Legal and Regulatory Framework for AI Solutions in Healthcare in EU, US, China, and Russia: New Scenarios after a Pandemic
Abstract
:Simple Summary
Abstract
1. Development in Healthcare Scenarios during and after COVID-19 Pandemic
2. Organizational and Technical Barriers for the Adoption of AI in the Medical Field
3. Telehealth: A Boon Redefining Medicine for the 21st Century or a Short-Term Fix during the COVID-19 Pandemic?
4. Regulatory Issues and Policy Initiatives
- securing patients’ medical privacy;
- creating regulatory sandboxes and experimental legal regimes;
- supervising medical organizations that use AI-based medical solutions;
- certifying software engineers for development of such systems;
- certifying AI-based medical systems and confirming their quality and effectiveness;
- avoiding uniformity in the process of AI-based medical systems development;
- providing state funding in the form of grants, subsidies, etc.
4.1. Legal and Regulatory Framework in EU
- harmonize the single market by granting uniform standards for the quality and safety of medical devices;
- classify medical devices and in vitro diagnostics based on the relevant risk profiles by requiring different, specific assessment procedures in relation to such classifications;
- highlight responsibilities of notified bodies and competent authorities.
4.2. Legal and Regulatory Framework in the U.S.
4.3. Legal and Regulatory Framework in China
- innovative approval;
- priority approval;
- emergency approval.
4.4. Legal and Regulatory Framework in the Russian Federation
5. Ownership and Control of the Data
5.1. The Problem of Anonymization
5.2. Data Protection and Cybersecurity Implications
6. Accountability and Liability
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pesapane, F.; Codari, M.; Sardanelli, F. Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur. Radiol. Exp. 2018, 2, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Chan, N.-K.; Zhang, C.J.P.; Ming, W.-K. The role of the sharing economy and artificial intelligence in health care: Opportunities and challenges. J. Med. Internet Res. 2019, 21, e13469. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.D.; Brown, E.W. Artificial intelligence in medical practice: The question to the answer? Am. J. Med. 2018, 131, 129–133. [Google Scholar] [CrossRef]
- Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K.; Kalinin, A.A.; Do, B.T.; Way, G.P.; Ferrero, E.; Agapow, P.-M.; Zietz, M.; Hoffman, M.M.; et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 2018, 15, 20170387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-G.; Jun, S.; Cho, Y.-W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep learning in medical imaging: General overview. Korean J. Radiol. 2017, 18, 570–584. [Google Scholar] [CrossRef] [Green Version]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Pesapane, F.; Rotili, A.; Bianchini, L.; Botta, F.; Origgi, D.; Cremonesi, M.; Cassano, E. Radiomics of MRI for prediction of pathological response to neoadjuvant chemotherapy in breast cancer: A single referral centre analysis. Eur. Radiol. 2021, 13, 4271. [Google Scholar]
- Pesapane, F.; Rotili, A.; Agazzi, G.; Botta, F.; Raimondi, S.; Penco, S.; Dominelli, V.; Cremonesi, M.; Jereczek-Fossa, B.; Carrafiello, G.; et al. Recent radiomics advancements in breast cancer: Lessons and pitfalls for the next future. Curr. Oncol. 2021, 28, 2351–2372. [Google Scholar] [CrossRef]
