Gafchromic™ EBT3 Film Measurements of Dose Enhancement Effects by Metallic Nanoparticles for 192Ir Brachytherapy, Proton, Photon and Electron Radiotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Nanoparticles Synthesis and Characterization: SPIONs, AuNPs, BiONPs
2.2. Film Dosimeters
2.3. Irradiation Setup
2.3.1. Photon and Electron Beam Radiotherapy
2.3.2. 192Ir HDR Brachytherapy
2.3.3. Proton Beam Radiotherapy
2.4. Dose Enhancement Measurement
2.5. Film Calibrations and Analysis
2.6. Experimental Dose Enhancement Analysis
2.7. Theoretical Dose Enhancement Analysis
3. Results
3.1. Calibration Curve
3.2. Theoretical Dose Enhancement by SPIONs, AuNPs, BiONPs
3.3. Dose Enhancement by SPIONs, AuNPs, BiONPs
4. Discussion
- The abundant, low-energy electrons, i.e., Auger electrons produced by NPs had nanometric trajectory range and were hypothesized to be physically absorbed or attenuated by the outer layer of matte polyester substrate;
- Highly energetic electrons, i.e., photoelectrons generated by the NPs at the specific concentration, with trajectory range of >125 μm, were sparse;
- The measured due to photoelectrons are lower than their associated uncertainty and statistically indistinguishable from the control experiment.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Misawa, M.; Takahashi, J. Generation of Reactive Oxygen Species Induced by Gold Nanoparticles under X-ray and UV Irradiations. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Wilkens, J.J. Introduction to Radiotherapy with Photon and Electron Beams and: Treatment Planning from Conformal Radiotherapy to IMRT. AIP Conf. Proc. 2007, 958, 63–69. [Google Scholar] [CrossRef]
- Ma, S.; Liang, Z.; Chen, Q.; Liu, R.; Guo, Y.; Liu, X. The Challenges of Precision Radiotherapy Technology to the Traditional Theory of Radiobiology. Chin. J. Radiol. Med. Prot. 2019, 39, 563–571. [Google Scholar]
- Chen, H.H.W.; Kuo, M.T. Improving Radiotherapy in Cancer Treatment: Promises and Challenges. Oncotarget 2017, 8, 62742–62758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najafi, M.; Majidpoor, J.; Toolee, H.; Mortezaee, K. The Current Knowledge Concerning Solid Cancer and Therapy. J. Biochem. Mol. Toxicol. 2021, 35, e22900. [Google Scholar] [CrossRef]
- Kuncic, Z.; Lacombe, S. Nanoparticle Radio-Enhancement: Principles, Progress and Application to Cancer Treatment. Phys. Med. Biol. 2018, 63, 02TR01. [Google Scholar] [CrossRef]
- Mura, S.; Couvreur, P. Nanotheranostics for Personalized Medicine. Adv. Drug Deliv. Rev. 2012, 64, 1394–1416. [Google Scholar] [CrossRef]
- Peukert, D.; Kempson, I.; Douglass, M.; Bezak, E. Metallic Nanoparticle Radiosensitisation of Ion Radiotherapy: A Review. Phys. Med. 2018, 47, 121–128. [Google Scholar] [CrossRef]
- Ahmad, R.; Schettino, G.; Royle, G.; Barry, M.; Pankhurst, Q.A.; Tillement, O.; Russell, B.; Ricketts, K. Radiobiological Implications of Nanoparticles Following Radiation Treatment. Part. Part. Syst. Charact. 2020, 37, 1900411. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, P.; Li, F.; Jin, X.; Li, J.; Chen, W.; Li, Q. Metal-Based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics 2018, 8, 1824–1849. [Google Scholar] [CrossRef]
- Guo, T. X-ray Nanochemistry Concepts and Development; Lockwood, D.J., Ed.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Attix, F.H. Introduction to Radiological Physics and Radiation Dosimetry; Wiley-Vch: Weinheim, Germany, 2004. [Google Scholar]
