Impact of Gut–Brain Axis on Hepatobiliary Diseases in Fetal Programming
Abstract
:1. Introduction
2. Gut Impact on Hepatobiliary Disease in Fetal Programming
3. Brain Impact on Hepatobiliary Diseases in Fetal Programming
4. Molecular Mechanism of Gut–Brain Axis on Hepatobiliary Disease in Fetal Programming
5. Hepatobiliary Disease in Fetal Programming and Birth Outcome
6. Therapeutic Measure for Hepatobiliary Disease during Fetal Programming
7. Biomedicines (Probiotics) in Hepatobiliary Disease during Pregnancy
8. Conclusions and Future Research Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adlercreutz, H.; Svanborg, A.; Ånberg, Å. Recurrent jaundice in pregnancy: II. A study of the estrogens and their conjugation in late pregnancy. Am. J. Med. 1967, 42, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, L.; Koster, M.P.; Page-Christiaens, G.C.; Kemperman, H.; Boon, J.; Evers, I.M.; Bogte, A.; Oudijk, M.A. Intrahepatic cholestasis of pregnancy: Maternal and fetal outcomes associated with elevated bile acid levels. Am. J. Obstet. Gynecol. 2015, 212, 100.e1. [Google Scholar] [CrossRef]
- Lee, S.M.; Cho, G.J.; Wi, W.Y.; Norwitz, E.R.; Koo, B.K.; Lee, J.; Jung, Y.M.; Kwak, S.H.; Park, C.W.; Jun, J.K.; et al. Metabolic dysfunction-associated fatty liver disease as a risk factor for adverse outcomes in subsequent pregnancy: A nationwide cohort study. Hepatol. Int. 2023, 17, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Boregowda, G.; Shehata, H.A. Gastrointestinal and liver disease in pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2013, 27, 835–853. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, M.; Grab, J.; Dodge, J.L.; Gunderson, E.P.; Rubin, J.; Irani, R.A.; Cedars, M.; Terrault, N. Non-alcoholic fatty liver disease in pregnancy is associated with adverse maternal and perinatal outcomes. J. Hepatol. 2020, 73, 516–522. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mawson, R. A role for the liver in parturition and preterm birth. J. Transl. Sci. 2016, 2, 154. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J. In utero programming of chronic disease. Clin. Sci. 1998, 95, 115–128. [Google Scholar] [CrossRef]
- Chen, L.H.; Chen, S.S.; Liang, L.; Wang, C.L.; Fall, C.; Osmond, C.; Veena, S.R.; Bretani, A. Relationship between birth weight and total cholesterol concentration in adulthood: A meta-analysis. J. Chin. Med. Assoc. 2017, 80, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, H.N.; Türker, P.F. Fetal programming: Could intrauterin life affect health status in adulthood? Obstet. Gynecol. Sci. 2021, 64, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Valsamakis, G.; Margeli, A.; Vitoratos, N.; Boutsiadis, A.; Sakkas, E.G.; Papadimitriou, G.; Al-Daghri, N.M.; Botsis, D.; Kumar, S.; Papassotiriou, I.; et al. The role of maternal gut hormones in normal pregnancy: Fasting plasma active glucagon-like peptide 1 level is a negative predictor of fetal abdomen circumference and maternal weight change. Eur. J. Endocrinol. 2010, 162, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Gali Ramamoorthy, T.; Begum, G.; Harno, E.; White, A. Developmental programming of hypothalamic neuronal circuits: Impact on energy balance control. Front. Neurosci. 2015, 9, 126. [Google Scholar] [CrossRef] [PubMed]
