water tank phantoms and the anatomically complex Alderson Radiotherapy Phantom for both broad-beam and microbeam configurations. Additionally, DoseMRT is successfully utilised as the primary method for patient-specific treatment prescription in an in vivo experiment involving tumour-bearing rats at the Imaging and Medical Beamline of the Australian Synchrotron. Full article
Show Figures

Figure 1

19 pages, 2117 KiB  
Article
Targeted Central Nervous System Irradiation with Proton Microbeam Induces Mitochondrial Changes in Caenorhabditis elegans
by Ahmad Sleiman, Kévin Lalanne, François Vianna, Yann Perrot, Myriam Richaud, Tanima SenGupta, Mikaël Cardot-Martin, Pascal Pedini, Christophe Picard, Hilde Nilsen, Simon Galas and Christelle Adam-Guillermin
Biology 2023, 12(6), 839; https://doi.org/10.3390/biology12060839 - 9 Jun 2023
Cited by 4 | Viewed by 3170
Abstract
Fifty percent of all patients with cancer worldwide require radiotherapy. In the case of brain tumors, despite the improvement in the precision of radiation delivery with proton therapy, studies have shown structural and functional changes in the brains of treated patients with protons. [...] Read more.
Fifty percent of all patients with cancer worldwide require radiotherapy. In the case of brain tumors, despite the improvement in the precision of radiation delivery with proton therapy, studies have shown structural and functional changes in the brains of treated patients with protons. The molecular pathways involved in generating these effects are not completely understood. In this context, we analyzed the impact of proton exposure in the central nervous system area of Caenorhabditis elegans with a focus on mitochondrial function, which is potentially implicated in the occurrence of radiation-induced damage. To achieve this objective, the nematode C. elegans were micro-irradiated with 220 Gy of protons (4 MeV) in the nerve ring (head region) using the proton microbeam, MIRCOM. Our results show that protons induce mitochondrial dysfunction, characterized by an immediate dose-dependent loss of the mitochondrial membrane potential (ΔΨm) associated with oxidative stress 24 h after irradiation, which is itself characterized by the induction of the antioxidant proteins in the targeted region, observed using SOD-1::GFP and SOD-3::GFP strains. Moreover, we demonstrated a two-fold increase in the mtDNA copy number in the targeted region 24 h after irradiation. In addition, using the GFP::LGG-1 strain, an induction of autophagy in the irradiated region was observed 6 h following the irradiation, which is associated with the up-regulation of the gene expression of pink-1 (PTEN-induced kinase) and pdr-1 (C. elegans parkin homolog). Furthermore, our data showed that micro-irradiation of the nerve ring region did not impact the whole-body oxygen consumption 24 h following the irradiation. These results indicate a global mitochondrial dysfunction in the irradiated region following proton exposure. This provides a better understanding of the molecular pathways involved in radiation-induced side effects and may help in finding new therapies. Full article
(This article belongs to the Special Issue Microbeam Radiation Biology and Its State-of-the-Art Technology)
Show Figures

