A Model for Accurate Determination of Environmental Parameters in Indoor Zoological and Botanical Gardens Supporting Efficient Species Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environmental Conditions
2.2. Sensors
2.2.1. Light Sensor
2.2.2. Air and Soil Sensors
2.3. Data Collection
2.3.1. Light (DLI) Sampling Protocol
2.3.2. Sampling Protocol for the Rest of the Environmental Parameters
2.4. Data and Statistical Analysis
3. Results
3.1. Variations in DLI
3.2. Variations in Air Temperature, Air Relative Humidity, Ambient Pressure, Soil Water Content, Soil Temperature and Conductivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foster, K.P. The Earliest Zoos and Gardens. Sci. Am. 1999, 281, 64–71. [Google Scholar] [CrossRef]
- Conniff, R. The Species Seekers: Heroes, Fools, and the Mad Pursuit of Life on Earth; W.W. Norton: New York, NY, USA, 2011; ISBN 0393341321. [Google Scholar]
- Hind, C. Review: Glass Houses. A History of Greenhouses, Orangeries and Conservatories by Mary Woods, Arete Swartz Warren. Gard. Hist. 1988, 16, 202–204. [Google Scholar] [CrossRef]
- van den Muijzenberg, E.W.B. A History of Greenhouses; Institute for Agricultural Engineering, Department of Biosystem and Agricultural Engineering (BAE) at Michigan State University: East Lansing, MI, USA, 1980. [Google Scholar]
- Wilson, P.W.; Georgi, C.E. Methods for Controlling the Environment of Greenhouse Plants on JSTOR. Bot. Gaz. 1932, 94, 346–363. [Google Scholar] [CrossRef]
- Frediani, K. The Ethical Use of Plants in Zoos: Informing Selection Choices, Uses and Management Strategies. Int. Zoo Yearb. 2009, 43, 29–52. [Google Scholar] [CrossRef]
- Pearcy, R.W. Radiation and Light Measurements. In Plant Physiological Ecology; Springer: Dordrecht, The Netherlands, 2000; pp. 97–116. [Google Scholar] [CrossRef]
- Faust, J.; Logan, J. Daily Light Integral: A Research Review and High-Resolution Maps of the United States. HortScience 2018, 53, 1250–1257. [Google Scholar] [CrossRef] [Green Version]
- Faust, J.E.; Holcombe, V.; Rajapakse, N.C.; Layne, D.R. The Effect of Daily Light Integral on Bedding Plant Growth and Flowering. HortScience 2005, 40, 645–649. [Google Scholar] [CrossRef] [Green Version]
- Paz, M.; Fisher, P.; Gómez, C. Minimum Light Requirements for Indoor Gardening of Lettuce. Urban Agric. Reg. Food Syst. 2019, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tewolde, F.T.; Shiina, K.; Maruo, T.; Takagaki, M.; Kozai, T.; Yamori, W. Supplemental LED Inter-Lighting Compensates for a Shortage of Light for Plant Growth and Yield under the Lack of Sunshine. PLoS ONE 2018, 13, e0206592. [Google Scholar] [CrossRef]
- Slagel, S.; Lohr, K.; O’Neil, K.; Patterson, J. Growth, Calcification, and Photobiology of the Threatened Coral Acropora Cervicornis in Natural versus Artificial Light. Zoo Biol. 2021, 40, 201–207. [Google Scholar] [CrossRef]
- Coe, J. Design and Perception: Making the Zoo Experience Real. Zoo Biol. 1985, 4, 197–208. [Google Scholar] [CrossRef]
- Dutta Gupta, S.; Agarwal, A. Artificial Lighting System for Plant Growth and Development: Chronological Advancement, Working Principles, and Comparative Assessment. In Light Emitting Diodes for Agriculture: Smart Lighting; Dutta Gupta, S., Ed.; Springer: Singapore, 2017; pp. 1–25. ISBN 9789811058073. [Google Scholar]