- Shaban-Nejad, A.; Michalowski, M.; Buckeridge, D.L. Health intelligence: How artificial intelligence transforms population and personalized health. NPJ Digit. Med. 2018, 1, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Schiaffino, S.; Codari, M.; Cozzi, A.; Albano, D.; Alì, M.; Arioli, R.; Avola, E.; Bnà, C.; Cariati, M.; Carriero, S.; et al. Machine learning to predict in-hospital mortality in COVID-19 patients using computed tomography-derived pulmonary and vascular features. J. Pers. Med. 2021, 11, 501. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Suter, M.B.; Rotili, A.; Penco, S.; Nigro, O.; Cremonesi, M.; Bellomi, M.; Jereczek-Fossa, B.A.; Pinotti, G.; Cassano, E. Will traditional biopsy be substituted by radiomics and liquid biopsy for breast cancer diagnosis and characterisation? Med. Oncol. 2020, 37, 29. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, D.; Giuliani, E.; Del Prete, A.; Losi, A.; Villani, M.; Barbieri, A. How artificial intelligence and new technologies can help the management of the COVID-19 pandemic. Int. J. Environ. Res. Public Health 2021, 18, 7648. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Penco, S.; Rotili, A.; Nicosia, L.; Bozzini, A.; Trentin, C.; Dominelli, V.; Priolo, F.; Farina, M.; Marinucci, I.; et al. How we provided appropriate breast imaging practices in the epicentre of the COVID-19 outbreak in Italy. Br. J. Radiol. 2020, 93, 20200679. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Ierardi, A.M.; Arrichiello, A.; Carrafiello, G. Providing optimal interventional oncology procedures at one of the COVID-19 referral center in Italy. Med. Oncol. 2020, 37, 83. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.; Keniya, R.; Shridharani, A.; Punjabi, M.; Shah, J.; Mehendale, N. Diagnosis of COVID-19 using CT scan images and deep learning techniques. Emerg. Radiol. 2021, 28, 1–9. [Google Scholar] [CrossRef]
- Imaging COVID19 AI. Available online: https://imagingcovid19ai.eu (accessed on 1 September 2021).
- Mashamba-Thompson, T.P.; Crayton, E.D. Blockchain and artificial intelligence technology for novel Coronavirus disease-19 Self-testing. Diagnostics 2020, 10, 198. [Google Scholar] [CrossRef] [Green Version]
- The Medical Futurist. The (Sober) State of Artificial Intelligence in the Fight against COVID-19. Available online: https://medicalfuturist.com/the-sober-state-of-artificial-intelligence-in-the-fight-against-covid-19/ (accessed on 1 September 2021).
- IE University. Digital Health and AI in the Time of COVID-19. Available online: https://www.ie.edu/building-resilience/knowledge/digital-health-ai-time-covid-19/ (accessed on 1 September 2021).
- NHS. Clinical Guide for the Management of Remote Consultations and Remote Working in Secondary Care during the Coronavirus Pandemic; NHS England: London, UK, 2020. [Google Scholar]
- FDA. Digital Health Policies and Public Health Solutions for COVID-19; FDA: Silver Spring, MD, USA, 2020. [Google Scholar]
- Clift, A.K.; Coupland, C.A.C.; Keogh, R.H.; Diaz-Ordaz, K.; Williamson, E.; Harrison, E.M.; Hayward, A.; Hemingway, H.; Horby, P.; Mehta, N.; et al. Living risk prediction algorithm (QCOVID) for risk of hospital admission and mortality from coronavirus 19 in adults: National derivation and validation cohort study. BMJ 2020, 371, m373. [Google Scholar] [CrossRef]
- Pesapane, F.; Volonté, C.; Codari, M.; Sardanelli, F. Artificial intelligence as a medical device in radiology: Ethical and regulatory issues in Europe and the United States. Insights Imaging 2018, 9, 745–753. [Google Scholar] [CrossRef]
- Char, D.S.; Shah, N.H.; Magnus, D. Implementing machine learning in health care—Addressing ethical challenges. N. Engl. J. Med. 2018, 378, 981–983. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Baxter, S.L.; Xu, J.; Xu, J.; Zhou, X.; Zhang, K. The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 2019, 25, 30–36. [Google Scholar] [CrossRef]
- Hansen, A.; Herrmann, M.; Ehlers, J.P.; Mondritzki, T.; Hensel, K.O.; Truebel, H.; Boehme, P. Perception of the progressing digitization and transformation of the German health care system among experts and the public: Mixed methods study. JMIR Public Health Surveill. 2019, 5, e14689. [Google Scholar] [CrossRef] [Green Version]
