Molecular Profiling of H-MSI/dMMR/for Endometrial Cancer Patients: “New Challenges in Diagnostic Routine Practice”
Abstract
:1. Introduction
2. Immunohistochemistry
3. Idylla™ MSI Assay
4. Pentaplex Bethesda Panel Assay
5. OncoMateTM MSI Dx Analysis System
6. LMR MSI Analysis System
7. Titano MSI Test
8. EasyPGX® Ready MSI Kit
9. ddPCR Microsatellite Instability (MSI) Kit
10. Advantages and Disadvantages
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moreira, A.S.; Ribeiro, V.; Aringhieri, G.; Fanni, S.C.; Tumminello, L.; Faggioni, L.; Cioni, D.; Neri, E. Endometrial Cancer Staging: Is There Value in ADC? J. Pers. Med. 2023, 13, 728. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- AIOM-Airtum. I Numeri del Cancro in Italia 2020. Available online: https://www.aiom.it/i-numeri-del-cancro-in-italia/ (accessed on 1 March 2024).
- Gu, B.; Shang, X.; Yan, M.; Li, X.; Wang, W.; Wang, Q.; Zhang, C. Variations in incidence and mortality rates of endometrial cancer at the global, regional, and national levels, 1990–2019. Gynecol. Oncol. 2021, 161, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Shetty, C.; Rizvi, S.; Sharaf, J.; Williams, K.D.; Tariq, M.; Acharekar, M.V.; Saldivia, S.E.G.; Unnikrishnan, S.N.; Chavarria, Y.Y.; Akindele, A.O.; et al. Risk of Gynecological Cancers in Women With Polycystic Ovary Syndrome and the Pathophysiology of Association. Cureus 2023, 15, e37266. [Google Scholar] [CrossRef] [PubMed]
- Raglan, O.; Kalliala, I.; Markozannes, G.; Cividini, S.; Gunter, M.J.; Nautiyal, J.; Gabra, H.; Paraskevaidis, E.; Martin-Hirsch, P.; Tsilidis, K.K.; et al. Risk factors for endometrial cancer: An umbrella review of the literature. Int. J. Cancer 2018, 145, 1719–1730. [Google Scholar] [CrossRef] [PubMed]
- Braun, M.M.; Overbeek-Wager, E.A.; Grumbo, R.J. Diagnosis and Management of Endometrial Cancer. Am. Fam. Phys. 2016, 93, 468–474. [Google Scholar]
- Crosbie, E.J.; Kitson, S.J.; McAlpine, J.N.; Mukhopadhyay, A.; Powell, M.E.; Singh, N. Endometrial cancer. Lancet 2022, 399, 1412–1428. [Google Scholar] [CrossRef] [PubMed]
- Kaaks, R.; Lukanova, A.; Kurzer, M.S. Obesity, endogenous hormones, and endometrial cancer risk: A synthetic review. Cancer Epidemiol. Biomark. Prev. 2002, 11, 1531–1543. [Google Scholar]
- Merritt, M.A.; Cramer, D.W. Molecular pathogenesis of endometrial and ovarian cancer. Cancer Biomark. 2011, 9, 287–305. [Google Scholar] [CrossRef]
- Llobet, D.; Pallares, J.; Yeramian, A.; Santacana, M.; Eritja, N.; Velasco, A.; Dolcet, X.; Matias-Guiu, X. Molecular pathology of endometrial carcinoma: Practical aspects from the diagnostic and therapeutic viewpoints. J. Clin. Pathol. 2008, 62, 777–785. [Google Scholar] [CrossRef]
- Höhn, A.K.; Brambs, C.E.; Hiller, G.G.R.; May, D.; Schmoeckel, E.; Horn, L.-C. 2020 WHO Classification of Female Genital Tumors. Geburtshilfe Frauenheilkd. 2021, 81, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Gordhandas, S.; Zammarrelli, W.A.; Rios-Doria, E.V.; Green, A.K.; Makker, V. Current Evidence-Based Systemic Therapy for Advanced and Recurrent Endometrial Cancer. J. Natl. Compr. Cancer Netw. 2023, 21, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; Benz, C.C.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Talhouk, A.; McConechy, M.K.; Leung, S.; Yang, W.; Lum, A.; Senz, J.; Boyd, N.; Pike, J.; Anglesio, M.; Kwon, J.S.; et al. Confirmation of ProMisE: A simple, genomics-based clinical classifier for endometrial cancer. Cancer 2017, 123, 802–813. [Google Scholar] [CrossRef]