- Choukidar, G.A.; Dawande, N.A. Smart Poultry Farm Automation and Monitoring System. In Proceedings of the 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA), Pune, India, 17–18 August 2017. [Google Scholar] [CrossRef]
- Tantau, H.-J. Optimal Control for Plant Production in Greenhouses. In IFAC Proceedings Volumes; Elsevier: Amsterdam, The Netherlands, 1991; Volume 24, pp. 1–6. [Google Scholar]
- Kemp, C.; Rendle, J.; Bryant, Z.; Konczol, E.; Michaels, C.J. Impact of Broad-Spectrum Lighting on Recall Behaviour in a Pair of Captive Blue-Throated Macaws (Ara glaucogularis). J. Zool. Bot. Gard. 2022, 3, 177–183. [Google Scholar] [CrossRef]
- Liu, H.; Duan, H.; Wang, C. Effects of Ambient Environmental Factors on the Stereotypic Behaviors of Giant Pandas (Ailuropoda Melanoleuca). PLoS ONE 2017, 12, e0170167. [Google Scholar] [CrossRef] [Green Version]
- Burger, A.L.; Hartig, J.; Dierkes, P.W. Biological and Environmental Factors as Sources of Variation in Nocturnal Behavior of Giraffe. Zoo Biol. 2021, 40, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; He, D.; Ji, F.; Zhang, S.; Zheng, J. Effects of Daily Light Integral and LED Spectrum on Growth and Nutritional Quality of Hydroponic Spinach. Agronomy 2020, 10, 1082. [Google Scholar] [CrossRef]
- Razali, M.N.; Bee Wah, Y. Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests. J. Stat. Model. Anal. 2011, 2, 21–33. [Google Scholar]
- MacFarland, T.W.; Yates, J.M. Mann–Whitney U Test. In Introduction to Nonparametric Statistics for the Biological Sciences Using R; Springer: Cham, Switzerland, 2016; pp. 103–132. [Google Scholar] [CrossRef]
- Kjaer, K.H.; Ottosen, C.O.; Jørgensen, B.N. Timing Growth and Development of Campanula by Daily Light Integral and Supplemental Light Level in a Cost-Efficient Light Control System. Sci. Hortic. 2012, 143, 189–196. [Google Scholar] [CrossRef]
- Bartak, M.; Drkal, F.; Hensen, J.; Lain, M. Design Support Simulations for the Prague Zoo “Indonesian Jungle” Pavilion. In Proceedings of the Seventh International IBPSA Conference, Rio de Janeiro, Brazil, 13–15 August 2001; pp. 841–846. [Google Scholar]
- Kenny, D.E. The Role of Sunlight, Artificial UV Radiation and Diet on Bone Health in Zoo Animals. Biol. Eff. Light 1998, 1999, 111–119. [Google Scholar] [CrossRef]
- Adkins, E.; Driggers, T.; Ferguson, G.; Gehrmann, W.; Gyimesi, Z.; May, E.; Ogle, M.; Owens, T.; Klaphake, E. Ultraviolet Light and Reptiles, Amphibians. J. Herpetol. Med. Surg. 2003, 13, 27–37. [Google Scholar] [CrossRef]
- Brown, J.L.; Graham, L.H.; Wu, J.M.; Collins, D.; Swanson, W.F. Reproductive Endocrine Responses to Photoperiod and Exogenous Gonadotropins in the Pallas’ Cat (Otocolobus Manul). Zoo Biol. 2002, 21, 347–364. [Google Scholar] [CrossRef]
- DiPerna, S.; Hoogenboom, M.; Noonan, S.; Fabricius, K. Effects of Variability in Daily Light Integrals on the Photophysiology of the Corals Pachyseris Speciosa and Acropora Millepora. PLoS ONE 2018, 13, e0203882. [Google Scholar] [CrossRef]
- Climate and Average Weather Year Round in Granada. Available online: https://weatherspark.com/y/36650/Average-Weather-in-Granada-Spain-Year-Round (accessed on 30 July 2022).