- Cho, S.H. Estimation of Tumour Dose Enhancement Due to Gold Nanoparticles during Typical Radiation Treatments: A Preliminary Monte Carlo Study. Phys. Med. Biol. 2005, 50, N163. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, K.T.; McMahon, S.J.; Taggart, L.E.; Prise, K.M. Radiosensitization by Gold Nanoparticles: Effective at Megavoltage Energies and Potential Role of Oxidative Stress. Transl. Cancer Res. 2013, 2, 269–279. [Google Scholar] [CrossRef]
- Lazim, R.M.; Rashid, R.A.; Pham, B.T.T.; Hawkett, B.S.; Geso, M.; Rahman, W.N. Radiation Dose Enhancement Effects of Superparamagnetic Iron Oxide Nanoparticles to the T24 Bladder Cancer Cell Lines Irradiated with Megavoltage Photon Beam Radiotheray. J. Sains Nukl. Malays. 2018, 30, 30–38. [Google Scholar]
- Rahman, W.N.; Corde, S.; Yagi, N.; Abdul Aziz, S.A.; Annabell, N.; Geso, M. Optimal Energy for Cell Radiosensitivity Enhancement by Gold Nanoparticles Using Synchrotron-Based Monoenergetic Photon Beams. Int. J. Nanomed. 2014, 9, 2459–2467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdul Rashid, R.; Zainal Abidin, S.; Khairil Anuar, M.A.; Tominaga, T.; Akasaka, H.; Sasaki, R.; Kie, K.; Abdul Razak, K.; Pham, B.T.T.; Hawkett, B.S.; et al. Radiosensitization Effects and ROS Generation by High Z Metallic Nanoparticles on Human Colon Carcinoma Cell (HCT116) Irradiated under 150 MeV Proton Beam. OpenNano 2019, 4, 100027. [Google Scholar] [CrossRef]
- Khairil Anuar, M.A.; Sisin, N.N.T.; Akasaka, H.; Sasaki, R.; Tominaga, T.; Miura, H.; Nishi, M.; Geso, M.; Abdul Razak, K.; Rahman, W.N. Effect of Nanoparticle Size on Radiosensitization Effect and ROS Generation in Human Colon Carcinoma Cells (HCT 116) after 150 MeV Proton Beam Irradiation. J. Nucl. Relat. Technol. 2021, 18, 17–25. [Google Scholar]
- Hamida, R.S.; Albasher, G.; Bin-Meferij, M.M. Oxidative Stress and Apoptotic Responses Elicited by Nostoc-Synthesized Silver Nanoparticles against Different Cancer Cell Lines. Cancers 2020, 12, 2099. [Google Scholar] [CrossRef]
- Abidin, S.Z.; Zulkifli, Z.A.; Razak, K.A.; Zin, H.; Yunus, M.A.; Rahman, W.N. PEG Coated Bismuth Oxide Nanorods Induced Radiosensitization on MCF-7 Breast Cancer Cells under Irradiation of Megavoltage Radiotherapy Beams. Mater. Today Proc. 2019, 16, 1640–1645. [Google Scholar] [CrossRef]
- Sisin, N.N.T.; Razak, K.A.; Abidin, S.Z.; Mat, N.F.C.; Abdullah, R.; Rashid, R.A.; Khairil Anuar, M.A.; Rahman, W.N. Synergetic Influence of Bismuth Oxide Nanoparticles, Cisplatin and Baicalein-Rich Fraction on Reactive Oxygen Species Generation and Radiosensitization Effects for Clinical Radiotherapy Beams. Int. J. Nanomed. 2020, 2020, 7805–7823. [Google Scholar] [CrossRef]
- Brun, E.; Sanche, L.; Sicard-Roselli, C. Parameters Governing Gold Nanoparticle X-ray Radiosensitization of DNA in Solution. Colloids Surf. B Biointerfaces 2009, 72, 128–134. [Google Scholar] [CrossRef]
- Kwatra, D.; Venugopal, A.; Anant, S. Nanoparticles in Radiation Therapy: A Summary of Various Approaches to Enhance Radiosensitization in Cancer. Transl. Cancer Res. 2013, 2, 330–342. [Google Scholar] [CrossRef]
- Zulkifli, Z.A.; Razak, K.A.; Rahman, W.N.W.A.; Abidin, S.Z. Synthesis and Characterisation of Bismuth Oxide Nanoparticles Using Hydrothermal Method: The Effect of Reactant Concentrations and Application in Radiotherapy. J. Phys. Conf. Ser. 2018, 1082, 012103. [Google Scholar] [CrossRef]