- Bowman, C.E.; Alpergin, E.S.; Cavagnini, K.; Smith, D.M.; Scafidi, S.; Wolfgang, M.J. Maternal lipid metabolism directs fetal liver programming following nutrient stress. Cell Rep. 2019, 29, 1299–1310.e1293. [Google Scholar] [CrossRef] [PubMed]
- Gadsby, R.O.; Barnie-Adshead, A.M.; Jagger, C.A. A prospective study of nausea and vomiting during pregnancy. Br. J. Gen. Pract. 1993, 43, 245–248. [Google Scholar]
- Niebyl, J.R. Nausea and vomiting in pregnancy. N. Engl. J. Med. 2010, 363, 1544–1550. [Google Scholar] [CrossRef]
- Fell, D.B.; Dodds, L.; Joseph, K.S.; Allen, V.M.; Butler, B. Risk factors for hyperemesis gravidarum requiring hospital admission during pregnancy. Obstet. Gynecol. 2006, 107, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Fiaschi, L.; Nelson-Piercy, C.; Gibson, J.; Szatkowski, L.; Tata, L.J. Adverse maternal and birth outcomes in women admitted to hospital for hyperemesis gravidarum: A population-based cohort study. Paediatr. Perinat. Epidemiol. 2018, 32, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Jansen, L.A.; Nijsten, K.; Limpens, J.; van Eekelen, R.; Koot, M.H.; Grooten, I.J.; Roseboom, T.J.; Painter, R.C. Perinatal outcomes of infants born to mothers with hyperemesis gravidarum: A systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2023, 284, 30–51. [Google Scholar] [CrossRef] [PubMed]
- Wakim-Fleming, J.; Zein, N.N. The liver in pregnancy: Disease vs benign changes. Clevel. Clin. J. Med. 2005, 72, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Cullen, G.; O’Donoghue, D. Gastroenterology, R.C. Constipation and pregnancy. Best Pract. Res. Clin. Gastroenterol. 2007, 21, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Quartarone, G. Gastroesophageal reflux in pregnancy: A systematic review on the benefit of raft forming agents. Minerva Ginecol. 2013, 65, 541–549. [Google Scholar] [PubMed]
- Min, Y.W.; Kim, Y.; Gwak, G.Y.; Gu, S.; Kang, D.; Cho, S.J.; Sinn, D.H. Non-alcoholic fatty liver disease and the development of reflux esophagitis: A cohort study. J. Gastroenterol. Hepatol. 2018, 33, 1053–1058. [Google Scholar] [CrossRef]
- Fisk, N.M.; Bruce Storey, G.N. Fetal outcome in obstetric cholestasis. J. Obstet. Gynaecol. 1988, 95, 1137–1143. [Google Scholar] [CrossRef] [PubMed]
- Richter, J.E. Importance of bile reflux in Barrett’s esophagus. Dig. Dis. 2000, 18, 208–216. [Google Scholar] [CrossRef]
- Hot, S.; Eğin, S.; Gökçek, B.; Yeşiltaş, M.; Karakaş, D.Ö. Acute biliary pancreatitis during pregnancy and in the post-delivery period. Ulus Travma Acil Cerrahi Derg. 2019, 25, 253–258. [Google Scholar] [CrossRef]
- Yuan, S.; Giovannucci, E.L.; Larsson, S.C. Gallstone disease, diabetes, calcium, triglycerides, smoking and alcohol consumption and pancreatitis risk: Mendelian randomization study. npj Genom. Med. 2021, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.; Abdelmalek, M.F.; Sullivan, S.; Nadeau, K.J.; Green, M.; Roncal, C.; Nakagawa, T.; Kuwabara, M.; Sato, Y.; Kang, D.H.; et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J. Hepatol. 2018, 68, 1063–1075. [Google Scholar] [CrossRef]
- Snell, L.H.; Haughey, B.P.; Buck, G.; Marecki, M.A. Metabolic crisis: Hyperemesis gravidarum. J. Perinat. Neonatal Nurs. 1998, 12, 26–37. [Google Scholar] [CrossRef]
- Salam, R.A.; Das, J.K.; Bhutta, Z.A. Impact of intrauterine growth restriction on long-term health. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 249–254. [Google Scholar] [CrossRef] [PubMed]