- Xiong, Y.; Meng, Q.; Gao, J.; Tang, X.; Zhang, H. Effects of Relative Humidity on Animal Health and Welfare. J. Integr. Agric. 2017, 16, 1653–1658. [Google Scholar] [CrossRef]
- Mortensen, L.M. Effect of Relative Humidity on Growth and Flowering of Some Greenhouse Plants. Sci. Hortic. 1986, 29, 301–307. [Google Scholar] [CrossRef]
- Dennis, M.J. The Effects of Temperature and Humidity on Some Animal Diseases—A Review. Br. Vet. J. 1986, 142, 472–485. [Google Scholar] [CrossRef]
- Roger, C.; Tivoli, B.; Huber, L. Effects of Temperature and Moisture on Disease and Fruit Body Development of Mycosphaerella Pinodes on Pea (Pisum sativum). Plant Pathol. 1999, 48, 1–9. [Google Scholar] [CrossRef]
- Wassnik, E. Concluding Remarks: Botanical Aspects. In Proceedings of the International Symposium of Circadian Rhythmicity, Wageningen, The Netherlands, 26–29 April 1971; pp. 207–211. [Google Scholar]
- Bünning, E. Symptoms, Problems, and Common Features of Circadian Rhythms in Plants and Animals. In Proceedings of the International Symposium of Circadian Rhythmicity, Wageningen, The Netherlands, 26–29 April 1971; pp. 11–31. [Google Scholar]
- Myster, J.; Moe, R. Effect of Diurnal Temperature Alternations on Plant Morphology in Some Greenhouse Crops—A Mini Review. Sci Hortic 1995, 62, 205–215. [Google Scholar] [CrossRef]
- Hua, J. Modulation of Plant Immunity by Light, Circadian Rhythm, and Temperature. Curr. Opin. Plant Biololgy 2013, 16, 406–413. [Google Scholar] [CrossRef]
- Fernandez, E.J.; Yoakum, E.; Andrews, N. Seasonal and Daily Activity of Two Zoo-Housed Grizzly Bears (Ursus arctos horribilis). J. Zool. Bot. Gard. 2020, 1, 1–12. [Google Scholar] [CrossRef]
- Thompson, R.; Gallardo, M. Use of Soil Sensors for Irrigation Scheduling. In Improvement of Water Use Efficiency in Protected Crops; Fernández-Fernández, M., Lorenzo-Minguez, P., Cuadrado-Gómez, M., Eds.; Dirección General de Investigación y Formación Agraria de la Junta de Andalucía: Sevilla, Spain, 2005; pp. 351–376. [Google Scholar]
- Parton, W.J.; Logan, J.A. A Model for Diurnal Variation in Soil and Air Temperature. Agric. Meteorol. 1981, 23, 205–216. [Google Scholar] [CrossRef]
- Kaspar, T.; Bland, W. Soil Temperature and Root Growth. Soil Sci. 1992, 154, 290–299. [Google Scholar] [CrossRef]
