Quantifying the Carbon Stocks in Urban Trees: The Rio de Janeiro Botanical Garden as an Important Tropical Carbon Sink
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC—Intergovernmental Panel on Climate Change. Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar] [CrossRef]
- IPCC—Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- United Nations. Paris Agreement. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 6 August 2024).
- IPCC—Intergovernmental Panel on Climate Change. Summary for policymakers. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; pp. 3–24. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.C.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, E.M.; Fearnside, P.M.; Nelson, B.W.; Barbosa, R.I.; Keizer, E.W.H. Estimates of forest biomass in the Brazilian Amazon: New allometric equations and adjustments to biomass from wood-volume inventories. For. Ecol. Manag. 2008, 256, 1853–1867. [Google Scholar] [CrossRef]
- Vieira, S.A.; Alves, L.F.; Duarte-Neto, P.J.; Martins, S.C.; Veiga, L.G.; Scaranello, M.A.; Picollo, M.C.; Camargo, P.B.; Carmo, J.B.; Neto, E.S.; et al. Stocks of carbon and nitrogen and partitioning between above- and belowground pools in the Brazilian coastal Atlantic Forest elevation range. Ecol. Evol. 2011, 1, 421–434. [Google Scholar] [CrossRef]
- Mitchard, E.T.A.; Feldpausch, T.R.; Brienen, R.J.W.; Lopez-Gonzalez, G.; Monteagudo, A.; Baker, T.R.; Lewis, S.L.; Lloyd, J.; Quesada, C.A.; Gloor, M.; et al. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Global Ecol. Biogeogr. 2014, 23, 935–946. [Google Scholar] [CrossRef]
- Araujo, E.C.G.; Sanquetta, C.R.; Dalla Corte, A.P.; Pelissari, A.L.; Orso, G.A.; Silva, T.C. Global review and state-of-the-art of biomass and carbon stock in the Amazon. J. Environ. Manag. 2023, 331, 117251. [Google Scholar] [CrossRef] [PubMed]
- Gomes, V.H.F.; Vieira, I.C.G.; Salomão, R.P.; ter Steege, H. Amazonian tree species threatened by deforestation and climate change. Nat. Clim. Change 2019, 9, 547–553. [Google Scholar] [CrossRef]
- Gatti, L.V.; Basso, L.S.; Miller, J.B.; Gloor, M.; Gatti Domingues, L.; Cassol, H.L.G.; Tejada, G.; Aragão, L.E.O.C.; Nobre, C.; Peters, W.; et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 2021, 595, 388–393. [Google Scholar] [CrossRef]
- Velasco, E.; Chen, K.W. Carbon storage estimation of tropical urban trees by an improved allometric model for aboveground biomass based on terrestrial laser scanning. Urban For. Urban Green. 2019, 44, 126387. [Google Scholar] [CrossRef]
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Ngo, K.M.; Lum, S. Aboveground biomass estimation of tropical street trees. J. Urban Ecol. 2018, 4, jux020. [Google Scholar] [CrossRef]
- Zhao, D.; Cai, J.; Xu, Y.; Liu, Y.; Yao, M. Carbon sinks in urban public green spaces under carbon neutrality: A bibliometric analysis and systematic literature review. Urban For. Urban Green. 2023, 86, 128037. [Google Scholar] [CrossRef]
- Helen; Jarzebski, M.P.; Gasparatos, A. Land use change, carbon stocks and tree species diversity in green spaces of a secondary city in Myanmar, Pyin Oo Lwin. PLoS ONE 2019, 14, e0225331. [Google Scholar] [CrossRef]
- Ferreira, M.P.; Martins, G.B.; Almeida, T.M.H.; Ribeiro, R.S.; Veiga Júnior, V.F.; Paz, I.S.R.; Siqueira, M.F.; Kurtz, B.C. Estimating aboveground biomass of tropical urban forests with UAV-borne hyperspectral and LiDAR data. Urban For. Urban Green. 2024, 96, 128362. [Google Scholar] [CrossRef]