- Sisin, N.N.T.; Abdul Razak, K.; Zainal Abidin, S.; Abdullah, R.; Ab Rashid, R.; Khairil Anuar, M.A.; Mohd Zainudin, N.H.; Tagilinig, N.; Mat Nawi, N.; Rahman, W.N. Radiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for High Dose Rate Brachytherapy. Int. J. Nanomed. 2019, 14, 9941–9954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, B.; Zhang, X.; Zhang, C.; Jiang, Y.; Fu, Y.Y.; Yu, C.; Sun, S.K.; Yan, X.P. Facile Synthesis of Uniform-Sized Bismuth Nanoparticles for CT Visualization of Gastrointestinal Tract in Vivo. ACS Appl. Mater. Interfaces 2016, 8, 12720–12726. [Google Scholar] [CrossRef]
- Rashid, R.A.; Razak, K.A.; Geso, M.; Abdullah, R.; Dollah, N.; Rahman, W.N. Radiobiological Characterization of the Radiosensitization Effects by Gold Nanoparticles for Megavoltage Clinical Radiotherapy Beams. Bionanoscience 2018, 8, 713–722. [Google Scholar] [CrossRef]
- Muhammad, M.A.; Rashid, R.A.; Lazim, R.M.; Dollah, N.; Razak, K.A.; Rahman, W.N. Evaluation of Radiosensitization Effects by Platinum Nanodendrites for 6 MV Photon Beam Radiotherapy. Radiat. Phys. Chem. 2018, 150, 40–45. [Google Scholar] [CrossRef]
- Stewart, C.; Konstantinov, K.; McKinnon, S.; Guatelli, S.; Lerch, M.; Rosenfeld, A.; Tehei, M.; Corde, S. First Proof of Bismuth Oxide Nanoparticles as Efficient Radiosensitisers on Highly Radioresistant Cancer Cells. Phys. Medica 2016, 32, 1444–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sisin, N.N.T.; Azam, N.A.; Rashid, R.A.; Abdullah, R.; Razak, K.A.; Abidin, S.Z.; Rahman, W.N. Dose Enhancement by Bismuth Oxide Nanoparticles for HDR Brachytherapy. J. Phys. Conf. Ser. 2020, 1497, 012002. [Google Scholar] [CrossRef]
- Deng, J.; Xu, S.; Hu, W.; Xun, X.; Zheng, L.; Su, M. Tumor Targeted, Stealthy and Degradable Bismuth Nanoparticles for Enhanced X-ray Radiation Therapy of Breast Cancer. Biomaterials 2018, 154, 24–33. [Google Scholar] [CrossRef]
- Brown, A.L.; Goforth, A.M. PH-Dependent Synthesis and Stability of Aqueous, Elemental Bismuth Glyconanoparticle Colloids: Potentially Biocompatible X-ray Contrast Agents. Chem. Mater. 2012, 24, 1599–1605. [Google Scholar] [CrossRef]
- Sisin, N.N.T.; Abidin, S.Z.; Yunus, M.A.; Zin, H.M.; Razak, K.A.; Rahman, W.N. Evaluation of Bismuth Oxide Nanoparticles as Radiosensitizer for Megavoltage Radiotherapy. Int. J. Adv. Sci. Eng. Inf. Technol. 2019, 9, 1434–1443. [Google Scholar] [CrossRef] [Green Version]
- Xue, W.; Liu, Y.; Zhang, N.; Yao, Y.; Ma, P.; Wen, H.; Huang, S.; Luo, Y.; Fan, H. Effects of Core Size and PEG Coating Layer of Iron Oxide Nanoparticles on the Distribution and Metabolism in Mice. Int. J. Nanomed. 2018, 13, 5719–5731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roeske, J.C.; Nuñez, L.; Hoggarth, M.; Labay, E.; Weichselbaum, R.R. Characterization of the Theorectical Radiation Dose Enhancement from Nanoparticles. Technol. Cancer Res. Treat. 2007, 6, 395–401. [Google Scholar] [CrossRef]
- Klein, S.; Sommer, A.; Distel, L.V.R.; Hazemann, J.L.; Kröner, W.; Neuhuber, W.; Müller, P.; Proux, O.; Kryschi, C. Superparamagnetic Iron Oxide Nanoparticles as Novel X-ray Enhancer for Low-Dose Radiation Therapy. J. Phys. Chem. B 2014, 118, 6159–6166. [Google Scholar] [CrossRef] [PubMed]
- Russell, E.; Dunne, V.; Russell, B.; Mohamud, H.; Ghita, M.; McMahon, S.J.; Butterworth, K.T.; Schettino, G.; McGarry, C.K.; Prise, K.M. Impact of Superparamagnetic Iron Oxide Nanoparticles on in Vitro and in Vivo Radiosensitisation of Cancer Cells. Radiat. Oncol. 2021, 16, 104. [Google Scholar] [CrossRef]