- Wong, D.H.; Barbetti, M.J.; Sivasithamparam, K. Effects of Soil Temperature and Moisture on the Pathogenicity of Fungi Associated with Root Rot of Subterranean Clover. Aust. J. Agric. Res. 1984, 35, 675–684. [Google Scholar] [CrossRef]
- Pereira, L.S.; Perrier, A.; Allen, R.G.; Alves, I. Evapotranspiration: Concepts and Future Trends. J. Irrig. Drain. Eng. 1999, 125, 45–51. [Google Scholar] [CrossRef]
- Fazilah, W.; Ilahi, F. Evapotranspiration Models in Greenhouse Irrigation and Water Engineering Group; Wageningen Univesity: Wageningen, The Netherlands, 2009. [Google Scholar]
- Bibi, S.D.; Baig, S.A.; Zeb, I.; Ali, M.; Shams, D.F.; Nawab, J.; Yosifova Aneva, I.; Hussain, H.; Xu, X. Implication and Evaluations of Indoor Soot Particles from Domestic Fuel Energy Sources Using Characterization Techniques in Northern Pakistan. Microsc. Res. Tech. 2021, 84, 3161–3170. [Google Scholar] [CrossRef] [PubMed]
Sampling Spot | Statistics | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Asiatic Island | MEAN | 0.3 | 0.6 | 0.8 | 0.6 | 0.4 | 0.6 | 0.7 | 0.4 | 0.4 | 0.7 | 1.4 | 0.6 |
MEDIAN | 0.3 | 0.7 | 0.6 | 0.6 | 0.4 | 0.6 | 0.6 | 0.4 | 0.4 | 0.5 | 1.7 | 0.7 | |
SD | 0.1 | 0.3 | 0.2 | 0.3 | 0.2 | 0.2 | 0.0 | 0.1 | 0.1 | 0.5 | 0.6 | 0.3 | |
N | 4.0 | 3.0 | 3.0 | 4.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | |
MIN | 0.2 | 0.3 | 0.6 | 0.3 | 0.3 | 0.4 | 0.6 | 0.4 | 0.4 | 0.3 | 0.8 | 0.3 | |
MAX | 0.5 | 0.8 | 1.0 | 0.9 | 0.6 | 0.8 | 0.7 | 0.5 | 0.5 | 1.3 | 1.8 | 0.9 | |
Asia 1 | MEAN | 1.4 | 2.9 | 7.6 | 4.5 | 9.8 | 14.6 | 15.6 | 9.8 | 5.6 | 3.6 | 1.8 | 1.9 |
MEDIAN | 1.4 | 3.2 | 8.0 | 4.5 | 9.7 | 14.5 | 15.3 | 10.2 | 5.8 | 3.4 | 1.7 | 1.9 | |
SD | 0.4 | 0.5 | 1.9 | 2.1 | 2.0 | 2.5 | 2.0 | 3.0 | 0.9 | 0.6 | 0.3 | 0.1 | |
N | 4.0 | 3.0 | 4.0 | 2.0 | 3.0 | 3.0 | 4.0 | 3.0 | 4.0 | 3.0 | 3.0 | 3.0 | |
MIN | 1.1 | 2.4 | 5.0 | 3.0 | 7.9 | 12.1 | 13.4 | 6.6 | 6.6 | 3.2 | 1.4 | 1.8 | |
MAX | 2.0 | 3.4 | 9.3 | 5.9 | 11.9 | 17.1 | 18.2 | 12.5 | 12.5 | 4.3 | 2.1 | 2.0 | |
Burmeese ruins | MEAN | 2.3 | 4.3 | 8.3 | 4.3 | 13.7 | 13.9 | 14.1 | 11.0 | 5.5 | 2.3 | 1.2 | 1.7 |
MEDIAN | 2.4 | 4.8 | 8.3 | 3.6 | 10.8 | 14.1 | 14 | 11.7 | 6.8 | 2.3 | 1.3 | 1.8 | |
SD | 0.5 | 2.3 | 1.1 | 2.0 | 5.7 | 0.5 | 2.7 | 2.9 | 2.6 | 0.3 | 0.6 | 0.1 | |
N | 3.0 | 4.0 | 2.0 | 3.0 | 3.0 | 3.0 | 4.0 | 4.0 | 3.0 | 3.0 | 4.0 | 3.0 | |