- You, Y.A.; Lee, J.H.; Kwon, E.J.; Yoo, J.Y.; Kwon, W.S.; Pang, M.G.; Kim, Y.J. Proteomic analysis of one-carbon metabolism-related marker in liver of rat offspring. Mol. Cell. Proteom. 2015, 14, 2901–2909. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; You, Y.A.; Kwon, E.J.; Jung, S.C.; Jo, I.; Kim, Y.J. Maternal food restriction during pregnancy and lactation adversely affect hepatic growth and lipid metabolism in three-week-old rat offspring. Int. J. Mol. Sci. 2016, 17, 2115. [Google Scholar] [CrossRef] [PubMed]
- Snoeck, A.; Remacle, C.; Reusens, B.; Hoet, J.J. Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Neonatology 1990, 57, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Hennig, M.; Ewering, L.; Pyschny, S.; Shimoyama, S.; Olecka, M.; Ewald, D.; Magarin, M.; Uebing, A.; Thierfelder, L.; Jux, C.; et al. Dietary protein restriction throughout intrauterine and postnatal life results in potentially beneficial myocardial tissue remodeling in the adult mouse heart. Sci. Rep. 2019, 9, 15126. [Google Scholar] [CrossRef]
- Ando, H.; Gotoh, K.; Fujiwara, K.; Anai, M.; Chiba, S.; Masaki, T.; Kakuma, T.; Shibata, H. Glucagon-like peptide-1 reduces pancreatic β-cell mass through hypothalamic neural pathways in high-fat diet-induced obese rats. Sci. Rep. 2017, 7, 5578. [Google Scholar] [CrossRef] [PubMed]
- Yokomizo, H.; Inoguchi, T.; Sonoda, N.; Sakaki, Y.; Maeda, Y.; Inoue, T.; Takayanagi, R. Maternal high-fat diet induces insulin resistance and deterioration of pancreatic β-cell function in adult offspring with sex differences in mice. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E1163–E1175. [Google Scholar] [CrossRef] [PubMed]
- McClure, E.M.; Dudley, D.J.; Reddy, U.; Goldenberg, R.L. Infectious causes of stillbirth: A clinical perspective. Clin. Obstet. Gynecol. 2010, 53, 635. [Google Scholar] [CrossRef] [PubMed]
- Swank, G.M.; Deitch, E.A. Role of the gut in multiple organ failure: Bacterial translocation and permeability changes. World J. Surg. 1996, 20, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Chilton, S.N.; Enos, M.K.; Burton, J.P.; Reid, G. The effects of diet and the microbiome on reproduction and longevity: A comparative review across 5 continents. J. Food Sci. Nutr. 2015, 5, 1–9. [Google Scholar] [CrossRef]
- Yan, A.W.; Fouts, D.E.; Brandl, J.; Stärkel, P.; Torralba, M.; Schott, E.; Tsukamoto, H.; Nelson, K.N.; Brenner, D.A.; Schnabl, B. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 2011, 53, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, Y.; Xu, Y.; Luo, T.; Ge, Y.; Jiang, Y.; Le, G. Dietary methionine restriction improves the gut microbiota and reduces intestinal permeability and inflammation in high-fat-fed mice. Food Funct. 2019, 10, 5952–5968. [Google Scholar] [CrossRef]
- Qin, N.; Yang, F.; Li, A.; Prifti, E.; Chen, Y.; Shao, L.; Guo, J.; Le Chatelier, E.; Yao, J.; Wu, L.; et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014, 513, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ji, F.; Guo, J.; Shi, D.; Fang, D.; Li, L. Dysbiosis of small intestinal microbiota in liver cirrhosis and its association with etiology. Sci. Rep. 2016, 6, 34055. [Google Scholar] [CrossRef] [PubMed]