- McHale, M.R.; Burke, I.C.; Lefsky, M.A.; Peper, P.J.; McPherson, E.G. Urban forest biomass estimates: Is it important to use allometric relationships developed specifically for urban trees? Urban Ecosyst. 2009, 12, 95–113. [Google Scholar] [CrossRef]
- Heywood, V.H. The future of plant conservation and the role of botanic gardens. Plant Divers. 2017, 39, 309–313. [Google Scholar] [CrossRef]
- Westwood, M.; Cavender, N.; Meyer, A.; Smith, P. Botanic garden solutions to the plant extinction crisis. Plants People Planet 2021, 3, 22–32. [Google Scholar] [CrossRef]
- Catahan, N.; Hopwood, M.; Suraweera, P. Botanic garden tourism, social value, health, and well-being. J. Zool. Bot. Gard. 2024, 5, 187–199. [Google Scholar] [CrossRef]
- Gratani, L.; Catoni, R.; Tarquini, F. Carbon dioxide sequestration capability of the Botanical Garden of Rome: Environmental and economic benefits. Am. J. Plant Sci. 2019, 10, 1249–1260. [Google Scholar] [CrossRef]
- BGCI—Botanic Gardens Conservation International. The Only Global Database of the World’s Botanic Gardens, with Information on 3.571 Institutions Worldwide. Available online: https://gardensearch.bgci.org/ (accessed on 27 June 2024).
- Borelli, S.; Conigliaro, M.; Di Cagno, F. Urban Forests: A Global Perspective; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Bediaga, B.; Guedes-Bruni, R.R. Jardim Botânico do Rio de Janeiro: Dois séculos de história. In Guia de Árvores Notáveis: 200 Anos do Jardim Botânico do Rio de Janeiro; Ormindo, P., Ed.; Andrea Jakobsson Estúdio Editorial: Rio de Janeiro, Brazil, 2008; pp. 16–23. [Google Scholar]
- Coelho, M.A.N. O inventário da coleção. In Guia de Árvores Notáveis: 200 Anos do Jardim Botânico do Rio de Janeiro; Ormindo, P., Ed.; Andrea Jakobsson Estúdio Editorial: Rio de Janeiro, Brazil, 2008; pp. 24–31. [Google Scholar]
- Almeida, T.M.H.; Coelho, M.A.N.; Peixoto, A.L. Rio de Janeiro Botanical Garden: Biodiversity conservation in a tropical arboretum. J. Zool. Bot. Gard. 2024, 5, 378–394. [Google Scholar] [CrossRef]
- PPBio—Programa de Pesquisa em Biodiversidade. Instructions for Surveying Woody Plants in RAPELD Grids and Modules. Available online: https://ppbio.inpa.gov.br/sites/default/files/Protocol_for_the_survey_vascular_plants_RAPELD_grids_modules_2.pdf (accessed on 7 August 2024).
- Goodman, R.C.; Phillips, O.L.; Torres, D.C.; Freitas, L.; Cortese, S.T.; Monteagudo, A.; Baker, T.R. Amazon palm biomass and allometry. For. Ecol. Manag. 2013, 310, 994–1004. [Google Scholar] [CrossRef]
- Randrianasolo, Z.H.; Razafimahatratra, A.R.; Razafinarivo, R.N.G.; Randrianary, T.; Rakotovololonalimanana, H.; Rajemison, A.H.; Mamitiana, A.; Andriamanalina, R.L.; Rakotosoa, A.; Ramananantoandro, T. Which allometric models are the most appropriate for estimating aboveground biomass in secondary forests of Madagascar with Ravenala madagascariensis? Sci. Afr. 2019, 6, e00147. [Google Scholar] [CrossRef]
- Aguaron, E.; McPherson, E.G. Comparison of methods for estimating carbon dioxide storage by Sacramento’s urban forest. In Carbon Sequestration in Urban Ecosystems; Lal, R., Augustin, B., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 43–71. [Google Scholar] [CrossRef]
- Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.L.; Swenson, N.G.; Zanne, A.E. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009, 12, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Zanne, A.E.; Lopez-Gonzalez, G.; Coomes, D.A.; Ilic, J.; Jansen, S.; Lewis, S.L.; Miller, R.B.; Swenson, N.G.; Wiemann, M.C.; Chave, J. Global Wood Density Database. Dryad. 2009. Available online: https://datadryad.org/stash/dataset/doi:10.5061/dryad.234 (accessed on 8 January 2023).