- Gijsberts, C.M.; Groenewegen, K.A.; Hoefer, I.E.; Eijkemans, M.J.C.; Asselbergs, F.; Anderson, T.J.; Britton, A.R.; Dekker, J.M.; Engström, G.; Evans, G.W.; et al. Race/ethnic differences in the associations of the framingham risk factors with carotid IMT and cardiovascular events. PLoS ONE 2015, 10, e0132321. [Google Scholar] [CrossRef]
- Hermansson, J.; Kahan, T. Systematic review of validity assessments of framingham risk score results in health economic modelling of lipid-modifying therapies in Europe. Pharmacoeconomics 2018, 36, 205–213. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Opportunities and Developments Report on the Second Global Survey on eHealth Global Observatory for eHealth Series; World Health Organization: Geneva, Switzerland, 2020; Volume 2. [Google Scholar]
- Meyer, B.C.; Friedman, L.S.; Payne, K.; Moore, L.; Cressler, J.; Holberg, S.; Partridge, B.; Prince, B.; Sylwestrzak, M.; Jenusaitis, M.; et al. Medical Undistancing through telemedicine: A model enabling rapid telemedicine deployment in an academic health center during the COVID-19 pandemic. Telemed. e-Health 2021, 27, 625–634. [Google Scholar] [CrossRef]
- Centres for Medicare & Medicaid Services (CMS). COVID-19 Emergency Declaration Blanket Waivers for Health Care Providers; Centres for Medicare & Medicaid Services (CMS): Woodlawn, MD, USA, 2020. [Google Scholar]
- Federation of State Medical Boards. U.S. States and Territories Modifying Requirements for Telehealth in Response to COVID-19. Available online: https://www.fsmb.org/siteassets/advocacy/pdf/states-waiving-licensure-requirements-for-telehealth-in-response-to-covid-19.pdf (accessed on 1 September 2021).
- Federation of State Medical Boards. Telemedicine Policies Board by Board Overview. Available online: https://www.fsmb.org/siteassets/advocacy/key-issues/telemedicine_policies_by_state.pdf (accessed on 1 September 2021).
- Rotenstein, L.S.; Friedman, L.S. The Pitfalls of Telehealth—and How to Avoid Them. Available online: https://hbr.org/2020/11/the-pitfalls-of-telehealth-and-how-to-avoid-them (accessed on 1 September 2021).
- Department of Health & Human Services. COVID-19 & HIPAA Bulletin Limited Waiver of HIPAA Sanctions and Penalties during a Nationwide Public Health Emergency; Department of Health & Human Services: Washington, DC, USA, 2020. [Google Scholar]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Pizzini, F.B.; Pesapane, F.; Niessen, W.; Geerts-Ossevoort, L.; Broeckx, N. ESMRMB Round table report on “Can Europe lead in machine learning of MRI-data?”. Magma 2020, 33, 217–219. [Google Scholar] [CrossRef] [Green Version]
- Pesapane, F. How scientific mobility can help current and future radiology research: A radiology trainee’s perspective. Insights Imaging 2019, 10, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Cancer Imaging Archive (TCIA). Available online: http://www.cancerimagingarchive.net (accessed on 1 September 2021).
- Jimenez-Del-Toro, O.; Muller, H.; Krenn, M.; Gruenberg, K.; Taha, A.A.; Winterstein, M.; Eggel, I.; Foncubierta-Rodriguez, A.; Goksel, O.; Jakab, A.; et al. Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: VISCERAL anatomy benchmarks. IEEE Trans. Med. Imaging 2016, 35, 2459–2475. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, C.G.; Backhaus, M.; Bluemke, D.; Britten, R.D.; Chung, J.D.; Cowan, B.R.; Dinov, I.; Finn, J.P.; Hunter, P.; Kadish, A.H.; et al. The cardiac atlas project—An imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 2011, 27, 2288–2295. [Google Scholar] [CrossRef]
- UK. Available online: http://www.ukbiobank.ac.uk/ (accessed on 1 September 2021).