- Putri Fauzia, R.; Denkova, A.G.; Djanashvili, K. Potential of MRI in Radiotherapy Mediated by Small Conjugates and Nanosystems. Inorganics 2019, 7, 59. [Google Scholar] [CrossRef] [Green Version]
- BarathManiKanth, S.; Kalishwaralal, K.; Sriram, M.; Pandian, S.R.K.; Youn, H.s.; Eom, S.; Gurunathan, S. Anti-Oxidant Effect of Gold Nanoparticles Restrains Hyperglycemic Conditions in Diabetic Mice. J. Nanobiotechnol. 2010, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Mao, Q.; Zhao, M.; Gao, Y.; Wang, A.; Ye, S.; Wang, X.; Xie, W.; Shi, H. Protein Sulfenic Acid-Mediated Anchoring of Gold Nanoparticles for Enhanced CT Imaging and Radiotherapy of Tumors: In Vivo. Nanoscale 2020, 12, 22963–22969. [Google Scholar] [CrossRef]
- Chow, J.C.L. Photon and Electron Interactions with Gold Nanoparticles: A Monte Carlo Study on Gold Nanoparticle-Enhanced Radiotherapy. In Nanobiomaterials in Medical Imaging: Applications of Nanobiomaterials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 45–70. [Google Scholar] [CrossRef]
- Ghorbani, M.; Bakhshabadi, M.; Pakravan, D.; Meigooni, A.S. Dose Enhancement in Brachytherapy in the Presence of Gold Nanoparticles: A Monte Carlo Study on the Size of Gold Nanoparticles and Method of Modelling. Nukleonika 2012, 57, 401–406. [Google Scholar]
- Cho, S.; Jeong, J.H.; Kim, C.H.; Yoon, M. Monte Carlo Simulation Study on Dose Enhancement by Gold Nanoparticles in Brachytherapy. J. Korean Phys. Soc. 2010, 56, 1754–1758. [Google Scholar] [CrossRef]
- Zheng, X.J.; Chow, J.C.L. Radiation Dose Enhancement in Skin Therapy with Nanoparticle Addition: A Monte Carlo Study on Kilovoltage Photon and Megavoltage Electron Beams. World J. Radiol. 2017, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Alqathami, M.; Blencowe, A.; Yeo, U.J.; Franich, R.; Doran, S.; Qiao, G.; Geso, M. Enhancement of Radiation Effects by Bismuth Oxide Nanoparticles for Kilovoltage X-ray Beams: A Dosimetric Study Using a Novel Multi-Compartment 3D Radiochromic Dosimeter. J. Phys. Conf. Ser. 2013, 444, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Taha, E.; Djouider, F.; Banoqitah, E. Monte Carlo Simulations for Dose Enhancement in Cancer Treatment Using Bismuth Oxide Nanoparticles Implanted in Brain Soft Tissue. Australas. Phys. Eng. Sci. Med. 2018, 41, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and Radiation Therapy: Current Advances and Future Directions. Int. J. Med. Sci. 2012, 9, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Garibaldi, C.; Jereczek-Fossa, B.A.; Marvaso, G.; Dicuonzo, S.; Rojas, D.P.; Cattani, F.; Starzyńska, A.; Ciardo, D.; Surgo, A.; Leonardi, M.C.; et al. Recent Advances in Radiation Oncology. Ecancermedicalscience 2017, 11, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K.B.; Oldham, M.; Schreiner, L.J. Topical Review: Polymer Gel Dosimetry. Phys. Med. Biol. 2010, 55, 1–87. [Google Scholar] [CrossRef]
- Das, I.J. (Ed.) Radiochromic Film: Role and Applications in Radiation Dosimetry, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Corde, S.; Joubert, A.; Adam, J.F.; Charvet, A.M.; Le Bas, J.F.; Estève, F.; Elleaume, H.; Balosso, J. Synchrotron Radiation-Based Experimental Determination of the Optimal Energy for Cell Radiotoxicity Enhancement Following Photoelectric Effect on Stable Iodinated Compounds. Br. J. Cancer 2004, 91, 544–551. [Google Scholar] [CrossRef]
- AuroVistTM: AuroVistTM-15nm Gold Nanoparticle X-ray Contrast Agent. Available online: https://www.caltagmedsystems.co.uk/docs/Aurovist_15nm_Flyer_Email_Nanoprobes_v2016_04_04.pdf (accessed on 10 March 2021).