Figure 1

17 pages, 6241 KiB  
Article
Accurate and Fast Deep Learning Dose Prediction for a Preclinical Microbeam Radiation Therapy Study Using Low-Statistics Monte Carlo Simulations
by Florian Mentzel, Jason Paino, Micah Barnes, Matthew Cameron, Stéphanie Corde, Elette Engels, Kevin Kröninger, Michael Lerch, Olaf Nackenhorst, Anatoly Rosenfeld, Moeava Tehei, Ah Chung Tsoi, Sarah Vogel, Jens Weingarten, Markus Hagenbuchner and Susanna Guatelli
Cancers 2023, 15(7), 2137; https://doi.org/10.3390/cancers15072137 - 4 Apr 2023
Cited by 5 | Viewed by 2875
Abstract
Microbeam radiation therapy (MRT) utilizes coplanar synchrotron radiation beamlets and is a proposed treatment approach for several tumor diagnoses that currently have poor clinical treatment outcomes, such as gliosarcomas. Monte Carlo (MC) simulations are one of the most used methods at the Imaging [...] Read more.
Microbeam radiation therapy (MRT) utilizes coplanar synchrotron radiation beamlets and is a proposed treatment approach for several tumor diagnoses that currently have poor clinical treatment outcomes, such as gliosarcomas. Monte Carlo (MC) simulations are one of the most used methods at the Imaging and Medical Beamline, Australian Synchrotron to calculate the dose in MRT preclinical studies. The steep dose gradients associated with the 50μm-wide coplanar beamlets present a significant challenge for precise MC simulation of the dose deposition of an MRT irradiation treatment field in a short time frame. The long computation times inhibit the ability to perform dose optimization in treatment planning or apply online image-adaptive radiotherapy techniques to MRT. Much research has been conducted on fast dose estimation methods for clinically available treatments. However, such methods, including GPU Monte Carlo implementations and machine learning (ML) models, are unavailable for novel and emerging cancer radiotherapy options such as MRT. In this work, the successful application of a fast and accurate ML dose prediction model for a preclinical MRT rodent study is presented for the first time. The ML model predicts the peak doses in the path of the microbeams and the valley doses between them, delivered to the tumor target in rat patients. A CT imaging dataset is used to generate digital phantoms for each patient. Augmented variations of the digital phantoms are used to simulate with Geant4 the energy depositions of an MRT beam inside the phantoms with 15% (high-noise) and 2% (low-noise) statistical uncertainty. The high-noise MC simulation data are used to train the ML model to predict the energy depositions in the digital phantoms. The low-noise MC simulations data are used to test the predictive power of the ML model. The predictions of the ML model show an agreement within 3% with low-noise MC simulations for at least 77.6% of all predicted voxels (at least 95.9% of voxels containing tumor) in the case of the valley dose prediction and for at least 93.9% of all predicted voxels (100.0% of voxels containing tumor) in the case of the peak dose prediction. The successful use of high-noise MC simulations for the training, which are much faster to produce, accelerates the production of the training data of the ML model and encourages transfer of the ML model to different treatment modalities for other future applications in novel radiation cancer therapies. Full article
(This article belongs to the Special Issue Steps towards the Clinics in Spatially Fractionated Radiation Therapy)
Show Figures

Figure 1

12 pages, 1960 KiB  
Article
Stimulation of Nuclear Factor (Erythroid-Derived 2)-like 2 Signaling by Nucleus Targeted Irradiation with Proton Microbeam
by Jun Wang, Masakazu Oikawa and Teruaki Konishi
Biology 2023, 12(3), 419; https://doi.org/10.3390/biology12030419 - 9 Mar 2023
Cited by 6 | Viewed by 2159
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (NRF2), well-known as a master antioxidative response regulator in mammalian cells, is considered as a potential target for radiation protection and cancer therapy sensitization. We examined the response of NRF2 signaling in normal human lung fibroblast WI-38 cells [...] Read more.
Nuclear factor (erythroid-derived 2)-like 2 (NRF2), well-known as a master antioxidative response regulator in mammalian cells, is considered as a potential target for radiation protection and cancer therapy sensitization. We examined the response of NRF2 signaling in normal human lung fibroblast WI-38 cells to nucleus targeted irradiation by 3.4 MeV proton microbeam. Nucleus targeted irradiation stimulated the nucleus accumulation of NRF2 and the expression of its target gene, heme oxygenase 1 (HO-1). The nucleus accumulation of NRF2 increased from 3 h to 12 h post 500 proton irradiation. In the 500 protons range, higher number of protons resulted in increased NRF2 nucleus accumulation. Activating NRF2 with tert-butylhydroquinone reduced DNA double-strand break (DSB) formation in nucleus targeted irradiation by 15%. Moreover, ATM phosphorylation was found in nucleus targeted irradiation. Inhibiting ATM with ku55933 prevented NRF2 nucleus accumulation. Furthermore, nucleus targeted irradiation activated ERK 1/2, and ROS-ERK 1/2 signaling regulated NRF2 nucleus accumulation. Taken together, NRF2 signaling was activated by nucleus targeted irradiation and mitigated DNA DSB. The discovery of ATM and ERK 1/2 as upstream regulators of NRF2 signaling in nucleus targeted cells revealed new information regarding radiation protection. Full article
(This article belongs to the Special Issue Microbeam Radiation Biology and Its State-of-the-Art Technology)
Show Figures