- Concin, N.; Matias-Guiu, X.; Vergote, I.; Cibula, D.; Mirza, M.R.; Marnitz, S.; Ledermann, J.; Bosse, T.; Chargari, C.; Fagotti, A.; et al. ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. Int. J. Gynecol. Cancer 2021, 31, 12–39. [Google Scholar] [CrossRef]
- Betella, I.; Fumagalli, C.; Raviele, P.R.; Schivardi, G.; De Vitis, L.A.; Achilarre, M.T.; Aloisi, A.; Garbi, A.; Maruccio, M.; Zanagnolo, V.; et al. A novel algorithm to implement the molecular classification according to the new ESGO/ESTRO/ESP 2020 guidelines for endometrial cancer. Int. J. Gynecol. Cancer 2022, 32, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Olave, M.C.; Graham, R.P. Mismatch repair deficiency: The what, how and why it is important. Genes Chromosom. Cancer 2021, 61, 314–321. [Google Scholar] [CrossRef]
- Cerretelli, G.; Ager, A.; Arends, M.J.; Frayling, I.M. Molecular pathology of Lynch syndrome. J. Pathol. 2020, 250, 518–531. [Google Scholar] [CrossRef] [PubMed]
- Post, C.C.; Stelloo, E.; Smit, V.T.; Ruano, D.; Tops, C.M.; Vermij, L.; Rutten, T.A.; Jürgenliemk-Schulz, I.M.; Lutgens, L.C.; Jobsen, J.J.; et al. Prevalence and Prognosis of Lynch Syndrome and Sporadic Mismatch Repair Deficiency in Endometrial Cancer. JNCI J. Natl. Cancer Inst. 2021, 113, 1212–1220. [Google Scholar] [CrossRef]
- Ma, J.; Setton, J.; Lee, N.Y.; Riaz, N.; Powell, S.N. The therapeutic significance of mutational signatures from DNA repair deficiency in cancer. Nat. Commun. 2018, 9, 3292. [Google Scholar] [CrossRef]
- Oaknin, A.; Gilbert, L.; Tinker, A.V.; Brown, J.; Mathews, C.; Press, J.; Sabatier, R.; O’malley, D.M.; Samouelian, V.; Boni, V.; et al. Safety and antitumor activity of dostarlimab in patients with advanced or recurrent DNA mismatch repair deficient/microsatellite instability-high (dMMR/MSI-H) or proficient/stable (MMRp/MSS) endometrial cancer: Interim results from GARNET—A phase I, single-arm study. J. Immunother. Cancer 2022, 10, e003777. [Google Scholar] [CrossRef] [PubMed]
- Kasherman, L.; Ahrari, S.; Lheureux, S. Dostarlimab in the treatment of recurrent or primary advanced endometrial cancer. Future Oncol. 2021, 17, 877–892. [Google Scholar] [CrossRef]
- Luchini, C.; Bibeau, F.; Ligtenberg, M.J.L.; Singh, N.; Nottegar, A.; Bosse, T.; Miller, R.; Riaz, N.; Douillard, J.-Y.; Andre, F.; et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: A systematic review-based approach. Ann. Oncol. 2019, 30, 1232–1243. [Google Scholar] [CrossRef]
- Boland, C.R.; Thibodeau, S.N.; Hamilton, S.R.; Sidransky, D.; Eshleman, J.R.; Burt, R.W.; Meltzer, S.J.; Rodriguez-Bigas, M.A.; Fodde, R.; Ranzani, G.N.; et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: Development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998, 58, 5248–5257. [Google Scholar]
- Wu, X.; Snir, O.; Rottmann, D.; Wong, S.; Buza, N.; Hui, P. Minimal microsatellite shift in microsatellite instability high endometrial cancer: A significant pitfall in diagnostic interpretation. Mod. Pathol. 2019, 32, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H.; Chen, S.; Pallavajjala, A.; Guedes, L.B.; Lotan, T.L.; Bacher, J.W.; Eshleman, J.R. Validation of Long Mononucleotide Repeat Markers for Detection of Microsatellite Instability. J. Mol. Diagn. 2021, 24, 144–157. [Google Scholar] [CrossRef]