- Réjou-Méchain, M.; Tanguy, A.; Piponiot, C.; Chave, J.; Hérault, B. Biomass: An R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol. Evol. 2017, 8, 1163–1167. [Google Scholar] [CrossRef]
- SEEG—Sistema de Estimativas de Emissões e Remoções de Gases de Efeito Estufa. Municípios 2022: Estatísticas. Observatório do Clima. Available online: https://public.tableau.com/app/profile/seeg2472/viz/SEEGMUNICPIOS2022Estatsticas/RANKINGGERAL (accessed on 15 July 2024).
- Fonsêca, N.C.; Cunha, J.S.A.; Albuquerque, E.R.G.M.; Lins-e-Silva, A.C.B. Carbon stock in aboveground biomass and necromass in the Atlantic Forest: An analysis of data published between 2000 and 2021. An. Acad. Bras. Cienc. 2024, 96, e20220761. [Google Scholar] [CrossRef]
- Lindén, L.; Riikonen, A.; Setälä, H.; Yli-Pelkonen, V. Quantifying carbon stocks in urban parks under cold climate conditions. Urban For. Urban Green. 2020, 49, 126633. [Google Scholar] [CrossRef]
- Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Leake, J.R.; Gaston, K.J. Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale. J. Appl. Ecol. 2011, 48, 1125–1134. [Google Scholar] [CrossRef]
- Schreyer, J.; Tigges, J.; Lakes, T.; Churkina, G. Using airborne LiDAR and QuickBird data for modelling urban tree carbon storage and its distribution—A case study of Berlin. Remote Sens. 2014, 6, 10636–10655. [Google Scholar] [CrossRef]
- Malage, L. Bosque Urbano Reinhard Maack: Contribuição no Enfrentamento da Mudança Climática por Florestas Urbanas. Bachelor’s Thesis, Universidade Federal do Paraná, Curitiba, Brazil, 2023. [Google Scholar]
- Lowe, W.A.M.; Silva, G.L.L.P.; Pushpakumara, D.K.N.G. Homegardens as a modern carbon storage: Assessment of tree diversity and above-ground biomass of homegardens in Matale district, Sri Lanka. Urban For. Urban Green. 2022, 74, 127671. [Google Scholar] [CrossRef]
- Padmakumar, B.; Sreekanth, N.P.; Shanthiprabha, V.; Paul, J.; Sreedharan, K.; Augustine, T.; Jayasooryan, K.K.; Rameshan, M.; Arunbabu, V.; Mohan, M.; et al. Unveiling tree diversity and carbon density of homegarden in the Thodupuzha urban region of Kerala, India: A contribution towards urban sustainability. Trop. Ecol. 2021, 62, 508–524. [Google Scholar] [CrossRef]
- Pedreira, L.O.L. (Secretaria Municipal de Meio Ambiente, Rio de Janeiro, RJ, Brazil). Personal communication, 2024. [Google Scholar]
- SMAC—Secretaria Municipal de Meio Ambiente. Inventário da Cobertura Arbórea da Cidade do Rio de Janeiro; Prefeitura da Cidade do Rio de Janeiro: Rio de Janeiro, Brazil, 2015. [Google Scholar]
- PCRJ—Prefeitura da Cidade do Rio de Janeiro. Cobertura Vegetal e uso da Terra 2018. Available online: https://www.data.rio/datasets/c32974e0db954842b7af9a4816d7a821/explore (accessed on 4 January 2024).