- Bryce, N.S.; Pham, B.T.T.; Fong, N.W.S.; Jain, N.; Pan, E.H.; Whan, R.M.; Hambley, T.W.; Hawkett, B.S. The Composition and End-Group Functionality of Sterically Stabilized Nanoparticles Enhances the Effectiveness of Co-Administered Cytotoxins. Biomater. Sci. 2013, 1, 1260–1272. [Google Scholar] [CrossRef] [Green Version]
- Pham, B.T.T.; Jain, N.; Kuchel, P.W.; Chapman, B.E.; Abickley, S.A.; Jones, S.K.; Shawkett, B.S. The Interaction of Sterically Stabilized Magnetic Nanoparticles with Fresh Human Red Blood Cells. Int. J. Nanomed. 2015, 10, 6645–6655. [Google Scholar] [CrossRef] [Green Version]
- Zulkifli, Z.A.; Razak, K.A.; Rahman, W.N.W.A. The Effect of Reaction Temperature on the Particle Size of Bismuth Oxide Nanoparticles Synthesized via Hydrothermal Method. In Proceedings of the 3rd International Concerence on the Science and Engineering of Materials (ICoSEM 2017) AIP Conference Proceedings 1958, Kuala Lumpur, Malaysia, 24–25 October 2017; American Institute of Physics: College Park, MD, USA, 2018; Volume 020007, pp. 1–5. [Google Scholar] [CrossRef]
- Palmer, A.L.; Dimitriadis, A.; Nisbet, A.; Clark, C.H. Evaluation of Gafchromic EBT-XD Film, with Comparison to EBT3 Film, and Application in High Dose Radiotherapy Verification. Phys. Med. Biol. 2015, 60, 8741–8752. [Google Scholar] [CrossRef]
- Rivard, M.J.; Coursey, B.M.; DeWerd, L.A.; Hanson, W.F.; Huq, M.S.; Ibbott, G.S.; Mitch, M.G.; Nath, R.; Williamson, J.F. Update of AAPM Task Group No. 43 Report: A Revised AAPM Protocol for Brachytherapy Dose Calculations. Med. Phys. 2004, 31, 633–674. [Google Scholar] [CrossRef]
- Moraes, T.G.D.; Menezes, A.S.D.; Grazziotin-soares, R.; Ubaldo, R.; Vitor, P.; Ferreira, C.; Carvalho, C.N.; Bauer, J. Impact of Immersion Media on Physical Properties and Bioactivity of Epoxy Resin-Based and Bioceramic Endodontic Sealers. Polymers 2022, 14, 729. [Google Scholar] [CrossRef] [PubMed]
- Torres, F.F.E.; Zordan-Bronzel, C.L.; Guerreiro-Tanomaru, J.M.; Chávez-Andrade, G.M.; Pinto, J.C.; Tanomaru-Filho, M. Effect of Immersion in Distilled Water or Phosphate-Buffered Saline on the Solubility, Volumetric Change and Presence of Voids within New Calcium Silicate-Based Root Canal Sealers. Int. Endod. J. 2020, 53, 385–391. [Google Scholar] [CrossRef] [PubMed]
- León-Marroquín, E.Y.; Lárraga-Gutiérrez, J.M.; Herrera-González, J.A.; Camacho-López, M.A.; Villarreal Barajas, J.E.; García-Garduño, O.A. Investigation of EBT3 Radiochromic Film’s Response to Humidity. J. Appl. Clin. Med. Phys. 2018, 19, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Aldelaijan, S.; Devic, S.; Mohammed, H.; Tomic, N.; Liang, L.H.; DeBlois, F.; Seuntjens, J. Evaluation of EBT-2 Model GAFCHROMICTM Film Performance in Water. Med. Phys. 2010, 37, 3687–3693. [Google Scholar] [CrossRef] [PubMed]
- Girard, F.; Bouchard, H.; Lacroixa, F. Reference Dosimetry Using Radiochromic Film. J. Appl. Clin. Med. Phys. 2012, 13, 339–353. [Google Scholar] [CrossRef]
- Kang, S.-W.; Chung, J.-B.; Kim, K.-H.; Eom, K.-Y.; Song, C.; Lee, J.-W.; Cho, W.; Suh, T.S. Evaluation of Dual-Channel Compound Method for EBT3 Film Dosimetry. Prog. Med. Phys. 2017, 28, 16. [Google Scholar] [CrossRef] [Green Version]
