The Concept of Agency, Animal Wellbeing, and the Practical Realities of Ex Situ Breeding Programs in Zoos and Aquariums
Abstract
:1. Introduction
2. Reproductive Choice
3. Mate Choice
Providing Mate Choice
4. Training and Handling
5. Rearing Young
Outcomes for Young
6. Holistic Animal Wellbeing
7. Reproductive Technologies and the Future
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coote, T.; Clarke, D.; Hickman, C.J.S.; Murray, J.; Pearce-Kelly, P. Experimental release of endemic Partula species, extinct in the wild, into a protected area of natural habitat on Moorea. Pac. Sci. 2004, 58, 429–434. [Google Scholar] [CrossRef]
- Jachowski, D.S.; Lockhart, J.M. Reintroducing the black-footed ferret Mustela nigripes to the Great Plains of North America. Small Carniv. Conserv. 2009, 41, 58–64. [Google Scholar]
- Ogden, R.; Chuven, J.; Gilbert, T.; Hosking, C.; Gharbi, K.; Craig, M.; Senn, H. Benefits and pitfalls of captive conservation genetic management: Evaluating diversity in scimitar-horned oryx to support reintroduction planning. Biol. Conserv. 2020, 241, 108244. [Google Scholar] [CrossRef]
- Gray, S.M.; Faust, L.J.; Kuykendall, N.A.; Bladow, R.A.; Eebes, K.S.; Che-Castaldo, J.P. Reasons for unfulfilled breeding and transfer recommendations in zoos and aquariums. Zoo Biol. 2021, 41, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Carlstead, K.; Fraser, J.; Bennett, C.; Kleiman, D.G. Black rhinoceros (Diceros bicornis) in U.S. zoos: II. Behavior, breeding success, and mortality in relation to housing facilities. Zoo Biol. 1999, 18, 35–52. [Google Scholar] [CrossRef]
- Brando, S.; Buchanana-Smith, H.M. The 24/7 approach to promoting optimal welfare for captive wild animals. Behav. Proc. 2018, 156, 83–95. [Google Scholar] [CrossRef]
- Brando, S.; Coe, J. Confronting Back-of-House Traditions: Primates as a Case Study. J. Zool. Bot. 2022, 3, 366–397. [Google Scholar] [CrossRef]
- Allard, S.; Bashaw, M. Empowering zoo animals. In Scientific Foundations of Zoos and Aquariums; Kaufman, A.B., Bashaw, M.J., Maple, T.L., Eds.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Mellor, D.J.; Beausoleil, N.J.; Littlewood, K.E.; McLean, A.N.; McGreevy, P.D.; Jones, B.; Wilkins, C. The 2020 Five Domains Model: Including Human-Animal Interactions in Assessments of Animal Welfare. Animals 2020, 10, 1870. [Google Scholar] [CrossRef] [PubMed]
- Clay, A.S.; Visseren-Hamakers, I.J. Individuals Matter: Dilemmas and Solutions in Conservation and Animal Welfare Practices in Zoos. Animals 2022, 12, 398. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.; Dunn, S.M. Bonobos: Social Functions of Sexual Behaviour. In Encyclopedia of Sexual Psychology and Behavior; Shackelford, T.K., Ed.; Springer Nature: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Serres, A.; Delfour, F. Social behaviors modulate bottlenose dolphins (Tursiops trunctatus) breathing rate. Anim. Behav. Cogn. 2019, 6, 127–140. [Google Scholar] [CrossRef]
- Kunz, J.A.; Duvot, G.J.; Willems, E.P.; Stickelberger, J.; Spillman, B.; Atmoko, S.S.U.; van Schaik, C.P. The context of sexual coercion in orang-utans: When do male and female mating interests collide? Anim. Behav. 2021, 182, 67–90. [Google Scholar] [CrossRef]
- Cronin, K.A.; West, V.; Ross, S.R. Investigating the relationship between welfare and rearing young in captive chimpanzees (Pan troglodytes). App. Anim. Behav. Sci. 2016, 181, 166–172. [Google Scholar] [CrossRef]
- Lacy, R.C. Achieving true sustainability of zoo populations. Zoo Biol. 2012, 32, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Penfold, L.M.; Ball, R.; Burden, I.; Jochle, W.; Citino, S.B.; Monfort, S.L.; Wilebnowski, N. Case studies in antelope aggression using a GnRH agonist. Zoo Biol. 2002, 21, 435–448. [Google Scholar] [CrossRef]