- Pedreira, L.O.L.; Andrade, F.N.; Fico, B.V. Índices de Áreas Verdes do Município do Rio de Janeiro. Nota Técnica–No 37; Prefeitura da Cidade do Rio de Janeiro: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Liu, S.; Brandt, M.; Nord-Larsen, T.; Chave, J.; Reiner, F.; Lang, N.; Tong, X.; Ciais, P.; Igel, C.; Pascual, A.; et al. The overlooked contribution of trees outside forests to tree cover and woody biomass across Europe. Sci. Adv. 2023, 9, eadh4097. [Google Scholar] [CrossRef] [PubMed]
- MCTI—Ministério da Ciência, Tecnologia e Inovações. Estimativas Anuais de Emissões de Gases de Efeito Estufa no Brasil, 6th ed.; MCTI: Brasília, Brazil, 2022. Available online: https://www.gov.br/mcti/pt-br/acompanhe-o-mcti/sirene/publicacoes/estimativas-anuais-de-emissoes-gee (accessed on 4 September 2024).
- IBGE—Instituto Brasileiro de Geografia e Estatística. Mapa de Biomas do Brasil: Primeira Aproximação; IBGE: Brasília, Brazil, 2004. [Google Scholar]
- Hirota, M. Mata Atlântica, a Floresta da População Brasileira. 2020. Available online: https://www.sosma.org.br/artigos/mata-atlantica-a-floresta-da-populacao-brasileira/#:~:text=Somos%20mais%20de%20145%20milh%C3%B5es,e%20metr%C3%B3poles%20de%2017%20estados (accessed on 4 September 2024).
- Secretaria do Ambiente. Inventário de Emissões de Gases de Efeito Estufa (GEE) do Estado do Rio de Janeiro: Ano Base 2015: Resumo Técnico; Secretaria do Ambiente: Rio de Janeiro, Brazil, 2017.
Taxonomic Component | Allometric Model | Reference |
---|---|---|
Gymnosperms (excluding Cycadaceae and Zamiaceae), magnoliids, and eudicots | AGB = 0.1054(HpD2)0.9417 | [13] |
Palms, arborescent monocotyledons, Cycadaceae, and Zamiaceae | AGB0.25 = 0.55512(dmfD2Hstem)0.25 | [31] |
Ravenala madagascariensis | AGB = EXP(−4.996 + 5.654 ln(H) − 0.772(ln(H))2) | [32] |
Family/Species | H | D | p | AGB |
---|---|---|---|---|
LEGUMINOSAE Samanea saman (Jacq.) Merr. | 27.73 | 224.5 | 0.591 | 39.3 |
MELIACEAE Khaya senegalensis A.Juss. | 44.35 | 150.6 | 0.626 | 30.5 |
MELIACEAE Khaya senegalensis A.Juss. | 38.35 | 156.0 | 0.626 | 28.4 |
MALVACEAE Ceiba pentandra (L.) Gaertn. | 39.63 | 219.0 | 0.305 | 28.2 |
MYRTACEAE Eucalyptus globulus Labill. | 33.69 | 150.6 | 0.722 | 26.9 |
MYRTACEAE Corymbia citriodora (Hook.) K.D.Hill. & L.A.S.Johnson | 36.37 | 125.1 | 0.804 | 22.6 |
MALVACEAE Sterculia apetala (Jacq.) H.Karst. | 30.51 | 194.8 | 0.392 | 22.4 |
LEGUMINOSAE Swartzia langsdorffii Raddi | 24.64 | 144.5 | 0.849 | 21.6 |
City, Country | Estimation Extent | Vegetation Component | Carbon Density | Reference |
---|---|---|---|---|
Rio de Janeiro, Brazil | Rio de Janeiro Botanical Garden arboretum | AGC; trees (DBH ≥ 10 cm) | 104 ± 5 (ME) | This study |
Rio de Janeiro, Brazil | Rio de Janeiro Botanical Garden arboretum | AGC + BGC; trees (DBH ≥ 10 cm) | 131 ± 7 (ME) | This study |
Leicester, England | Urban area | AGC; herbs, shrubs, and trees | 31.6 | [40] |