- Graham, R.P.; Kerr, S.E.; Butz, M.L.; Thibodeau, S.N.; Halling, K.C.; Smyrk, T.C.; Dina, M.A.; Waugh, V.M.; Rumilla, K.M. Heterogenous MSH6 Loss Is a Result of Microsatellite Instability Within MSH6 and Occurs in Sporadic and Hereditary Colorectal and Endometrial Carcinomas. Am. J. Surg. Pathol. 2015, 39, 1370–1376. [Google Scholar] [CrossRef]
- Hissong, E.; Crowe, E.P.; Yantiss, R.K.; Chen, Y.-T. Assessing colorectal cancer mismatch repair status in the modern era: A survey of current practices and re-evaluation of the role of microsatellite instability testing. Mod. Pathol. 2018, 31, 1756–1766. [Google Scholar] [CrossRef] [PubMed]
- Baudhuin, L.M.; Burgart, L.J.; Leontovich, O.; Thibodeau, S.N. Use of microsatellite instability and immunohistochemistry testing for the identification of individuals at risk for lynch syndrome. Fam. Cancer 2005, 4, 255–265. [Google Scholar] [CrossRef]
- Malapelle, U.; Parente, P.; Pepe, F.; De Luca, C.; Cerino, P.; Covelli, C.; Balestrieri, M.; Russo, G.; Bonfitto, A.; Pisapia, P.; et al. Impact of Pre-Analytical Factors on MSI Test Accuracy in Mucinous Colorectal Adenocarcinoma: A Multi-Assay Concordance Study. Cells 2020, 9, 2019. [Google Scholar] [CrossRef]
- Stelloo, E.; Jansen, A.M.L.; Osse, E.M.; Nout, R.A.; Creutzberg, C.L.; Ruano, D.; Church, D.N.; Morreau, H.; Smit, V.; van Wezel, T.; et al. Practical guidance for mismatch repair-deficiency testing in endometrial cancer. Ann. Oncol. 2017, 28, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Malapelle, U.; Parente, P.; Pepe, F.; De Luca, C.; Pisapia, P.; Sgariglia, R.; Nacchio, M.; Gragnano, G.; Russo, G.; Conticelli, F.; et al. Evaluation of Micro Satellite Instability and Mismatch Repair Status in Different Solid Tumors: A Multicenter Analysis in a Real World Setting. Cells 2021, 10, 1878. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Chun, S.-M.; Sung, C.O.; Kim, S.Y.; Kim, T.W.; Jang, S.J.; Kim, J. Clinical Utility of a Fully Automated Microsatellite Instability Test with Minimal Hands-on Time. J. Pathol. Transl. Med. 2019, 53, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Momeni-Boroujeni, A.; Salazar, P.; Zheng, T.; Mensah, N.; Rijo, I.; Dogan, S.; Yao, J.; Moung, C.; Vanderbilt, C.; Benhamida, J.; et al. Rapid EGFR Mutation Detection Using the Idylla Platform: Single-Institution Experience of 1200 Cases Analyzed by an In-House Developed Pipeline and Comparison with Concurrent Next-Generation Sequencing Results. J. Mol. Diagn. 2020, 23, 310–322. [Google Scholar] [CrossRef]
- Safdar, S.; Lammertyn, J.; Spasic, D. RNA-Cleaving NAzymes: The Next Big Thing in Biosensing? Trends Biotechnol. 2020, 38, 1343–1359. [Google Scholar] [CrossRef] [PubMed]
- Libera, L.; Sahnane, N.; Pepe, F.; Pisapia, P.; De Luca, C.; Russo, G.; Parente, P.; Covelli, C.; Chiaravalli, A.M.; Sessa, F.; et al. Critical aspects of microsatellite instability testing in endometrial cancer: A comparison study. Hum. Pathol. 2022, 128, 134–140. [Google Scholar] [CrossRef]
- Umar, A.; Boland, C.R.; Terdiman, J.P.; Syngal, S.; de la Chapelle, A.; Rüschoff, J.; Fishel, R.; Lindor, N.M.; Burgart, L.J.; Hamelin, R.; et al. Revised Bethesda Guidelines for Hereditary Nonpolyposis Colorectal Cancer (Lynch Syndrome) and Microsatellite Instability. J. Natl. Cancer Inst. 2004, 96, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Ukkola, I.; Nummela, P.; Pasanen, A.; Kero, M.; Lepistö, A.; Kytölä, S.; Bützow, R.; Ristimäki, A. Detection of microsatellite instability with Idylla MSI assay in colorectal and endometrial cancer. Virchows Arch. 2021, 479, 471–479. [Google Scholar] [CrossRef]