- de Nys, H.M.; Bertschinger, H.J.; Turkstra, J.A.; Colenbrander, B.; Palme, R.; Human, A.M. Vaccination against GnRH may suppress aggressive behaviour and musth in African elephant (Loxodonta africana) bulls—A pilot study. J. S. Afr. Vet Assoc. 2010, 81, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Penfold, L.M.; Norton, T.; Asa, C.S. Effects of GnRH agonists on testosterone and testosterone-stimulated parameters for contraception and aggression reduction in male lion-tailed macaques (Macaca silenus). Zoo Biol. 2021, 40, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Asa, C.; Bauman, K.L.; Devery, S.; Zordan, M.; Camilo, G.R.; Boutelle, S.; Moresco, A. Factors Associated with Uterine Endometrial Hyperplasia and Pyometra in Wild Canids: Implications for Fertility. Zoo Biol. 2013, 33, 8–19. [Google Scholar] [CrossRef]
- Agnew, M.; Cheyne, S. A review of population control methods in captive-housed primates. Anim. Welf. 2016, 25, 7–20. [Google Scholar]
- Patton, M.L.; Jochle, W.; Penfold, L. Review of contraception in ungulate species. Zoo Biol. 2007, 26, 311–326. [Google Scholar] [CrossRef]
- Asa, C.; Moresco, A. Fertility Control in Wildlife: Review of Current Status, Including Novel and Future Technologies. In Reproductive Sciences in Animal Conservation; Comizzoli, P., Brown, J.L., Holt, W.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 507–543. [Google Scholar]
- Parrott, M.L.; Nation, A.; Selwood, L. Female mate choice significantly increases captive breeding success, and scents can be frozen to determine choice, in the stripe-faced dunnart. Appl. Anim. Behav. Sci. 2019, 213, 95–101. [Google Scholar] [CrossRef]
- Rosenthal, G.G.; Ryan, M.J. Sexual selection and the ascent of women: Mate choice research since Darwin. Science 2022, 375, eabi6308. [Google Scholar] [CrossRef] [PubMed]
- Keagy, J.; Minter, R.; Tinghitella, R.M. Sex differences in cognition and their relationship to male mate choice. Current Zool. 2019, 65, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Wallis, L.J. Canine life history. In Encyclopedia of Animal Cognition and Behavior; Vonk, J., Shackelford, T.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Bowyer, R.T.; McCullough, D.R.; Rachlow, J.L.; Ciuti, S.; Whiting, J.C. Evolution of ungulate mating systems: Integrating social and environmental factors. Ecol. Evol. 2020, 10, 5160–5178. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Grueter, C.C.; Ren, B.; Zhang, D.; Yuan, X.; Li, D. Determinants of harem size in a polygynous primate: Reproductive success and social benefits. Animals 2021, 11, 2915. [Google Scholar] [CrossRef]
- Li, X.Y.; Kokko, H. Intersexual resource competition and the evolution of sex-biased dispersal. Front. Ecol. Evo. 2019, 7, 111. [Google Scholar] [CrossRef]
- Hambrecht, S.; Oerke, A.K.; Heistermann, M.; Dierkes, P.W. Diurnal variation of salivary cortisol in captive African elephants (Loxodonta africana) under routine management conditions and in relation to a translocation event. Zoo Biol. 2020, 39, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Pohlin, F.; Hooijberg, E.H.; Meyer, L.C.R. Challenges to animal welfare during transportation of wild mammals: A review (1990–2020). J. Zoo Wildl. Med. 2021, 52, 1–13. [Google Scholar] [CrossRef]
- Herrick, J.R. Assisted reproductive technologies for endangered species conservation: Developing sophisticated protocols with limited access to animals with unique reproductive mechanisms. Biol. Reprod. 2019, 100, 1158–1170. [Google Scholar] [CrossRef] [PubMed]
- Asa, C. Weighing the options for limiting surplus animals. Zoo Biol. 2016, 35, 183–186. [Google Scholar] [CrossRef]
- Andrabi, S.M.H.; Maxwell, W.M.C. A review on reproductive biotechnologies for conservation of endangered mammalian species. Anim. Reprod. Sci. 2007, 99, 223–243. [Google Scholar] [CrossRef] [PubMed]
- Holland, A.; Galardi, E.G.; Fabbroni, M.; Hashmi, A.; Catinaud, J.; Preziosi, R.; Quintavalle Pastorino, G. Exploration of social proximity and behavior in captive Malayan tigers and their cubs. Animals 2023, 13, 1040. [Google Scholar] [CrossRef] [PubMed]