- Devic, S.; Seuntjens, J.; Sham, E.; Podgorsak, E.B.; Schmidtlein, C.R.; Kirov, A.S.; Soares, C.G. Precise Radiochromic Film Dosimetry Using a Flat-Bed Document Scanner. Med. Phys. 2005, 32, 2245–2253. [Google Scholar] [CrossRef]
- Soares, C.G.; Trichter, S.; Devic, S. Radiochromic Film. In Clinical Dosimetry Measurements in Radiotherapy (2009 AAPM Summer School); Rogers, D.W.O., Cygler, J.E., Eds.; Medical Physics Publishing: Madison, WI, USA, 2009; p. 1128. [Google Scholar]
- Tagiling, N.; Ab Rashid, R.; Azhan, S.N.A.; Dollah, N.; Geso, M.; Rahman, W.N. Effect of Scanning Parameters on Dose-Response of Radiochromic Films Irradiated with Photon and Electron Beams. Heliyon 2018, 4, e00864. [Google Scholar] [CrossRef] [Green Version]
- Boggs, P.T.; Byrd, R.H.; Schnabel, R.B. A Stable and Efficient Algorithm for Nonlinear Orthogonal Distance Regression. SIAM J. Sci. Stat. Comput. 1987, 8, 1052–1078. [Google Scholar] [CrossRef]
- Hubbell, J.H.; Seltzer, S.M. X-ray Mass Attenuation Coefficients, NIST Standard Reference Database 126. Available online: https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients (accessed on 18 March 2019).
- Lewis, D.; Micke, A.; Yu, X.; Chan, M.F. An Efficient Protocol for Radiochromic Film Dosimetry Combining Calibration and Measurement in a Single Scan. Med. Phys. 2012, 39, 6339–6350. [Google Scholar] [CrossRef] [PubMed]
- Algethami, M. Bismuth-Based Nanoparticles as Theranostic Agents for X-ray Computed Tomography (CT) and Radiation Therapy. Ph.D. Thesis, RMIT University, Melbourne, Australia, 2018. [Google Scholar]
- Srinivasan, K.; James Jabaseelan Samuel, E.; Poopathi, V.; Nirmala Grace, A. Investigation on Energy Dependency of Dose Enhancement Factor Produced by Gold Nanoparticle. Mater. Today Proc. 2019, 9, 446–449. [Google Scholar] [CrossRef]
- Boone, J.M.; Chavez, A.E. Comparison of X-ray Cross Sections for Diagnostic and Therapeutic Medical Physics. Med. Phys. 1996, 23, 1997–2005. [Google Scholar] [CrossRef] [PubMed]
- Paro, A.D.; Hossain, M.; Webster, T.J.; Su, M. Monte Carlo and Analytic Simulations in Nanoparticle-Enhanced Radiation Therapy. Int. J. Nanomed. 2016, 11, 4735–4741. [Google Scholar] [CrossRef] [Green Version]
- Niroomand-Rad, A.; Blackwell, C.R.; Coursey, B.M.; Gall, K.P.; Galvin, J.M.; McLaughlin, W.L.; Meigooni, A.S.; Nath, R.; Rodgers, J.E.; Soares, C.G. Radiochromic Film Dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55. Med. Phys. 1998, 25, 2093–2115. [Google Scholar] [CrossRef] [Green Version]
- Rakowski, J.T.; Laha, S.S.; Snyder, M.G.; Buczek, M.G.; Tucker, M.A.; Liu, F.; Mao, G.; Hillman, Y.; Lawes, G. Measurement of Gold Nanofilm Dose Enhancement Using Unlaminated Radiochromic Film. Med. Phys. 2015, 42, 5937–5944. [Google Scholar] [CrossRef] [Green Version]
- Santibáñez, M.; Fuentealba, M.; Torres, F.; Vargas, A. Experimental Determination of the Gadolinium Dose Enhancement in Phantom Irradiated with Low Energy X-ray Sources by a Spectrophotometer -Gafchromic-EBT3 Dosimetry System. Appl. Radiat. Isot. 2019, 154, 108857. [Google Scholar] [CrossRef]