- Kullmann, F.; Strissel, P.L.; Strick, R.; Stoehr, R.; Eckstein, M.; Bertz, S.; Wullich, B.; Sikic, D.; Wach, S.; Taubert, H.; et al. Frequency of microsatellite instability (MSI) in upper tract urothelial carcinoma: Comparison of the Bethesda panel and the Idylla MSI assay in a consecutively collected, multi-institutional cohort. J. Clin. Pathol. 2023, 76, 126–132. [Google Scholar] [CrossRef]
- Sutter, C.; Gebert, J.; Bischoff, P.; Herfarth, C.; von Knebel Doeberitz, M. Molecular screening of potential HNPCC patients using a multiplex microsatellite PCR system. Mol. Cell. Probes 1999, 13, 157–165. [Google Scholar] [CrossRef]
- Bacher, J.W.; Flanagan, L.A.; Smalley, R.L.; Nassif, N.A.; Burgart, L.J.; Halberg, R.B.; Megid, W.M.A.; Thibodeau, S.N. Development of a Fluorescent Multiplex Assay for Detection of MSI-High Tumors. Dis. Markers 2004, 20, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Bacher, J.W.; Sievers, C.K.; Albrecht, D.M.; Grimes, I.C.; Weiss, J.M.; Matkowskyj, K.A.; Agni, R.M.; Vyazunova, I.; Clipson, L.; Storts, D.R.; et al. Improved Detection of Microsatellite Instability in Early Colorectal Lesions. PLoS ONE 2015, 10, e0132727. [Google Scholar] [CrossRef] [PubMed]
- Vrenna, F.; Nocita, A.; Alberto, G.; Patarino, R.; Tallarigo, F. Morphological and Molecular Genetic Retrospective Analysis of KRAS, NRAS, BRAF and MSI (Microsatellite Instability) Pattern in Colorectal Cancer. Gastroenterol. Med. Res. 2023, 7, 648–657. [Google Scholar] [CrossRef]
- De Summa, S.; Danza, K.; Pilato, B.; Matera, G.; Fasano, R.; Calabrese, A.; Lacalamita, R.; Silvestris, N.; Tommasi, S.; Argentiero, A.; et al. A Promising Role of TGF-β Pathway in Response to Regorafenib in Metastatic Colorectal Cancer: A Case Report. Medicina 2021, 57, 1241. [Google Scholar] [CrossRef] [PubMed]
- Grespi, V.; Caprera, C.; Ricciolini, C.; Bicchi, I.; Muzi, G.; Corsi, M.; Ascani, S.; Vescovi, A.L.; Gelati, M. Human neural stem cells drug product: Microsatellite instability analysis. PLoS ONE 2022, 17, e0273679. [Google Scholar] [CrossRef] [PubMed]
- Casas-Arozamena, C.; Cortegoso, A.; Piñeiro-Perez, R.; Abalo, A.; Arias, E.; Sampayo, V.; Vilar, A.; Bouso, M.; Diaz, E.; Moreno-Bueno, G.; et al. Improving the Management of Endometrial Cancer Patients through the Use of Liquid Biopsy Analyses: A Case Report. Int. J. Mol. Sci. 2022, 23, 8539. [Google Scholar] [CrossRef] [PubMed]
- Casas-Arozamena, C.; Moiola, C.P.; Vilar, A.; Bouso, M.; Cueva, J.; Cabrera, S.; Sampayo, V.; Arias, E.; Abalo, A.; García, Á.; et al. Noninvasive detection of microsatellite instability in patients with endometrial cancer. Int. J. Cancer 2023, 152, 2206–2217. [Google Scholar] [CrossRef] [PubMed]
- Gilson, P.; Levy, J.; Rouyer, M.; Demange, J.; Husson, M.; Bonnet, C.; Salleron, J.; Leroux, A.; Merlin, J.-L.; Harlé, A. Evaluation of 3 molecular-based assays for microsatellite instability detection in formalin-fixed tissues of patients with endometrial and colorectal cancers. Sci. Rep. 2020, 10, 16386. [Google Scholar] [CrossRef] [PubMed]
- Shia, J.; Tang, L.H.; Vakiani, E.; Guillem, J.G.; Stadler, Z.K.; Soslow, R.A.; Katabi, N.; Weiser, M.R.; Paty, P.B.; Temple, L.K.; et al. Immunohistochemistry as first-line screening for detecting colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome: A 2-antibody panel may be as predictive as a 4-antibody panel. Am. J. Surg. Pathol. 2009, 33, 1639–1645. [Google Scholar] [CrossRef] [PubMed]