MIN | 1.7 | 1.1 | 7.6 | 2.8 | 10.1 | 13.4 | 11.6 | 7.3 | 7.3 | 1.9 | 0.4 | 1.6 | |
MAX | 2.7 | 6.5 | 9.1 | 6.6 | 20.3 | 14.3 | 16.9 | 13.6 | 13.6 | 2.5 | 1.7 | 1.8 | |
Madagascar 1 | MEAN | 2.0 | 2.5 | 3.7 | 7.5 | 21.1 | 7.6 | 8.1 | 4.2 | 3.5 | 2.4 | 1.9 | 1.5 |
MEDIAN | 2.1 | 2.6 | 3.0 | 7.4 | 21.1 | 9.4 | 8.1 | 4.2 | 3.4 | 2.4 | 2.0 | 1.6 | |
SD | 0.3 | 0.5 | 1.4 | 1.1 | 0.8 | 4.7 | 1.8 | 0.0 | 0.5 | 0.5 | 0.3 | 0.2 | |
N | 3.0 | 3.0 | 4.0 | 3.0 | 2.0 | 3.0 | 2.0 | 1.0 | 3.0 | 4.0 | 4.0 | 4.0 | |
MIN | 1.7 | 1.9 | 2.9 | 6.4 | 20.6 | 2.3 | 6.8 | 4.2 | 4.2 | 1.9 | 1.6 | 1.4 | |
MAX | 2.2 | 2.9 | 5.7 | 8.7 | 21.6 | 11.3 | 9.3 | 4.2 | 4.2 | 3.1 | 2.2 | 1.8 | |
Madagascar 2 | MEAN | 0.3 | 0.5 | 0.8 | 1.2 | 1.8 | 1.7 | 1.7 | 1.1 | 1.1 | 0.9 | 0.6 | 0.8 |
MEDIAN | 0.3 | 0.5 | 0.8 | 1.3 | 1.7 | 1.7 | 1.7 | 1.1 | 1.1 | 0.9 | 0.6 | 0.7 | |
SD | 0.1 | 0.2 | 0.2 | 0.2 | 0.3 | 0.1 | 0.1 | 0.5 | 0.1 | 0.1 | 0.1 | 0.2 | |
N | 3.0 | 3.0 | 4.0 | 3.0 | 3.0 | 3.0 | 3.0 | 2.0 | 4.0 | 4.0 | 4.0 | 3.0 | |
MIN | 0.2 | 0.3 | 0.5 | 1.0 | 1.5 | 1.6 | 1.6 | 0.8 | 0.8 | 0.9 | 0.4 | 0.6 | |
MAX | 0.4 | 0.6 | 1.0 | 1.4 | 2.2 | 1.8 | 1.7 | 1.5 | 1.5 | 1.0 | 0.7 | 1.0 | |
Asia 2 | MEAN | 1.0 | 1.7 | 2.3 | 2.4 | 3.4 | 2.8 | 2.9 | 2.7 | 1.8 | 1.3 | 0.9 | 0.9 |
MEDIAN | 1.0 | 1.7 | 2.3 | 2.4 | 3.5 | 3.0 | 2.7 | 2.9 | 1.8 | 1.2 | 0.9 | 1.0 | |
SD | 0.2 | 0.1 | 0.4 | 0.4 | 2.8 | 0.6 | 0.5 | 0.5 | 0.2 | 0.2 | 0.0 | 0.2 | |
N | 3.0 | 2.0 | 4.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 2.0 | 4.0 | 1.0 | 3.0 | |
MIN | 0.8 | 1.6 | 1.7 | 1.9 | 3.2 | 2.2 | 2.6 | 2.2 | 2.2 | 1.2 | 0.9 | 0.7 | |
MAX | 1.3 | 1.7 | 2.6 | 2.8 | 4.8 | 3.2 | 3.4 | 3.1 | 3.1 | 1.6 | 0.9 | 1.1 | |
Amazon 1 | MEAN | 0.7 | 0.9 | 1.2 | 2.1 | 2.3 | 3.0 | 2.3 | 1.4 | 1.0 | 1.0 | 0.7 | 0.7 |
MEDIAN | 0.7 | 0.9 | 1.1 | 2.1 | 2.5 | 3.0 | 2.4 | 1.5 | 1.2 | 1.0 | 0.7 | 0.7 | |
SD | 0.2 | 0.1 | 0.3 | 0.4 | 0.7 | 1.0 | 0.7 | 0.3 | 0.4 | 0.0 | 0.0 | 0.1 | |
N | 3.0 | 3.0 | 3.0 | 4.0 | 3.0 | 2.0 | 4.0 | 3.0 | 3.0 | 3.0 | 2.0 | 4.0 | |
MIN | 0.6 | 0.8 | 1.0 | 1.7 | 1.6 | 2.3 | 1.3 | 1.1 | 1.1 | 1.0 | 0.6 | 0.6 | |
MAX | 1.0 | 1.0 | 1.6 | 2.7 | 2.9 | 3.6 | 2.9 | 1.6 | 1.6 | 1.0 | 0.7 | 0.8 | |
Amazon 2 | MEAN | 1.7 | 3.9 | 10.9 | 10.6 | 10.6 | 11.1 | 10.7 | 7.6 | 4.7 | 2.2 | 1.6 | 1.0 |
MEDIAN | 1.5 | 4.5 | 14.1 | 10.5 | 10.6 | 11.1 | 11.1 | 7.5 | 4.8 | 2.2 | 1.6 | 1.1 | |