- Mirza, J.A.; Choi, K.; Sung, W.; Jung, S.; Ye, S.J. Measuring Radioenhancement by Gold Nanofilms: Comparison with Analytical Calculations. Phys. Med. 2019, 68, 1–9. [Google Scholar] [CrossRef]
- Morris, K.N.; Weil, M.D.; Malzbender, R. Radiochromic Film Dosimetry of Contrast-Enhanced Radiotherapy (CERT). Phys. Med. Biol. 2006, 51, 5915–5925. [Google Scholar] [CrossRef]
- Loughery, B. Kilovoltage Intensity Modulated Radiotherapy; Wayne State University: Detroit, MI, USA, 2018. [Google Scholar] [CrossRef]
- Hwang, C.; Kim, J.M.; Kim, J. Influence of Concentration, Nanoparticle Size, Beam Energy, and Material on Dose Enhancement in Radiation Therapy. J. Radiat. Res. 2017, 58, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.; Sommer, A.; Distel, L.V.R.; Neuhuber, W.; Kryschi, C. Superparamagnetic Iron Oxide Nanoparticles as Radiosensitizer via Enhanced Reactive Oxygen Species Formation. Biochem. Biophys. Res. Commun. 2012, 425, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Durante, M.; Orecchia, R.; Loeffler, J.S. Charged-Particle Therapy in Cancer: Clinical Uses and Future Perspectives. Nat. Rev. Clin. Oncol. 2017, 14, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Seo, S.J.; Kim, K.H.; Kim, T.J.; Chung, M.H.; Kim, K.R.; Yang, T.K. Therapeutic Application of Metallic Nanoparticles Combined with Particle-Induced X-ray Emission Effect. Nanotechnology 2010, 21, 425102. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Gonzalez-Lepera, C.; Manohar, N.; Kerr, M.; Krishnan, S.; Cho, S.H. Quantitative Investigation of Physical Factors Contributing to Gold Nanoparticle-Mediated Proton Dose Enhancement. Phys. Med. Biol. 2016, 61, 2562–2581. [Google Scholar] [CrossRef]
- Ahmad, R.; Royle, G.; Lourenço, A.; Schwarz, M.; Fracchiolla, F.; Ricketts, K. Investigation into the Effects of High-Z Nano Materials in Proton Therapy. Phys. Med. Biol. 2016, 61, 4537–4550. [Google Scholar] [CrossRef] [Green Version]
- Peukert, D.; Kempson, I.; Douglass, M.; Bezak, E. Gold Nanoparticle Enhanced Proton Therapy: Monte Carlo Modeling of Reactive Species’ Distributions around a Gold Nanoparticle and the Effects of Nanoparticle Proximity and Clustering. Int. J. Mol. Sci. 2019, 20, 4280. [Google Scholar] [CrossRef] [Green Version]
Type | Core Element Atomic Number (Z) | Average Diameter (nm) | Morphology | Synthesis/Manufacturing Method |
---|---|---|---|---|
Iron oxide, Fe2O3 (SPIONs) | Fe = 26 | 15 | Spherical | Chemical co-precipitation method [53,54] |
Gold, Au (AuNPs; Au) | Au = 79 | 15 | Spherical | Commercial (AuroVist™) [52] |
Bismuth oxide, Bi2O3 (BiONPs) | Bi = 83 | 60 | Rod | Hydrothermal method [24,55] |
Layer | Composition by Atom (%) [56] | ρ (g cm−3) | Zeff | ||||
---|---|---|---|---|---|---|---|
H | Li | C | O | Al | |||
Matte polyester substrate (top and bottom; 125 μm) | 36.4 | 0.0 | 45.5 | 18.2 | 0.0 | 1.35 | 6.24 |
Active compound of LiPCDA (7.5% moisture content; 28 μm) | 56.8 | 0.6 | 27.6 | 13.3 | 1.6 | 1.20 | 7.50 |
Beam Type | Unit | Field Size | SSD | Measurement Depth |
---|---|---|---|---|
Photon (6 MV) | Siemens PRIMUS™ Linear Accelerator (Siemens Medical Systems, Concord, CA, USA). | 10 × 10 cm2 | 100 cm2 | 1.5 cm (Dmax) |
Photon (10 MV) | 2.5 cm (Dmax) | |||