- Mirza, M.R.; Chase, D.M.; Slomovitz, B.M.; dePont Christensen, R.; Novák, Z.; Black, D.; Gilbert, L.; Sharma, S.; Valabrega, G.; Landrum, L.M.; et al. Dostarlimab for Primary Advanced or Recurrent Endometrial Cancer. N. Engl. J. Med. 2023, 388, 2145–2158. [Google Scholar] [CrossRef]
- Zannoni, G.F.; Santoro, A.; D’alessandris, N.; Scaglione, G.; Inzani, F.; Angelico, G.; Bragantini, E.; Piermattei, A.; Cianfrini, F.; Bisaro, B.; et al. Biomarker characterization in endometrial cancer in Italy: First survey data analysis. Pathologica 2022, 114, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Raffone, A.; Travaglino, A.; Cerbone, M.; Gencarelli, A.; Mollo, A.; Insabato, L.; Zullo, F. Diagnostic Accuracy of Immunohistochemistry for Mismatch Repair Proteins as Surrogate of Microsatellite Instability Molecular Testing in Endometrial Cancer. Pathol. Oncol. Res. 2020, 26, 1417–1427. [Google Scholar] [CrossRef] [PubMed]
- Cicek, M.S.; Lindor, N.M.; Gallinger, S.; Bapat, B.; Hopper, J.L.; Jenkins, M.A.; Young, J.; Buchanan, D.; Walsh, M.D.; Le Marchand, L.; et al. Quality Assessment and Correlation of Microsatellite Instability and Immunohistochemical Markers among Population- and Clinic-Based Colorectal Tumors: Results from the Colon Cancer Family Registry. J. Mol. Diagn. 2011, 13, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Loughrey, M.B.; McGrath, J.; Coleman, H.G.; Bankhead, P.; Maxwell, P.; McGready, C.; Bingham, V.; Humphries, M.P.; Craig, S.G.; McQuaid, S.; et al. Identifying mismatch repair-deficient colon cancer: Near-perfect concordance between immunohistochemistry and microsatellite instability testing in a large, population-based series. Histopathology 2020, 78, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Wang, R.; Cheng, W.; Shen, Y.; Li, H.; Xia, W.; Ding, Z.; Zhang, Y. Evaluation of Concordance Between Deficient Mismatch Repair and Microsatellite Instability Testing and Their Association with Clinicopathological Features in Colorectal Cancer. Cancer Manag. Res. 2020, 12, 2863–2873. [Google Scholar] [CrossRef] [PubMed]
- Overbeek, L.I.; Ligtenberg, M.J.; Willems, R.W.; Hermens, R.P.; Blokx, W.A.; Dubois, S.V.; van der Linden, H.; Meijer, J.W.; Mlynek-Kersjes, M.L.; Hoogerbrugge, N.; et al. Interpretation of immunohistochemistry for mismatch repair proteins is only reliable in a specialized setting. Am. J. Surg. Pathol. 2008, 32, 1246–1251. [Google Scholar] [CrossRef] [PubMed]
- Streel, S.; Salmon, A.; Dheur, A.; Bours, V.; Leroi, N.; Habran, L.; Delbecque, K.; Goffin, F.; Pleyers, C.; Kakkos, A.; et al. Diagnostic Performance of Immunohistochemistry Compared to Molecular Techniques for Microsatellite Instability and p53 Mutation Detection in Endometrial Cancer. Int. J. Mol. Sci. 2023, 24, 4866. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.; Hain, E.; Buhard, O.; Guilloux, A.; Bardier, A.; Kaci, R.; Bertheau, P.; Renaud, F.; Bibeau, F.; Fléjou, J.-F.; et al. Association of Primary Resistance to Immune Checkpoint Inhibitors in Metastatic Colorectal Cancer With Misdiagnosis of Microsatellite Instability or Mismatch Repair Deficiency Status. JAMA Oncol. 2019, 5, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liu, X.; Wang, J.; Zhou, W.; Guan, M.; Liu, Y.; Pang, J.; Lu, T.; Zhou, L.; Shi, X.; et al. DNA Mismatch Repair Deficiency Detection in Colorectal Cancer by a New Microsatellite Instability Analysis System. Interdiscip. Sci. 2020, 12, 145–154. [Google Scholar] [CrossRef]