SD | 0.6 | 1.5 | 7.2 | 5.5 | 1.1 | 0.4 | 1.3 | 0.2 | 0.2 | 2.0 | 0.3 | 0.1 | |
N | 3.0 | 3.0 | 3.0 | 4.0 | 2.0 | 2.0 | 4.0 | 4.0 | 3.0 | 2.0 | 2.0 | 4.0 | |
MIN | 1.2 | 2.2 | 2.6 | 4.9 | 9.8 | 10.8 | 8.9 | 7.4 | 7.4 | 0.8 | 1.4 | 0.9 | |
MAX | 2.3 | 5.0 | 16.0 | 16.2 | 11.4 | 11.4 | 11.7 | 7.8 | 7.8 | 3.6 | 1.9 | 1.2 | |
Amazon 3 | MEAN | 1.6 | 2.2 | 6.5 | 7.0 | 14.2 | 11.6 | 7.5 | 6.7 | 5.6 | 4.0 | 1.6 | 1.1 |
MEDIAN | 1.6 | 2.1 | 5.1 | 7.1 | 15.1 | 12.4 | 7.5 | 7.5 | 6.4 | 4.7 | 1.6 | 1.1 | |
SD | 0.1 | 0.7 | 4.8 | 3.8 | 3.7 | 2.6 | 0.4 | 2.3 | 2.3 | 1.5 | 0.4 | 0.0 | |
N | 3.0 | 3.0 | 3.0 | 4.0 | 3.0 | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | 2.0 | 3.0 | |
MIN | 1.5 | 1.6 | 2.6 | 3.1 | 10.2 | 8.7 | 7.2 | 4.1 | 4.1 | 2.2 | 1.3 | 1.1 | |
MAX | 1.7 | 2.9 | 11.9 | 10.8 | 17.3 | 13.6 | 7.8 | 8.5 | 8.5 | 5.0 | 1.9 | 1.1 |
Parameter (Unit) | Statistic | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Air temperatura (°C) | MEAN | 21.91 | 22.55 | 22.72 | 22.63 | 23.74 | 24.46 | 25.47 | 25.47 | 24.35 | 23.25 | 22.28 | 22.17 |
MEDIAN | 22.00 | 22.30 | 22.40 | 22.37 | 23.65 | 24.52 | 25.50 | 25.70 | 24.50 | 23.20 | 22.20 | 22.20 | |
SD | 0.44 | 0.90 | 0.72 | 0.82 | 1.20 | 1.23 | 0.96 | 1.08 | 0.91 | 0.88 | 0.64 | 0.43 | |
MAX | 23.60 | 25.10 | 24.90 | 25.16 | 27.30 | 28.08 | 28.10 | 29.10 | 26.90 | 25.70 | 24.91 | 24.00 | |
MIN | 19.20 | 17.15 | 20.31 | 17.60 | 20.64 | 19.80 | 21.70 | 19.98 | 20.40 | 19.82 | 19.81 | 20.20 | |
N | 2035 | 4025 | 4458 | 4315 | 3533 | 4317 | 4462 | 4463 | 4320 | 4464 | 4320 | 4464 | |
Relative Humidity (%) | MEAN | 0.64 | 0.63 | 0.64 | 0.65 | 0.65 | 0.62 | 0.61 | 0.63 | 0.65 | 0.66 | 0.66 | 0.67 |
MEDIAN | 0.66 | 0.64 | 0.64 | 0.67 | 0.67 | 0.63 | 0.62 | 0.65 | 0.66 | 0.67 | 0.67 | 0.68 | |
SD | 0.06 | 0.07 | 0.05 | 0.06 | 0.07 | 0.06 | 0.06 | 0.07 | 0.05 | 0.05 | 0.07 | 0.04 | |
MAX | 0.94 | 0.91 | 0.86 | 0.88 | 0.90 | 0.89 | 0.88 | 0.87 | 0.85 | 0.94 | 0.82 | 0.84 | |
MIN | 0.50 | 0.32 | 0.44 | 0.32 | 0.41 | 0.31 | 0.35 | 0.30 | 0.43 | 0.38 | 0.41 | 0.55 | |
N | 4454 | 4025 | 4458 | 4315 | 3533 | 4317 | 4462 | 4463 | 4320 | 4464 | 4320 | 4464 | |
Atmospheric pressure (kPa) | MEAN | 94.88 | 94.72 | 93.92 | 93.83 | 94.19 | 94.13 | 94.09 | 94.08 | 94.23 | 94.36 | 94.08 | 94.58 |
MEDIAN | 94.92 | 94.76 | 93.97 | 93.76 | 94.26 | 94.12 | 94.09 | 94.07 | 94.19 | 94.35 | 94.14 | 94.68 | |
