Open AccessArticle
Liquid Biopsy Profiling with Multiple Tests in Patients with Metastatic Breast Cancer
by
Nikki Higa, Lisa Welter, Liya Xu, Anand Kolatkar, Kelli S. Bramlett, Ole V. Gjoerup, Ryon Graf, Richard S.P. Huang, Rebecca J. Leary, Young Lee, Jeremy G. Perkins, Adam I. Riker, Angad P. Singh, Lorraine Tafra, Carol K. Tweed, Craig D. Shriver, James Hicks and Peter Kuhn
Viewed by 1965
Abstract
The chief goal of the Blood Profiling Atlas in Cancer (BloodPAC) consortium is to promote collaborative efforts that support the development and implementation of liquid biopsy tests. Here, we report the results of a pilot study conducted by three BloodPAC members that aimed
[...] Read more.
The chief goal of the Blood Profiling Atlas in Cancer (BloodPAC) consortium is to promote collaborative efforts that support the development and implementation of liquid biopsy tests. Here, we report the results of a pilot study conducted by three BloodPAC members that aimed to demonstrate a multisite liquid biopsy testing framework using longitudinal blood specimens from 38 patients with metastatic breast cancer. Three laboratories receiving identical samples from two clinical sites each applied a different targeted sequencing platform to analyze mutations in cell-free DNA (cfDNA). The resulting mutational profiles reflected common breast cancer alterations, including clinically actionable mutations for 40% of hormone- receptor-positive patients. In 12 genes with shared target regions across sequencing panels, perfect inter-assay concordance was also observed for mutations detected above the lowest common assay limit of detection. Whole-genome copy number profiling of cfDNA and circulating tumor cells (CTCs) further revealed marked heterogeneity in copy number alterations and cfDNA tumor fractions across patients. Additionally, comparison of tumor fraction and CTC abundance demonstrated the complementary nature of cfDNA and CTC analyses. Overall, the framework described in this study may serve as a resource for future trials aiming to identify multimodal liquid biopsy biomarkers to guide clinical care.
Full article
►▼
Show Figures