- Bacher, J.W.; Udho, E.B.; Strauss, E.E.; Vyazunova, I.; Gallinger, S.; Buchanan, D.D.; Pai, R.K.; Templeton, A.S.; Storts, D.R.; Eshleman, J.R.; et al. A Highly Sensitive Pan-Cancer Test for Microsatellite Instability. J. Mol. Diagn. 2023, 25, 806–826. [Google Scholar] [CrossRef]
- Parente, P.; Malapelle, U.; Angerilli, V.; Balistreri, M.; Lonardi, S.; Pucciarelli, S.; De Luca, C.; Pepe, F.; Russo, G.; Vigliar, E.; et al. MMR profile and microsatellite instability status in colorectal mucinous adenocarcinoma with synchronous metastasis: A new clue for the clinical practice. J. Clin. Pathol. 2022, 76, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Haruma, T.; Nagasaka, T.; Nakamura, K.; Haraga, J.; Nyuya, A.; Nishida, T.; Goel, A.; Masuyama, H.; Hiramatsu, Y. Clinical impact of endometrial cancer stratified by genetic mutational profiles, POLE mutation, and microsatellite instability. PLoS ONE 2018, 13, e0195655. [Google Scholar] [CrossRef] [PubMed]
- Pécriaux, A.; Favre, L.; Calderaro, J.; Charpy, C.; Derman, J.; Pujals, A. Detection of microsatellite instability in a panel of solid tumours with the Idylla MSI Test using extracted DNA. J. Clin. Pathol. 2020, 74, 36–42. [Google Scholar] [CrossRef]
- Orellana, T.J.; Kim, H.; Beriwal, S.; Taylor, S.E.; Smith, K.J.; Lesnock, J.L. Cost-effectiveness analysis of tumor molecular testing in stage III endometrial cancer. Gynecol. Oncol. 2023, 173, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Vikas, P.; Messersmith, H.; Compton, C.; Sholl, L.; Broaddus, R.R.; Davis, A.; Estevez-Diz, M.; Garje, R.; Konstantinopoulos, P.A.; Leiser, A.; et al. Mismatch Repair and Microsatellite Instability Testing for Immune Checkpoint Inhibitor Therapy: ASCO Endorsement of College of American Pathologists Guideline. J. Clin. Oncol. 2023, 41, 1943–1948. [Google Scholar] [CrossRef]
- Bartels, S.; Grote, I.; Wagner, M.; Boog, J.; Schipper, E.; Reineke-Plaass, T.; Kreipe, H.; Lehmann, U. Concordance in detection of microsatellite instability by PCR and NGS in routinely processed tumor specimens of several cancer types. Cancer Med. 2023, 12, 16707–16715. [Google Scholar] [CrossRef]
- Evrard, C.; Cortes, U.; Ndiaye, B.; Bonnemort, J.; Martel, M.; Aguillon, R.; Tougeron, D.; Karayan-Tapon, L. An Innovative and Accurate Next-Generation Sequencing-Based Microsatellite Instability Detection Method for Colorectal and Endometrial Tumors. Mod. Pathol. 2024, 104, 100297. [Google Scholar] [CrossRef]
Assay | Analyzed Loci | Advantages | Disadvantages |
---|---|---|---|
IHC | 4 MMR proteins (MLH1/MSH2/MSH6/PMS2) | - High specificity and sensitivity - Rapid turnaround time (4–6 h) - Feasible in samples with less than 20% neoplastic cell content - Not expensive | - Requires individual processing of four slides for MMR protein staining - Requires experienced pathologist for result interpretation - Heterogeneous MMR protein expression - Possible false positive results due to pre-analytic issues or absence of evident loss of expression due to intact immunoreactivity |
PENTAPLEX BETHESDA PANEL ASSAY | 5 microsatellite markers (BAT25, BAT26, D2S123, D5S346, and D17S250) | - Low-cost analysis - Fast turnaround time (<5 h) - High reproducibility | - Requires samples with at least 20% neoplastic cellularity - No provided indication about MMR genes to investigate - Selectivity for few cancer types due to limited number of targets investigated - Possibility of detecting occasional false positive results, owed to microsatellite polymorphisms |