- Gartland, K.; Carrigan, K.; White, F.J. Survey of current group demographics and management practices of bachelor groups of western lowland gorillas (Gorilla gorilla gorilla) across North America. Zoo Biol. 2022, 41, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Gartland, K.; McDonald, M.; Slade, S.B.; White, F.; Sanz, C. Behavioral changes following alterations in the composition of a captive bachelor group of western lowland gorillas (Gorilla gorilla gorilla). Zoo Biol. 2018, 37, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Racevska, E.; Hill, C.M. Personality and social dynamics of zoo-housed western lowland gorillas (Gorilla gorilla gorilla). J. Zoo. Aquar. Res. 2017, 5, 116–122. [Google Scholar]
- Wood, K.P.; Brinegar, J.L. Evaluation of fission-fusion in spider monkeys at the Little Rock Zoo. J. Contents 2013, 18, 15–22. [Google Scholar]
- Parra, G.J.; Corkeron, P.J.; Arnold, P. Grouping and fission-fusion dynamics in Australian snubfin and Indo-Pacific humpback dolphins. Anim. Behav. 2011, 82, 1423–1433. [Google Scholar] [CrossRef]
- de Silva, S.; Wittemyer, G. A comparison of social organisation in Asian elephants and African savannah elephants. Int. J. Primatol. 2012, 33, 1125–1141. [Google Scholar] [CrossRef]
- Radosevich, L.M.; Jaffe, K.E.; Minier, D.E. The utility of social network analysis for informing zoo management: Changing network dynamics of a group of captive hamadryas baboons (Papio hamadryas) following an introduction of two young males. Zoo Biol. 2021, 40, 503–516. [Google Scholar] [CrossRef]
- Williams, E.; Bremner-Harrison, S.; Hall, C.; Carter, A. Understanding temporal social dynamics in zoo animal management: An elephant case study. Animals 2020, 10, 882. [Google Scholar] [CrossRef] [PubMed]
- Norman, M.; Rowden, L.J.; Cowlishaw, G. Potential applications of personality assessments to the management of non-human primates: A review of 10 years of study. PeerJ 2021, 9, e12044. [Google Scholar] [CrossRef] [PubMed]
- Quader, S. Mate choice and its implications for conservation and management. Curr. Sci. 2005, 89, 1220–1229. [Google Scholar]
- Martin-Wintle, M.S.; Shepherdson, D.; Zhang, G.; Zhang, H.; Li, D.; Zhou, X. Free mate choice enhances conservation breeding in the endangered giant panda. Nat. Commun. 2015, 6, 10125. [Google Scholar] [CrossRef] [PubMed]
- Mossotti, R.H.; Baskir, E.A.; Kozlowski, C.P.; Franklin, A.D.; Feldhamer, G.A.; Asa, C.S. Reactions of female cheetahs (Acinonyx jubatus) to urine volatiles from males of varying genetic distance. Zoo Biol. 2018, 37, 229–235. [Google Scholar] [CrossRef]
- Roberts, S.C.; Gosling, L.M. Manipulation of olfactory signaling and mate choice for conservation breeding: A case study of harvest mice. Conserv. Biol. 2004, 18, 548–556. [Google Scholar] [CrossRef]
- Tetley, C.; O’Hara, S. Ratings of animal personality as a tool for improving the breeding, management, and welfare of zoo animals. Anim. Welf. 2012, 21, 463–476. [Google Scholar] [CrossRef]
- Seyfarth, R.M.; Silk, J.B.; Cheney, D.L. Variation in personality and fitness in wild female baboons. Proc. Natl. Acad. Sci. USA 2012, 109, 16980–16985. [Google Scholar] [CrossRef]
- Powell, D.; Gartner, M. Applications of personality to the management and conservation of nonhuman animals. In From Genes to Animal Behavior: Primatology Monographs; Springer: Tokyo, Japan, 2011; pp. 185–199. [Google Scholar]
- Wielebnowski, N.C. Behavioral differences as predictors of breeding status in captive cheetahs. Zoo Biol. 1999, 18, 335–349. [Google Scholar] [CrossRef]
- Razal, C.; Pisacane, C.; Miller, L. Multifaceted approach to personality assessment in cheetahs (Acinonyx jubatus). Anim. Behav. Cogn. 2016, 3, 22–31. [Google Scholar] [CrossRef]
- Jewgenow, K.; Braun, B.; Dehnhard, M.; Zahmel, J.; Goeritz, F. Research on reproduction is essential for captive breeding of endangered carnivore species. Reprod. Dom. Anim. 2017, 52, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Hurst, J.L.; West, R.S. Taming anxiety in laboratory mice. Nat. Methods 2010, 7, 825. [Google Scholar] [CrossRef] [PubMed]