Electron (6 MeV) | 1.4 cm (Dmax) | |||
Electron (12 MeV) | 3.1 cm (Dmax) | |||
192Ir (0.38 MeV) | Nucletron microSelectron® High Dose Rate (HDR) V2 (Nucletron, Mallinckrodt Medical B.V., Petten, The Netherlands) | 1 × 1 cm2 | n/a | 1.0 cm |
Proton (150 MeV) | Mitsubishi Electric (Mitsubishi Electric, Hyogo, Japan) | 20 × 20 cm2 | 100 cm2 | 6.0 cm (COM for SOBP) |
Photon | Electron | 192-Ir | Proton | |||
---|---|---|---|---|---|---|
6 MV | 10 MV | 6 MeV | 12 MeV | 0.38 MeV | 150 MeV | |
= 250 cGy | 0.2073 | 0.2040 | 0.2200 | 0.2148 | 0.2342 | 0.2108 |
Beam Type | R2 | adj-R2 | AIC | ||
---|---|---|---|---|---|
Photon (6 MV) | 2.0 | 1 | 1.50 | −114.98 | |
3.0 | 4.73 | −102.32 | |||
Photon (10 MV) | 2.0 | 1 | 1.00 | −119.41 | |
3.0 | 3.11 | −106.96 | |||
Electron (6 MeV) | 2.0 | 1 | 0.89 | −120.74 | |
3.0 | 2.27 | −110.39 | |||
Electron (12 MeV) | 2.0 | 1 | 1.94 | −112.11 | |
3.0 | 4.97 | −101.79 | |||
192Ir (0.38 MeV) | 2.0 | 1 | 51.42 | 50.56 | |
3.0 | 106.43 | 58.56 | |||
Proton (150 MeV) | 2.0 | 1 | 31.19 | 45.06 | |
3.0 | 75.95 | 54.85 |
Immersion Media | 0.38 MeV 192Ir | 6 MV Photon | 10 MV Photon | 6 MeV Electron | 12 MeV Electron | 150 MeV Proton |
---|---|---|---|---|---|---|
Water only | 0.98 ± 0.02 | 0.99 ± 0.03 | 1.00 ± 0.04 | 1.00 ± 0.04 | 0.98 ± 0.03 | 1.00 ± 0.02 |
SPIONs | 1.04 ± 0.01 | 1.02 ± 0.03 | 1.02 ± 0.03 | 1.02 ± 0.03 | 1.02 ± 0.02 | 1.04 ± 0.03 |
AuNPs | 1.09 ± 0.04 | 1.07 ± 0.04 | 1.06 ± 0.02 | 1.08 ± 0.06 | 1.08 ±0.03 | 1.09 ± 0.03 |
BiONPs | 1.10 ± 0.01 | 1.08 ± 0.03 | 1.08 ± 0.02 | 1.09 ± 0.02 | 1.09 ± 0.05 | 1.10 ± 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sisin, N.N.T.; Rashid, R.A.; Abdullah, R.; Razak, K.A.; Geso, M.; Akasaka, H.; Sasaki, R.; Tominaga, T.; Miura, H.; Nishi, M.; et al. Gafchromic™ EBT3 Film Measurements of Dose Enhancement Effects by Metallic Nanoparticles for 192Ir Brachytherapy, Proton, Photon and Electron Radiotherapy. Radiation 2022, 2, 130-148. https://doi.org/10.3390/radiation2010010
Sisin NNT, Rashid RA, Abdullah R, Razak KA, Geso M, Akasaka H, Sasaki R, Tominaga T, Miura H, Nishi M, et al. Gafchromic™ EBT3 Film Measurements of Dose Enhancement Effects by Metallic Nanoparticles for 192Ir Brachytherapy, Proton, Photon and Electron Radiotherapy. Radiation. 2022; 2(1):130-148. https://doi.org/10.3390/radiation2010010
Chicago/Turabian StyleSisin, Noor Nabilah Talik, Raizulnasuha Ab Rashid, Reduan Abdullah, Khairunisak Abdul Razak, Moshi Geso, Hiroaki Akasaka, Ryohei Sasaki, Takahiro Tominaga, Hayato Miura, Masashi Nishi, and et al. 2022. "Gafchromic™ EBT3 Film Measurements of Dose Enhancement Effects by Metallic Nanoparticles for 192Ir Brachytherapy, Proton, Photon and Electron Radiotherapy" Radiation 2, no. 1: 130-148. https://doi.org/10.3390/radiation2010010
APA StyleSisin, N. N. T., Rashid, R. A., Abdullah, R., Razak, K. A., Geso, M., Akasaka, H., Sasaki, R., Tominaga, T., Miura, H., Nishi, M., & Rahman, W. N. (2022). Gafchromic™ EBT3 Film Measurements of Dose Enhancement Effects by Metallic Nanoparticles for 192Ir Brachytherapy, Proton, Photon and Electron Radiotherapy. Radiation, 2(1), 130-148. https://doi.org/10.3390/radiation2010010