SD | 0.31 | 0.32 | 0.49 | 0.48 | 0.32 | 0.25 | 0.19 | 0.22 | 0.24 | 0.24 | 0.37 | 0.35 | |
MAX | 95.56 | 95.31 | 95.08 | 94.76 | 94.73 | 94.89 | 94.61 | 94.65 | 94.91 | 94.96 | 95.03 | 95.20 | |
MIN | 93.83 | 93.94 | 92.80 | 92.64 | 93.37 | 93.47 | 93.61 | 93.52 | 93.58 | 93.76 | 93.22 | 93.32 | |
N | 4454 | 4025 | 4458 | 4315 | 3533 | 4317 | 4462 | 4463 | 4320 | 4464 | 4320 | 4464 | |
Soil water content (mm3) | MEAN | 0.17 | 0.19 | 0.20 | 0.22 | 0.22 | 0.20 | 0.17 | 0.17 | 0.17 | 0.16 | 0.15 | 0.16 |
MEDIAN | 0.17 | 0.18 | 0.20 | 0.22 | 0.22 | 0.20 | 0.16 | 0.17 | 0.17 | 0.16 | 0.15 | 0.16 | |
SD | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | |
MAX | 0.31 | 0.22 | 0.25 | 0.28 | 0.29 | 0.33 | 0.31 | 0.30 | 0.22 | 0.33 | 0.17 | 0.30 | |
MIN | 0.15 | 0.17 | 0.19 | 0.20 | 0.20 | 0.17 | 0.14 | 0.15 | 0.15 | 0.14 | 0.14 | 0.14 | |
N | 4459 | 4025 | 4458 | 4315 | 3533 | 4317 | 4462 | 4463 | 4320 | 4464 | 4320 | 4464 | |
Soil Temperature (°C) | MEAN | 22.89 | 23.12 | 23.37 | 23.15 | 23.80 | 25.27 | 26.07 | 26.18 | 25.58 | 24.56 | 23.48 | 23.16 |
MEDIAN | 22.80 | 23.10 | 23.40 | 23.20 | 23.60 | 25.30 | 26.10 | 26.20 | 25.50 | 24.60 | 23.40 | 23.10 | |
SD | 0.27 | 0.19 | 0.07 | 0.13 | 0.49 | 0.21 | 0.24 | 0.13 | 0.25 | 0.30 | 0.40 | 0.18 | |
MAX | 23.40 | 23.40 | 23.50 | 23.30 | 24.60 | 25.70 | 26.40 | 26.40 | 26.10 | 25.10 | 24.31 | 23.50 | |
MIN | 22.20 | 22.60 | 23.00 | 22.70 | 23.20 | 24.90 | 25.50 | 25.90 | 25.10 | 24.10 | 22.90 | 22.30 | |
N | 4459 | 4026 | 4459 | 4316 | 3533 | 4317 | 4462 | 4463 | 4320 | 4464 | 4320 | 4464 | |
Conductivity (mScm) | MEAN | 1.55 | 1.79 | 2.00 | 2.27 | 2.61 | 1.32 | 1.22 | 1.04 | 1.41 | 1.49 | 1.34 | 1.54 |
MEDIAN | 1.49 | 1.69 | 1.97 | 2.26 | 2.57 | 1.32 | 1.20 | 1.04 | 1.38 | 1.47 | 1.34 | 1.46 | |
SD | 0.14 | 0.14 | 0.11 | 0.14 | 0.18 | 0.18 | 0.16 | 0.10 | 0.09 | 0.09 | 0.01 | 0.18 | |
MAX | 2.61 | 2.18 | 3.06 | 3.35 | 3.67 | 2.25 | 2.33 | 2.21 | 2.15 | 2.18 | 1.37 | 2.17 | |
MIN | 1.31 | 1.66 | 1.89 | 2.06 | 2.32 | 0.97 | 0.94 | 0.89 | 1.30 | 1.35 | 1.32 | 1.36 | |
N | 4122 | 4025 | 4458 | 4315 | 3533 | 4317 | 3059 | 4025 | 4071 | 2966 | 2009 | 3140 |
Variable | RH | KPA | MMWC | SOILTEMP | MSCM | AIRTEMP |
---|---|---|---|---|---|---|
RH | 1.000 | −0.043 | −0.037 | −0.144 | 0.108 | −0.312 |
KPA | −0.043 | 1.000 | −0.156 | −0.186 | 0.073 | −0.264 |