- Boursier, J.; Mueller, O.; Barret, M.; Machado, M.; Fizanne, L.; Araujo-Perez, F.; Guy, C.D.; Seed, P.C.; Rawls, J.F.; David, L.A.; et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 2016, 63, 764–775. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.; Seguritan, V.; Li, W.; Long, T.; Klitgord, N.; Bhatt, A.; Dulai, P.S.; Caussy, C.; Bettencourt, R.; Highlander, S.K.; et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 2017, 25, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Grąt, M.; Wronka, K.M.; Krasnodębski, M.; Lewandowski, Z.; Kosińska, I.; Grąt, K.; Krawczyk, M. Profile of gut microbiota associated with the presence of hepatocellular cancer in patients with liver cirrhosis. Transplant Proc. 2016, 48, 1687–1691. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M.; Avenaud, P.; Menard, A.; Le Bail, B.; Balabaud, C.; Bioulac-Sage, P.; Megraud, F. Association of Helicobacter species with hepatitis C cirrhosis with or without hepatocellular carcinoma. Gut 2005, 54, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Oatridge, A.; Holdcroft, A.; Saeed, N.; Hajnal, J.V.; Puri, B.K.; Fusi, L.; Bydder, G.M. Change in brain size during and after pregnancy: Study in healthy women and women with preeclampsia. AJNR Am. J. Neuroradiol. 2002, 23, 19–26. [Google Scholar] [PubMed]
- Oudman, E.; Wijnia, J.W.; Oey, M.; van Dam, M.; Painter, R.C.; Postma, A. Wernicke’s encephalopathy in hyperemesis gravidarum: A systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 236, 84–93. [Google Scholar] [CrossRef]
- Lau, C.I.; Lin, C.C.; Chen, W.H.; Wang, H.C.; Kao, C.H. Association between migraine and irritable bowel syndrome: A population-based retrospective cohort study. J. Neurol. 2014, 21, 1198–1204. [Google Scholar] [CrossRef]
- Celikbilek, A.; Celikbilek, M.; Okur, A.; Dogan, S.; Borekci, E.; Kozan, M.; Gursoy, S. Non-alcoholic fatty liver disease in patients with migraine. J. Neurol. Sci. 2014, 35, 1573–1578. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
- Lee, J.H.; Yoo, J.Y.; You, Y.A.; Kwon, W.S.; Lee, S.M.; Pang, M.G.; Kim, Y.J. Proteomic analysis of fetal programming-related obesity markers. Proteomics 2015, 15, 2669–2677. [Google Scholar] [CrossRef] [PubMed]
- Han, J.M.; Kim, H.G.; Lee, J.S.; Choi, M.K.; Kim, Y.A.; Son, C.G. Repeated sense of hunger leads to the development of visceral obesity and metabolic syndrome in a mouse model. PLoS ONE 2014, 9, e98276. [Google Scholar] [CrossRef] [PubMed]
- Sedaghat, K.; Zahediasl, S.; Ghasemi, A. Intrauterine programming. Iran J. Basic Med. Sci. 2015, 18, 212. [Google Scholar]
- Oscar-Berman, M.; Shagrin, B.; Evert, D.L.; Epstein, C. Impairments of brain and behavior: The neurological effects of alcohol. Alcohol Res. Health 1997, 21, 65–75. [Google Scholar]
- Sookoian, S.; Gianotti, T.F.; Burgueño, A.L.; Pirola, C.J. Fetal metabolic programming and epigenetic modifications: A systems biology approach. Pediatr. Res. 2013, 73, 531–542. [Google Scholar] [CrossRef] [PubMed]
- MacLennan, N.K.; James, S.J.; Melnyk, S.; Piroozi, A.; Jernigan, S.; Hsu, J.L.; Janke, S.M.; Pham, T.D.; Lane, R.H. Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats. Physiol. Genom. 2004, 18, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Waterland, R.A.; Jirtle, R.L. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 2004, 20, 63. [Google Scholar] [CrossRef] [PubMed]