- Uetake, K.; Morita, S.; Hoshiba, S.; Tanaka, T. Flight distance of dairy cows and its relationship to daily routine management procedures and productivity. Anim. Sci. J. 2002, 73, 279–285. [Google Scholar] [CrossRef]
- Grandin, T. Habituating antelope and bison to cooperate with veterinary procedures. J. Appl. Anim. Welf. Sci. 2000, 3, 253–261. [Google Scholar] [CrossRef]
- Phillips, M.; Grandin, T.; Graffam, W. Crate conditioning bongo (Tragelaphus eupycerus) for veterinary procedures at Denver Zoological Gardens. Zoo Biol. 1998, 17, 25–33. [Google Scholar] [CrossRef]
- Reinhardt, V. Working with rather than against macaques during blood collection. J. Appl. Anim. Welf. Sci. 2003, 6, 189–197. [Google Scholar] [CrossRef]
- Ban, K.; Ono, R.; Kawase, K.; Saito, A.; Shiihara, S. Husbandry-training of big cats for blood collection. J. Jpn. Assoc. Zoos Aquar. 2017, 59, 1–6. [Google Scholar]
- Savastano, G.; Hanson, A.; McCann, C. The development of an operant conditioning training program for New World Primates at the Bronx Zoo. J. Appl. Anim. Welf. Sci. 2003, 6, 247–261. [Google Scholar] [CrossRef]
- Broder, J.M.; MacFadden, A.J.; Cosens, L.M.; Rosenstein, D.S.; Harrison, T.M. Use of positive reinforcement conditioning to monitor pregnancy in an unanesthetiszed snow leopard (Uncia uncia) via transabdominal ultrasound. Zoo Biol. 2007, 27, 78–85. [Google Scholar] [CrossRef]
- Greggor, A.L.; Vicino, G.A.; Swaisgood, R.R.; Fidgett, A.; Brenner, D.; Kinney, M.E.; Farabaugh, S.; Masuda, B.; Lamberski, N. Animal welfare in conservation breeding: Applications and challenges. Front. Vet. Sci. 2018, 5, 323. [Google Scholar] [CrossRef] [PubMed]
- Froberg-Fejko, K. Benefits of providing nesting material as a form of environmental enrichment for mice. Lab. Anim. 2010, 39, 326–327. [Google Scholar] [CrossRef] [PubMed]
- Merriman, D.; Lahvis, G.; Jooss, M. Current practices in a captive breeding colony of 13-lined ground squirrels (Ictidomys tridemlineatus). Lab Anim. 2012, 41, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Kastelein, R.A.; Mosterd, J. Improving parental care of a female bottlenose dolphin (Tursiops truncates) by training. Aquat. Mamm. 1995, 21, 165–170. [Google Scholar]
- Cohen, E.; Fennell, D. The elimination of Marius, the giraffe: Humanitarian act of callous management decision? Tour. Recreat. Res. 2016, 41, 168–176. [Google Scholar] [CrossRef]
- Browning, H. No Room at the Zoo: Management euthanasia and animal welfare. J. Agri. Environ. Ethics 2018, 31, 483–498. [Google Scholar] [CrossRef]
- Powell, D.M.; Beetem, D.; Breitigan, R.; Eyres, A.; Speeg, B. A perspective on ungulate management and welfare assessment across the traditional zoo to large landscape spectrum. Zoo Biol. 2024, 43, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Newberry, R.C.; Swanson, J.C. Implications of breaking mother-young social bonds. Appl. Anim. Behav. Sci. 2008, 110, 3–23. [Google Scholar] [CrossRef]
- Broad, K.D.; Curley, J.P.; Keverne, E.B. Mother-infant bonding and the evolution of mammalian social relationships. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2006, 361, 2199–2214. [Google Scholar] [CrossRef]
- Saunders, S.P.; Harris, T.; Traylor-Holzer, K.; Beck, K.G. Factors influencing breeding success, ovarian cyclicity, and cub survival in zoo-managed tigers (Panthera tigris). Anim. Reproduc. Sci. 2014, 144, 38–47. [Google Scholar] [CrossRef]
- Zhang, G.; Swaisgood, R.R.; Zhang, H. Evaluation of behavioral factors influencing reproductive success and failure in captive giant pandas. Zoo Biol. 2004, 23, 15–31. [Google Scholar] [CrossRef]
- Coe, J.; Hoy, J. Choice, Control, and Computers: Empowering wildlife in human care. Multimodal Technol. Interact. 2020, 4, 92. [Google Scholar] [CrossRef]
- Webber, S.; Cobb, M.L.; Coe, J. Welfare through competence: A framework for animal-centric technology design. Front. Vet. Sci. 2022, 9, 885973. [Google Scholar] [CrossRef]
- Carlstead, K.; Shepherdson, D. Effects of environmental enrichment on reproduction. Zoo Biol. 1994, 13, 447–458. [Google Scholar] [CrossRef]