- The European Parliament and the Council of the European Union. Regulation 2020/561 on Medical Devices Regarding Application Dates of Certain of Its Provisions; The European Parliament and the Council of The European Union: Strasbourg, France, 2020. [Google Scholar]
- The European Parliament and the Council of the European Union. Regulation (EU) 2017/745 of the European Parliament and of the Council on Medical Devices, Amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and Repealing Council Directives 90/385/EEC and 93/42/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R0745 (accessed on 1 September 2021).
- The European Parliament and the Council of the European Union. Regulation (EU) 2017/746 of the European Parliament and of the Council on In Vitro Diagnostic Medical Devices and Repealing Directive 98/79/EC and Commission Decision 2010/227/EU. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R0746 (accessed on 1 September 2021).
- European Commission. Science, Research and Innovation Performance of the EU 2018; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- European Commission. MDCG 2018-2 Future EU Medical Device Nomenclature—Description of Requirements. Available online: https://ec.europa.eu/docsroom/documents/28668 (accessed on 1 September 2021).
- 114th Congress (2015–2016). H.R. 34—21st Century Cures Act. Available online: https://www.congress.gov/bill/114th-congress/house-bill/34 (accessed on 1 September 2021).
- Méndez, A.J.; Tahoces, P.; Lado, M.J.; Souto, M.; Vidal, J.J. Computer-aided diagnosis: Automatic detection of malignant masses in digitized mammograms. Med. Phys. 1998, 25, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Azavedo, E.; Zackrisson, S.; Mejàre, I.; Arnlind, M.H. Is single reading with computer-aided detection (CAD) as good as double reading in mammography screening? A systematic review. BMC Med. Imaging 2012, 12, 22. [Google Scholar] [CrossRef] [Green Version]
- Recht, M.; Bryan, R.N. Artificial intelligence: Threat or boon to radiologists? J. Am. Coll. Radiol. 2017, 14, 1476–1480. [Google Scholar] [CrossRef]
- Rotili, A.; Trimboli, R.M.; Penco, S.; Pesapane, F.; Tantrige, P.; Cassano, E.; Sardanelli, F. Double reading of diffusion-weighted magnetic resonance imaging for breast cancer detection. Breast Cancer Res. Treat. 2020, 180, 111–120. [Google Scholar] [CrossRef]
- McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.S.; Darzi, A.; et al. International evaluation of an AI system for breast cancer screening. Nat. Cell Biol. 2020, 577, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Jaremko, J.L.; Azar, M.; Bromwich, R.; Lum, A.; Cheong, L.H.A.; Gibert, M.; LaViolette, F.; Gray, B.; Reinhold, C.; Cicero, M.; et al. Canadian Association of Radiologists white paper on ethical and legal issues related to artificial intelligence in radiology. Can. Assoc. Radiol. J. 2019, 70, 107–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thierer, A.D.; O’Sullivan, A.; Russel, R. Artificial Intelligence and Public Policy. Available online: https://www.mercatus.org/system/files/thierer-artificial-intelligence-policy-mr-mercatus-v1.pdf (accessed on 1 September 2021).
- King, H.E.S. Medtech AI & Software Regulation in China. Available online: https://www.mddionline.com/regulations/medtech-ai-software-regulation-china-5-things-know (accessed on 28 September 2021).
- China Food and Drug Administration. Decision of the State Council on Suspending the Implementation of the ‘Regulations on the Supervision and Administration of Medical Devices’; NPC Decision: Beijing, China, 2018. [Google Scholar]
- Yang, X.; Yu, X. Preventing patent risks in artificial intelligence industry for sustainable development: A multi-level network analysis. Sustainability 2020, 12, 8667. [Google Scholar] [CrossRef]
- On the Strategy for the Development of the Information Society in the Russian Federation for 2017–2030: Decree of the President of the Russian Federation of 09.05.2017 No. 203; Boris Yeltsin Presidential Library: St. Petersburg, Russia, 2017.