Leicester, England | Areas of tree cover on publicly owned/managed sites | AGC; herbs, shrubs, and trees | 288.6 ± 43.6 (SE) | [40] |
Berlin, Germany | Urban area (urban forests not included) | AGC; trees | 11.5 | [41] |
Jersey City, USA | Urban area | AGC + BGC; trees (DBH ≥ 2.54 cm) | 5 | [15] |
Morgantown, USA | Urban area | AGC + BGC; trees (DBH ≥ 2.54 cm) | 37.7 | [15] |
Helsinki, Finland | Urban constructed parks | AGC; trees (DBH ≥ 2.5 cm) | 22–28 | [39] |
Singapore | Telok Kurau neighborhood | AGC + BGC; woody trees | 7.3 | [13] |
Pyin Oo Lwin, Myanmar | National Botanical Gardens | AGC; herbs, shrubs, and trees | 142.9 ± 92.8 (SD) | [18] |
Pyin Oo Lwin, Myanmar | Urban forest fragments in monasteries | AGC; herbs, shrubs, and trees | 97.9 ± 43.7 (SD) | [18] |
Pyin Oo Lwin, Myanmar | Urban coffee farms | AGC; herbs, shrubs, and trees | 182.0 ± 83.4 (SD) | [18] |
Curitiba, Brazil | Urban forest | AGC + BGC; trees (DBH > 5 cm) | 102.3 ± 33.4 (SD) | [42] |
Matale District, Sri Lanka | Urban to rural home gardens | AGC; trees (DBH > 5 cm) | 36.5 ± 27.4 (SD) | [43] |
Thodupuza, India | Urban home gardens | AGC + BGC; trees (DBH ≥ 3 cm) | 31.9 ± 2.6 (SE) | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurtz, B.C.; de Almeida, T.M.H.; Coelho, M.A.N.; Deccache, L.S.J.; Tortorelli, R.M.; Gonzaga, D.R.; Madureira, L.K.; Guedes-Oliveira, R.; Barros, C.F.; de Siqueira, M.F. Quantifying the Carbon Stocks in Urban Trees: The Rio de Janeiro Botanical Garden as an Important Tropical Carbon Sink. J. Zool. Bot. Gard. 2024, 5, 579-589. https://doi.org/10.3390/jzbg5040039
Kurtz BC, de Almeida TMH, Coelho MAN, Deccache LSJ, Tortorelli RM, Gonzaga DR, Madureira LK, Guedes-Oliveira R, Barros CF, de Siqueira MF. Quantifying the Carbon Stocks in Urban Trees: The Rio de Janeiro Botanical Garden as an Important Tropical Carbon Sink. Journal of Zoological and Botanical Gardens. 2024; 5(4):579-589. https://doi.org/10.3390/jzbg5040039
Chicago/Turabian StyleKurtz, Bruno Coutinho, Thaís Moreira Hidalgo de Almeida, Marcus Alberto Nadruz Coelho, Lara Serpa Jaegge Deccache, Ricardo Maximo Tortorelli, Diego Rafael Gonzaga, Louise Klein Madureira, Ramon Guedes-Oliveira, Claudia Franca Barros, and Marinez Ferreira de Siqueira. 2024. "Quantifying the Carbon Stocks in Urban Trees: The Rio de Janeiro Botanical Garden as an Important Tropical Carbon Sink" Journal of Zoological and Botanical Gardens 5, no. 4: 579-589. https://doi.org/10.3390/jzbg5040039
APA StyleKurtz, B. C., de Almeida, T. M. H., Coelho, M. A. N., Deccache, L. S. J., Tortorelli, R. M., Gonzaga, D. R., Madureira, L. K., Guedes-Oliveira, R., Barros, C. F., & de Siqueira, M. F. (2024). Quantifying the Carbon Stocks in Urban Trees: The Rio de Janeiro Botanical Garden as an Important Tropical Carbon Sink. Journal of Zoological and Botanical Gardens, 5(4), 579-589. https://doi.org/10.3390/jzbg5040039