MMWC | −0.037 | −0.165 | 1.000 | −0.117 | 0.572 | −0.042 |
SOILTEMP | −0.144 | −0.186 | −0. 117 | 1.000 | −0.652 | 0.758 |
MSCM | 0.108 | 0.073 | 0.572 | −0.652 | 1.000 | −0.389 |
AIRTEMP | −0.312 | −0.264 | −0.042 | 0.758 | −0.389 | 1.000 |
Principal Component | ||||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Variance | 2.330 | 1.455 | 1.040 | 0.647 | 0.347 | 0.181 |
% of variance | 38.826 | 24.257 | 17.325 | 10.790 | 5.779 | 3.022 |
Cumulative % of variance | 38.826 | 63.083 | 80.408 | 91.199 | 96.978 | 100.000 |
Principal Component | ||||||
---|---|---|---|---|---|---|
Variable | 1 | 2 | 3 | |||
Cor | Contr (%) | Cor | Contr (%) | Cor | Contrib(%) | |
RH | −0.331 | 4.698 | −0.204 | 2.871 | 0.824 | 65.344 |
KPA | −0.168 | 1.218 | −0.647 | 28.727 | 0.537 | 27.771 |
MMWC | −0.381 | 6.233 | 0.777 | 41.489 | 0.161 | 2.492 |
SOILTEMP | 0.897 | 34.541 | 0.200 | 2.737 | 0.156 | 2.334 |
MSCM | −0.770 | 25.469 | 0.464 | 14.781 | −0.093 | 0.838 |
AIRTEMP | −0.805 | 27.840 | 0.370 | 9.394 | 0.137 | 1.222 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corral-Pesquera, L.L.; García-Manchón, J.; Morón-Elorza, P. A Model for Accurate Determination of Environmental Parameters in Indoor Zoological and Botanical Gardens Supporting Efficient Species Management. J. Zool. Bot. Gard. 2022, 3, 513-531. https://doi.org/10.3390/jzbg3040038
Corral-Pesquera LL, García-Manchón J, Morón-Elorza P. A Model for Accurate Determination of Environmental Parameters in Indoor Zoological and Botanical Gardens Supporting Efficient Species Management. Journal of Zoological and Botanical Gardens. 2022; 3(4):513-531. https://doi.org/10.3390/jzbg3040038
Chicago/Turabian StyleCorral-Pesquera, León Latif, Jonathan García-Manchón, and Pablo Morón-Elorza. 2022. "A Model for Accurate Determination of Environmental Parameters in Indoor Zoological and Botanical Gardens Supporting Efficient Species Management" Journal of Zoological and Botanical Gardens 3, no. 4: 513-531. https://doi.org/10.3390/jzbg3040038
APA StyleCorral-Pesquera, L. L., García-Manchón, J., & Morón-Elorza, P. (2022). A Model for Accurate Determination of Environmental Parameters in Indoor Zoological and Botanical Gardens Supporting Efficient Species Management. Journal of Zoological and Botanical Gardens, 3(4), 513-531. https://doi.org/10.3390/jzbg3040038