TITANO MSI | 10 microsatellite markers (BAT25, BAT26, D2S123, D17S250, D5S346, BAT40, D18S58, NR21, NR24, and TGFβRII) | - Multiplexed PCR assays - Low-cost analysis - Fast turnaround time for result (<5 h) | - Required matched normal tissue - Not designed for EC |
OncoMateTM MSI Dx ANALYSIS SYSTEM | 7 microsatellite markers (BAT-25, BAT-26, NR-21, NR-24 and MONO-27, Penta C, and Penta D) | - Multiplexed PCR assays - Rapid turnaround time (<5 h) - Low-cost analysis - Better sensitivity than PentaPlex Bethesda panel assay | - No provided indication about MMR genes to investigate - Required a matched normal tissue - Not designed for EC |
LMR MSI ANALYSIS SYSTEM | 8 microsatellite markers (BAT-25, BAT-26, MONO-27, NR-21, BAT-52, BAT-56, BAT-59, and BAT-60) | - Multiplexed PCR assays - Turnaround time (<5 h) - Low-cost analysis - Better sensitivity than PentaPlex Bethesda panel assay and OncoMateTM MSI Dx Analysis System - LMR markers are more sensitive in EC | - No provided indication about MMR genes to investigate - Required matched normal tissue - Not designed for EC |
EasyPGX® ready MSI KIT | 8 microsatellite markers (BAT-25, BAT-26, NR-21, NR-22, NR-24, NR-27, CAT-25, and MONO-27) | - No requirement of paired normal tissue for MSI analysis - Analysis can be performed using FFPE tissue samples or blood samples - Highly reproducible - High sensitivity - Turnaround time for result (<4 h) - Hands-on time is less than 15 min | - No provided indication about MMR genes to investigate |
Idylla®MSI TEST | 7 microsatellite markers (ACVR2A, BTBD7, DIDO1, MRE11, RYR3, SEC31A, and SULF2) | - Multiplexed PCR assays - Low-cost analysis - Highly reproducible - Turnaround time 150 min - Hands-on time is less than 5 min - No required previous DNA extraction - No required paired normal tissue for MSI analysis | - No provided indication about MMR genes to investigate - Required at least 20% neoplastic cells |
ddPCR MSI KIT Bio-Rad® | 5 microsatellite markers (BAT25, BAT26, Mono27, NR21, and NR24) | - Low-cost analysis - No required paired normal tissue for MSI analysis - Analysis can be also performed on liquid biopsy - Turnaround time (<5 h) | - No provided indication about MMR genes to investigate - Lack of standardization for results’ interpretation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adorisio, R.; Troncone, G.; Barberis, M.; Pepe, F. Molecular Profiling of H-MSI/dMMR/for Endometrial Cancer Patients: “New Challenges in Diagnostic Routine Practice”. J. Mol. Pathol. 2024, 5, 187-198. https://doi.org/10.3390/jmp5020012
Adorisio R, Troncone G, Barberis M, Pepe F. Molecular Profiling of H-MSI/dMMR/for Endometrial Cancer Patients: “New Challenges in Diagnostic Routine Practice”. Journal of Molecular Pathology. 2024; 5(2):187-198. https://doi.org/10.3390/jmp5020012
Chicago/Turabian StyleAdorisio, Riccardo, Giancarlo Troncone, Massimo Barberis, and Francesco Pepe. 2024. "Molecular Profiling of H-MSI/dMMR/for Endometrial Cancer Patients: “New Challenges in Diagnostic Routine Practice”" Journal of Molecular Pathology 5, no. 2: 187-198. https://doi.org/10.3390/jmp5020012
APA StyleAdorisio, R., Troncone, G., Barberis, M., & Pepe, F. (2024). Molecular Profiling of H-MSI/dMMR/for Endometrial Cancer Patients: “New Challenges in Diagnostic Routine Practice”. Journal of Molecular Pathology, 5(2), 187-198. https://doi.org/10.3390/jmp5020012