- Krebs, B.L.; Watters, J. Simple but temporally unpredictable puzzles are cognitive enrichment. Anim. Behav. Cogn. 2017, 4, 119–134. [Google Scholar] [CrossRef]
- Boissy, A.; Manteuffel, G.; Jensen, M.B.; Moe, R.O.; Spruijt, B.; Keeling, L.J. Assessment of positive emotions in animals to improve their welfare. Physiol. Behav. 2007, 92, 375–397. [Google Scholar] [CrossRef] [PubMed]
- Yasmeen, R.; Aslam, I.; Ahmad, M.; Shah, M.H.A. Zoochosis: A short review on stereotypical behavior of captive animals. J. Wildl. Biodivers. 2023, 7, 8–20. [Google Scholar]
- Learmonth, M.J. Dilemmas for natural living concepts of zoo animal welfare. Animals 2019, 9, 318. [Google Scholar] [CrossRef] [PubMed]
- Rabin, L.A. Maintaining behavioural diversity in captivity for conservation: Natural behaviour management. Anim. Welf. 2003, 12, 85–94. [Google Scholar] [CrossRef]
- Rose, P.; Riley, L. The use of qualitative behavioural assessment to zoo welfare measurement and animal husbandry change. J. Zoo Aquar. Res. 2019, 7, 150–161. [Google Scholar]
- Brando, S. Promoting optimal animal welfare in population management programs. In Proceedings of the WAZA Committee for Population Management, 3rd Joint TAG Chairs Meeting, Budapest Zoo and Botanical Gardens, Budapest, Hungary, 30 April 2018. [Google Scholar]
- Wildt, D.E. The role of reproductive technologies in zoos: Past, present and future. Int. Zoo Yearb. 2003, 38, 111–118. [Google Scholar] [CrossRef]
- Ryder, O.A.; Friese, C.; Greely, H.T.; Sandler, R.; Saragusty, J.; Durrant, B.S.; Redford, K.H. Exploring the limits of saving a subspecies: The ethics and social dynamics of restoring northern white rhinoceros (Ceratotherium simum cottoni). Conserv. Sci. Pract. 2020, 2, e241. [Google Scholar] [CrossRef]
- Tunstall, T.; Kock, R.; Vahala, J.; Diekans, M.; Fiddes, I.; Armstrong, J.; Steiner, C.C. Evaluating recovery potential of the northern white rhinoceros from cryopreserved somatic cells. Genome Res. 2018, 28, 780–788. [Google Scholar] [CrossRef]
- Hermes, R.; Göritz, F.; Saragusty, J.; Sos, E.; Molnar, V.; Reid, C.E.; Hildebrant, T.B. First successful artificial insemination with frozen-thawed semen in rhinoceros. Theriogenology 2009, 71, 393–399. [Google Scholar] [CrossRef]
- Bolton, R.L.; Mooney, A.; Pettit, M.T.; Bolton, A.E.; Morgan, L.; Drake, G.J.; Hvilsom, C. Resurrecting biodiversity: Advanced assisted reproductive technologies and biobanking. Reprod. Fertil. 2022, 3, 121–146. [Google Scholar] [CrossRef]
- Strand, J.; Thomsen, H.; Jensen, J.B.; Marcussen, C.; Nicolajsen, T.B.; Skriver, M.B.; Pertoldi, C. Biobanking in amphibian and reptilian conservation and management: Opportunities and challenges. Conserv. Genet. Resour. 2020, 12, 709–725. [Google Scholar] [CrossRef]
- Mooney, A.; Ryder, O.A.; Houck, M.L.; Staerk, J.; Conde, D.A.; Buckley, Y.M. Maximizing the potential for living cell banks to contribute to global conservation priorities. Zoo Biol. 2023, 42, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Comizzoli, P. Biobanking and fertility preservation for rare and endangered species. Anim. Reprod. 2018, 14, 30–33. [Google Scholar] [CrossRef]
- Durrant, B.S. The importance and potential of artificial insemination in CANDES (companion animals, non-domestic, endangered species). Theriogenology 2009, 71, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Comizzoli, P.; Loi, P.; Patrizio, P.; Hubel, A. Long-term storage of gametes and gonadal tissues at room temperatures: The end of the ice age? J. Assist. Reprod. Genet. 2022, 39, 321–325. [Google Scholar] [CrossRef]
- Pizzutto, C.S.; Colbachini, H.; Jorge-Neto, P.N. One Conservation: The integrated view of biodiversity conservation. Anim. Reprod. 2021, 18, e20210024. [Google Scholar] [CrossRef] [PubMed]
Element | Description |
---|---|
Lifetime reproductive planning | The reproductive lives of animals in conservation breeding programs should be mapped out as early as possible to promote optimal reproductive health, overall wellbeing, and appropriate intervals between generations. |