- Whitt, J.; Woo, V.; Lee, P.; Moncivaiz, J.; Haberman, Y.; Denson, L.; Tso, P.; Alenghat, T. Disruption of epithelial HDAC3 in intestine prevents diet-induced obesity in mice. Gastroenterology 2018, 155, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kwon, E.J.; You, Y.A.; Du, J.E.; Jo, I.; Kim, Y.J. Long-term effects of pro-opiomelanocortin methylation induced in food-restricted dams on metabolic phenotypes in male rat offspring. Obstet. Gynecol. Sci. 2020, 63, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.T.; Engel, C.; Cross, S.N.; Copel, J.E.; Morotti, R.A.; Baker, K.E.; Goodman, T.R. Postnatal sonographic spectrum of prenatally detected abdominal and pelvic cysts. AJR Am. J. Roentgenol. 2014, 203, W684–W696. [Google Scholar] [CrossRef] [PubMed]
- Leombroni, M.; Buca, D.; Celentano, C.; Liberati, M.; Bascietto, F.; Gustapane, S.; D’Antonio, F. Outcomes associated with fetal hepatobiliary cysts: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2017, 50, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Papacleovoulou, G.; Abu-Hayyeh, S.; Nikolopoulou, E.; Briz, O.; Owen, B.M.; Nikolova, V.; Ovadia, C.; Huang, X.; Vaarasmaki, M.; Baumann, M.; et al. Maternal cholestasis during pregnancy programs metabolic disease in offspring. J. Clin. Investig. 2013, 123, 3172–3181. [Google Scholar] [CrossRef] [PubMed]
- Dagdeviren, H.; Çankaya, A.; Cengiz, H.; Tombul, T.; Kanawati, A.; Çaypinar, S.S.; Ekin, M. Maternal and neonatal outcomes of women with preeclampsia and eclampsia at a tertiary care center. Haseki Tip Bulteni 2015, 53, 143–146. [Google Scholar] [CrossRef]
- Abuiessa, S.A.; Wedn, A.M.; El-Gowilly, S.M.; Helmy, M.M.; El-Mas, M.M. Pre-eclamptic fetal programming alters neuroinflammatory and cardiovascular consequences of endotoxemia in sex-specific manners. J. Pharmacol. Exp. Ther. 2020, 373, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.B.; Yost, N.P.; Cunningham, F.G. Acute fatty liver of pregnancy: Clinical outcomes and expected duration of recovery. Gray J. 2013, 209, 456.e1–456.e7. [Google Scholar] [CrossRef] [PubMed]
- Joueidi, Y.; Peoc’h, K.; Le Lous, M.; Bouzille, G.; Rousseau, C.; Bardou-Jacquet, E.; Bendavid, C.; Damaj, L.; Fromenty, B.; Lavoue, V.; et al. Maternal and neonatal outcomes and prognostic factors in acute fatty liver of pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 252, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Lata, I. Hepatobiliary diseases during pregnancy and their management: An update. Int. J. Crit. Illn. Inj. Sci. 2013, 3, 175–182. [Google Scholar] [CrossRef]
- Chen, L.; He, F.; Zeng, K.; Wang, B.; Li, J.; Zhao, D.; Ren, W. Differentiation of cystic biliary atresia and choledochal cysts using prenatal ultrasonography. Ultrasonography 2022, 41, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Sahakian, V.I.; Rouse, D.W.; Sipes, S.U.; Rose, N.A.; Niebyl, J.E. Vitamin B6 is effective therapy for nausea and vomiting of pregnancy: A randomized, double-blind placebo-controlled study. Obstet. Gynecol. 1991, 78, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Park-Wyllie, L.; Mazzotta, P.; Pastuszak, A.; Moretti, M.E.; Beique, L.; Hunnisett, L.; Friesen, M.H.; Jacobson, S.; Kasapinovic, S.; Chang, D.; et al. Birth defects after maternal exposure to corticosteroids: Prospective cohort study and meta-analysis of epidemiological studies. Teratology 2000, 62, 385–392. [Google Scholar] [PubMed]