Figure 1

15 pages, 1466 KiB  
Review
Lasers in Live Cell Microscopy
by Herbert Schneckenburger
Int. J. Mol. Sci. 2022, 23(9), 5015; https://doi.org/10.3390/ijms23095015 - 30 Apr 2022
Cited by 5 | Viewed by 3659
Abstract
Due to their unique properties—coherent radiation, diffraction limited focusing, low spectral bandwidth and in many cases short light pulses—lasers play an increasing role in live cell microscopy. Lasers are indispensable tools in 3D microscopy, e.g., confocal, light sheet or total internal reflection microscopy, [...] Read more.
Due to their unique properties—coherent radiation, diffraction limited focusing, low spectral bandwidth and in many cases short light pulses—lasers play an increasing role in live cell microscopy. Lasers are indispensable tools in 3D microscopy, e.g., confocal, light sheet or total internal reflection microscopy, as well as in super-resolution microscopy using wide-field or confocal methods. Further techniques, e.g., spectral imaging or fluorescence lifetime imaging (FLIM) often depend on the well-defined spectral or temporal properties of lasers. Furthermore, laser microbeams are used increasingly for optical tweezers or micromanipulation of cells. Three exemplary laser applications in live cell biology are outlined. They include fluorescence diagnosis, in particular in combination with Förster Resonance Energy Transfer (FRET), photodynamic therapy as well as laser-assisted optoporation, and demonstrate the potential of lasers in cell biology and—more generally—in biomedicine. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Figure 1

17 pages, 5813 KiB  
Article
Targeted Accumulation of Macrophages Induced by Microbeam Irradiation in a Tissue-Dependent Manner
by Verdiana Trappetti, Jennifer Fazzari, Cristian Fernandez-Palomo, Lloyd Smyth, Marine Potez, Nahoko Shintani, Bettina de Breuyn Dietler, Olga A. Martin and Valentin Djonov
Biomedicines 2022, 10(4), 735; https://doi.org/10.3390/biomedicines10040735 - 22 Mar 2022
Cited by 9 | Viewed by 3971
Abstract
Radiation therapy (RT) is a vital component of multimodal cancer treatment, and its immunomodulatory effects are a major focus of current therapeutic strategies. Macrophages are some of the first cells recruited to sites of radiation-induced injury where they can aid in tissue repair, [...] Read more.
Radiation therapy (RT) is a vital component of multimodal cancer treatment, and its immunomodulatory effects are a major focus of current therapeutic strategies. Macrophages are some of the first cells recruited to sites of radiation-induced injury where they can aid in tissue repair, propagate radiation-induced fibrogenesis and influence tumour dynamics. Microbeam radiation therapy (MRT) is a unique, spatially fractionated radiation modality that has demonstrated exceptional tumour control and reduction in normal tissue toxicity, including fibrosis. We conducted a morphological analysis of MRT-irradiated normal liver, lung and skin tissues as well as lung and melanoma tumours. MRT induced distinct patterns of DNA damage, reflecting the geometry of the microbeam array. Macrophages infiltrated these regions of peak dose deposition at variable timepoints post-irradiation depending on the tissue type. In normal liver and lung tissue, macrophages clearly demarcated the beam path by 48 h and 7 days post-irradiation, respectively. This was not reflected, however, in normal skin tissue, despite clear DNA damage marking the beam path. Persistent DNA damage was observed in MRT-irradiated lung carcinoma, with an accompanying geometry-specific influx of mixed M1/M2-like macrophage populations. These data indicate the unique potential of MRT as a tool to induce a remarkable accumulation of macrophages in an organ/tissue-specific manner. Further characterization of these macrophage populations is warranted to identify their organ-specific roles in normal tissue sparing and anti-tumour responses. Full article
(This article belongs to the Special Issue Macrophages in Health and Non-infectious Disease 2.0)
Show Figures

Figure 1

13 pages, 628 KiB  
Review
A Brief Overview of Radiation-Induced Effects on Spermatogenesis and Oncofertility
by Hisanori Fukunaga, Akinari Yokoya and Kevin M. Prise
Cancers 2022, 14(3), 805; https://doi.org/10.3390/cancers14030805 - 4 Feb 2022
Cited by 16 | Viewed by 5706
Abstract
The genotoxicity of radiation on germ cells may be passed on to the next generation, thus its elucidation is not only a scientific issue but also an ethical, legal, and social issue in modern society. In this article, we briefly overview the effects [...] Read more.
The genotoxicity of radiation on germ cells may be passed on to the next generation, thus its elucidation is not only a scientific issue but also an ethical, legal, and social issue in modern society. In this article, we briefly overview the effects of radiation on spermatogenesis and its associated genotoxicity, including the latest findings in the field of radiobiology. The potential role of transgenerational effects is still poorly understood, and further research in this area is desirable. Furthermore, from the perspective of oncofertility, we discuss the historical background and clinical importance of preserving male fertility during radiation treatment and the potential of microbeam radiotherapy. We hope that this review will contribute to stimulating further discussions and investigations for therapies for pediatric and adolescent/young adult patients. Full article
(This article belongs to the Special Issue Cancer and Non-cancer Effects following Ionizing Irradiation)
Show Figures

Figure 1

Back to TopTop