Timing and circumstances | Animals should reproduce only at times and in circumstances where the care and wellbeing of both the mother and her future youngsters will be optimal at all stages. |
Contraceptive method(s) | Social, chemical, and surgical contraceptive methods are available, and the method chosen should be appropriate not only for the species but for the individual circumstances of the animals with respect to individual and group-level wellbeing. |
Mate choice | Where possible, the selection of mates should consider not only the genetic element of reproduction but also consider distance travelled, individual circumstances, and suitability for transfer, including a consideration for the mechanisms underpinning mate choice and what the animals themselves are likely to select. |
Handling and training | Positive reinforcement training methods should be incorporated into all conservation breeding programs to support essential procedures, such as ultrasounds, to be carried out efficiently, safely, and with attention to the animal’s agency and ability to choose whether they want to participate. All handling and training of animals should be positive and meaningful from the perspective of the animal. |
24/7 housing and husbandry | Animals should have as much choice and control as possible in all areas of their lives, reducing their dependence on human caregivers to meet their needs as much as possible. This includes consideration for all areas of the habitat, including back-of-house areas such as nesting areas, birthing dens, and so on, as well as opportunities for a wide range of species-typical and positive behaviours through the provision of dynamic habitat design and enrichment. |
Careful planning of transfers | Breeding for conservation inevitably requires translocations. All translocations should be thoroughly planned to promote the smoothest transition possible, including consideration for the wellbeing implications of transferring an animal away from a familiar habitat, conspecifics, and caregivers. |
Outcomes of youngsters | The outcome of a breeding recommendation should be considered and evaluated as early as possible, including when and how a youngster disperses from the natal group. Considerations should include the future of the population as a whole, including whether the goal is to release animals into the wild as an ultimate outcome and how to support a population that will be resilient to challenges faced both in human care and potentially in the wild. |
24/7, across lifespan wellbeing for all animals | All steps should be taken to support providing all animals with the opportunity to live full, meaningful, and positive lives. All possible steps to reduce the number of animals considered “surplus” should be taken, with the goal of eliminating, the need to euthanise healthy individuals for population management purposes. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norman, M.; Brando, S. The Concept of Agency, Animal Wellbeing, and the Practical Realities of Ex Situ Breeding Programs in Zoos and Aquariums. J. Zool. Bot. Gard. 2024, 5, 563-578. https://doi.org/10.3390/jzbg5040038
Norman M, Brando S. The Concept of Agency, Animal Wellbeing, and the Practical Realities of Ex Situ Breeding Programs in Zoos and Aquariums. Journal of Zoological and Botanical Gardens. 2024; 5(4):563-578. https://doi.org/10.3390/jzbg5040038
Chicago/Turabian StyleNorman, Max, and Sabrina Brando. 2024. "The Concept of Agency, Animal Wellbeing, and the Practical Realities of Ex Situ Breeding Programs in Zoos and Aquariums" Journal of Zoological and Botanical Gardens 5, no. 4: 563-578. https://doi.org/10.3390/jzbg5040038
APA StyleNorman, M., & Brando, S. (2024). The Concept of Agency, Animal Wellbeing, and the Practical Realities of Ex Situ Breeding Programs in Zoos and Aquariums. Journal of Zoological and Botanical Gardens, 5(4), 563-578. https://doi.org/10.3390/jzbg5040038