- Cheng, C.; Wei, H.; Xu, C.; Xie, X.; Jiang, S.; Peng, J. Maternal soluble fiber diet during pregnancy changes the intestinal microbiota, improves growth performance, and reduces intestinal permeability in piglets. Appl. Environ. Microbiol. 2018, 84, e01047-18. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, R.D.G.C.; Viana, M.L.; Generoso, S.V.; Arantes, R.E.; Davisson Correia, M.I.T.; Cardoso, V.N. Glutamine supplementation decreases intestinal permeability and preserves gut mucosa integrity in an experimental mouse model. J. Parenter. Enter. Nutr. 2010, 34, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.M.; Inamine, T.; Hochrath, K.; Chen, P.; Wang, L.; Llorente, C.; Bluemel, S.; Hartmann, P.; Xu, J.; Koyama, Y.; et al. Intestinal fungi contribute to development of alcoholic liver disease. J. Clin. Investig. 2017, 127, 2829–2841. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Ellwood, M.; Ainger, T.; Burroughs, T.; Fagan, A.; Gavis, E.A.; Heuman, D.M.; Fuchs, M.; John, B.; Wade, J.B. Mindfulness-based stress reduction therapy improves patient and caregiver-reported outcomes in cirrhosis. Clin. Transl. Gastroenterol. 2017, 8, e108. [Google Scholar] [CrossRef] [PubMed]
- Zang, X.; Sun, M.; Xian, J.; Yu, H.; Zhang, X.; Zhang, C.; Tan, Q. Effects of acupuncture for nonalcoholic fatty liver disease: A protocol for systematic review and meta-analysis. Medicine 2020, 99, 47. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef] [PubMed]
- You, Y.A.; Hwang, S.Y.; Kim, S.M.; Park, S.; Lee, G.I.; Park, S.; Ansari, A.; Lee, J.; Kwon, Y.; Kim, Y.J. Identification of Indicators for Preterm Birth Using Retinoid Metabolites. Metabolites 2021, 11, 443. [Google Scholar] [CrossRef] [PubMed]
- de Milliano, I.; Tabbers, M.M.; van der Post, J.A.; Benninga, M.A. Is a multispecies probiotic mixture effective in constipation during pregnancy? A pilot study. Nutr. J. 2012, 11, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gratz, S.W.; Mykkanen, H.; El-Nezami, H.S. Probiotics and gut health: A special focus on liver diseases. World J. Gastroenterol. 2010, 16, 403. [Google Scholar] [CrossRef] [PubMed]
- Koutnikova, H.; Genser, B.; Monteiro-Sepulveda, M.; Faurie, J.M.; Rizkalla, S.; Schrezenmeir, J.; Clément, K. Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: A systematic review and meta-analysis of randomised controlled trials. BMJ Open 2019, 9, e017995. [Google Scholar] [CrossRef] [PubMed]
- Dugoua, J.J.; Machado, M.; Zhu, X.; Chen, X.; Koren, G.; Einarson, T.R. Probiotic safety in pregnancy: A systematic review and meta-analysis of randomized controlled trials of Lactobacillus, Bifidobacterium, and Saccharomyces spp. J. Obstet. Gynaecol. Can. 2009, 31, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.J.; Jordan, S.; Storey, M.; Thornton, C.A.; Gravenor, M.; Garaiova, I.; Plummer, S.F.; Wang, D.; Morgan, G. Dietary supplementation with lactobacilli and bifidobacteria is well tolerated and not associated with adverse events during late pregnancy and early infancy. J. Nutr. 2010, 140, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, H.; Zhang, M. CT image features under reconstruction algorithm in analysis of the effect of probiotics combined with ursodeoxycholic acid in treatment of intrahepatic cholestasis of pregnancy. J. Healthc. Eng. 2021, 2021, 1709793. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.R.; Sheen, J.M.; Hou, C.Y.; Lin, I.C.; Huang, L.T.; Tain, Y.L.; Cheng, H.H.; Lai, Y.J.; Lin, Y.J.; Tiao, M.M.; et al. Effects of Maternal Gut Microbiota-Targeted Therapy on the Programming of Nonalcoholic Fatty Liver Disease in Dams and Fetuses, Related to a Prenatal High-Fat Diet. Nutrients 2022, 14, 4004. [Google Scholar] [CrossRef] [PubMed]