- On the Development of Artificial Intelligence in the Russian Federation: Decree of the President of the Russian Federation of 10.10.2019 No. 490; Boris Yeltsin Presidential Library: St. Petersburg, Russia, 2019.
- Federal Law of the Russian Federation No. 323-FZ of 21.11.2011. On the Fundamentals of Health Protection in the Russian Federation; The State Duma Library: Moscow, Russia, 2011.
- Federal Law of the Russian Federation No. 152-FZ of 27.07.2006. On Personal Data; The State Duma Library: Moscow, Russia, 2006.
- Federal Law of the Russian Federation No. 258-FZ of 31.07.2020. Experimental Legal Regimes for Digital Innovation in the Russian Federation; The State Duma Library: Moscow, Russia, 2020.
- Kemp, J.L.; Mahoney, M.C.; Mathews, V.P.; Wintermark, M.; Yee, J.; Brown, S.D. Patient-centered radiology: Where are we, where do we want to be, and how do we get there? Radiology 2017, 285, 601–608. [Google Scholar] [CrossRef] [PubMed]
- The Medical Futurist. Your Data Privacy during a Pandemic. Available online: https://medicalfuturist.com/your-data-privacy-during-a-pandemic/?utm_source=The%20Medical%20Futurist%20Newsletter&utm_campaign=21712e8998-EMAIL_CAMPAIGN_2020_04_28_COVID19_AND_PRIVACY&utm_medium=email&utm_term=0_efd6a3cd08-21712e8998-420636970 (accessed on 1 September 2021).
- Mandl, K.D.; Szolovits, P.; Kohane, I.S. Public standards and patients’ control: How to keep electronic medical records accessible but private. BMJ 2001, 322, 283–287. [Google Scholar] [CrossRef] [Green Version]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine learning in medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Bellazzi, R. Big data and biomedical informatics: A challenging opportunity. Yearb. Med. Inform. 2014, 9, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Rosenstein, B.S.; Capala, J.; Efstathiou, J.A.; Hammerbacher, J.; Kerns, S.L.; Kong, F.-M.; Ostrer, H.; Prior, F.W.; Vikram, B.; Wong, J.; et al. How will big data improve clinical and basic research in radiation therapy? Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 895–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, S.M.; Maffitt, D.R.; Smith, K.E.; Kirby, J.; Clark, K.W.; Freymann, J.B.; Vendt, B.A.; Tarbox, L.R.; Prior, F.W. De-identification of medical images with retention of scientific research value. Radiography 2015, 35, 727–735. [Google Scholar] [CrossRef] [Green Version]
- Aryanto, K.Y.E.; Oudkerk, M.; van Ooijen, P.M.A. Free DICOM de-identification tools in clinical research: Functioning and safety of patient privacy. Eur. Radiol. 2015, 25, 3685–3695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranschaert, E.R.; Sergey, M.; Algra, P.R. Artificial Intelligence in Medical Imaging; Springer: New York, NY, USA, 2019. [Google Scholar]
- Kruskal, J.B.; Berkowitz, S.; Geis, J.R.; Kim, W.; Nagy, P.; Dreyer, K. Big data and machine learning—Strategies for driving this bus: A Summary of the 2016 Intersociety Summer Conference. J. Am. Coll. Radiol. 2017, 14, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Castelvecchi, D. Can we open the black box of AI? Nature 2016, 538, 20–23. [Google Scholar] [CrossRef] [Green Version]
- Dilsizian, S.E.; Siegel, E.L. Artificial intelligence in medicine and cardiac imaging: Harnessing Big data and advanced computing to provide personalized medical diagnosis and treatment. Curr. Cardiol. Rep. 2014, 16, 44. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union. Directive (EU) 2016/1148 of the European Parliament and of the Council Concerning Measures for a High Common Level of Security of Network and Information Systems across the Union. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?toc=OJ:L:2016:194:TOC&uri=uriserv:OJ.L_.2016.194.01.0001.01.ENG (accessed on 1 September 2021).
- Helbing, D.; Frey, B.S.; Gigerenzer, G.; Hafen, E.; Hagner, M.; Hofstetter, Y.; Hoven, J.V.D.; Zicari, R.V.; Zwitter, A. Will Democracy Survive Big Data and Artificial Intelligence? Available online: https://www.scientificamerican.com/article/will-democracy-survive-big-data-and-artificial-intelligence/ (accessed on 25 February 2021).
- Radanovic, I.; Likić, R. Opportunities for use of blockchain technology in medicine. Appl. Health Econ. Health Policy 2018, 16, 583–590. [Google Scholar] [CrossRef]
- Funk, E.; Riddell, J.; Ankel, F.; Cabrera, D. Blockchain technology: A Data framework to improve validity, trust, and accountability of information exchange in health professions education. Acad. Med. 2018, 93, 1791–1794. [Google Scholar] [CrossRef]
- Baden, B. Das erlaubte Vertrauen im Strafrecht. In Studie zu Dogmatischer Funktion und Grundlegung des Vertrauensgrundsatzes im Strafrecht; Nomos: Baden-Baden, Germany, 2017. [Google Scholar] [CrossRef]
- Scherer, M.U. Regulating artificial intelligence systems: Risks, challenges, competencies, and strategies. Harv. J. Law Technol. 2016, 29, 354–400. [Google Scholar] [CrossRef]
- King, B.F. Artificial intelligence and radiology: What will the future hold? J. Am. Coll. Radiol. 2018, 15, 501–503. [Google Scholar] [CrossRef]
- Mitchell, T.; Brynjolfsson, E. Track how technology is transforming work. Nature 2017, 544, 290–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Directive 95/46/EC | Directive on Data Protection Was Replaced by the GDPR |
---|---|
GDPR | Regulation on data protection Applied from 24 May 2018 Replaced Directive 95/46/EC |
Directive (EU) 2016/1148 | Directive on cybersecurity Applied from 10 May 2018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pesapane, F.; Bracchi, D.A.; Mulligan, J.F.; Linnikov, A.; Maslennikov, O.; Lanzavecchia, M.B.; Tantrige, P.; Stasolla, A.; Biondetti, P.; Giuggioli, P.F.; et al. Legal and Regulatory Framework for AI Solutions in Healthcare in EU, US, China, and Russia: New Scenarios after a Pandemic. Radiation 2021, 1, 261-276. https://doi.org/10.3390/radiation1040022
Pesapane F, Bracchi DA, Mulligan JF, Linnikov A, Maslennikov O, Lanzavecchia MB, Tantrige P, Stasolla A, Biondetti P, Giuggioli PF, et al. Legal and Regulatory Framework for AI Solutions in Healthcare in EU, US, China, and Russia: New Scenarios after a Pandemic. Radiation. 2021; 1(4):261-276. https://doi.org/10.3390/radiation1040022
Chicago/Turabian StylePesapane, Filippo, Daniele Alberto Bracchi, Janice F. Mulligan, Alexander Linnikov, Oleg Maslennikov, Maria Beatrice Lanzavecchia, Priyan Tantrige, Alessandro Stasolla, Pierpaolo Biondetti, Pier Filippo Giuggioli, and et al. 2021. "Legal and Regulatory Framework for AI Solutions in Healthcare in EU, US, China, and Russia: New Scenarios after a Pandemic" Radiation 1, no. 4: 261-276. https://doi.org/10.3390/radiation1040022
APA StylePesapane, F., Bracchi, D. A., Mulligan, J. F., Linnikov, A., Maslennikov, O., Lanzavecchia, M. B., Tantrige, P., Stasolla, A., Biondetti, P., Giuggioli, P. F., Cassano, E., & Carrafiello, G. (2021). Legal and Regulatory Framework for AI Solutions in Healthcare in EU, US, China, and Russia: New Scenarios after a Pandemic. Radiation, 1(4), 261-276. https://doi.org/10.3390/radiation1040022