- Paul, H.A.; Collins, K.H.; Nicolucci, A.C.; Urbanski, S.J.; Hart, D.A.; Vogel, H.J.; Reimer, R.A. Maternal prebiotic supplementation reduces fatty liver development in offspring through altered microbial and metabolomic profiles in rats. FASEB J. 2019, 33, 5153–5167. [Google Scholar] [CrossRef]
- Ren, L.; Song, Q.; Liu, Y.; Zhang, L.; Hao, Z.; Feng, W. Probiotic Lactobacillus rhamnosus GG prevents progesterone metabolite epiallaopregnanolone sulfate-induced hepatic bile acid accumulation and liver injury. Biochem. Biophys. Res. Commun. 2019, 520, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, H.; Jia, Y.; Bai, S.; Shi, Z.; Guo, L. Probiotics Combined with Ursodeoxycholic Acid on Cholestatic Liver Disease during Pregnancy. Microsc. Acta 2020, 29, 2555. [Google Scholar]
- Bouhafs, L.; Moudilou, E.N.; Exbrayat, J.M.; Lahouel, M.; Idoui, T. Protective effects of probiotic Lactobacillus plantarum BJ0021 on liver and kidney oxidative stress and apoptosis induced by endosulfan in pregnant rats. Ren. Fail. 2015, 37, 1370–1378. [Google Scholar] [CrossRef] [PubMed]
- Asemi, Z.; Esmaillzadeh, A. Effect of daily consumption of probiotic yoghurt on serum levels of calcium, iron and liver enzymes in pregnant women. Int. J. Prev. Med. 2013, 4, 949. [Google Scholar]
- Liu, A.T.; Chen, S.; Jena, P.K.; Sheng, L.; Hu, Y.; Wan, Y.J.Y. Probiotics improve gastrointestinal function and life quality in pregnancy. Nutrients 2021, 13, 3931. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.X.; Huang, W.W.; Shen, W.; Deng, X.S.; Tang, Z.Y.; Chen, Z.H.; Zhao, W.; Fan, H.Y. Intrahepatic cholestasis of pregnancy increases inflammatory susceptibility in neonatal offspring by modulating gut microbiota. Front. Immunol. 2022, 13, 889646. [Google Scholar] [CrossRef] [PubMed]
Hepatobiliary Disease | Microbiome | References |
---|---|---|
Alcoholic liver disease | Bacteroidetes, Lactobacillus, Candida, Enterobacteriaceae | [38,39] |
Cirrhosis | Veillonella, Streptococcus, Neisseria, Gemella | [40,41] |
Nonalcoholic fatty liver disease | Bacteroides vulgatus, Ruminococcus, Escherichia coli, Prevotella | [42,43] |
Hepatocellular carcinoma | Escherichia coli, Helicobacter species | [44,45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, M.K.; Khan, Z.A.; Wang, J.-H.; Ansari, A. Impact of Gut–Brain Axis on Hepatobiliary Diseases in Fetal Programming. J. Mol. Pathol. 2024, 5, 215-227. https://doi.org/10.3390/jmp5020014
Yadav MK, Khan ZA, Wang J-H, Ansari A. Impact of Gut–Brain Axis on Hepatobiliary Diseases in Fetal Programming. Journal of Molecular Pathology. 2024; 5(2):215-227. https://doi.org/10.3390/jmp5020014
Chicago/Turabian StyleYadav, Mukesh Kumar, Zeeshan Ahmad Khan, Jing-Hua Wang, and AbuZar Ansari. 2024. "Impact of Gut–Brain Axis on Hepatobiliary Diseases in Fetal Programming" Journal of Molecular Pathology 5, no. 2: 215-227. https://doi.org/10.3390/jmp5020014
APA StyleYadav, M. K., Khan, Z. A., Wang, J. -H., & Ansari, A. (2024). Impact of Gut–Brain Axis on Hepatobiliary Diseases in Fetal Programming. Journal of Molecular Pathology, 5(2), 215-227. https://doi.org/10.3390/jmp5020014