Artificial Weathering Effect on Surface of Heat-Treated Wood of Ayous (Triplochiton scleroxylon K. Shum) †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Calienno, L.; Lo Monaco, A.; Pelosi, C.; Picchio, R. Colour and chemical changes on photodegraded beech wood with or without red heartwood. Wood Sci. Technol. 2014, 48, 1167–1180. [Google Scholar] [CrossRef]
- Calienno, L.; Pelosi, C.; Picchio, R.; Agresti, G.; Santamaria, U.; Balletti, F.; Lo Monaco, A. Light-induced color changes and chemical modification of treated and untreated chestnut wood surface. Stud. Conserv. 2015, 60, 131–139. [Google Scholar] [CrossRef]
- Humar, M.; Kržišnik, D.; Lesar, B.; Brischke, C. The performance of wood decking after five years of exposure: Verification of the combined effect of wetting ability and durability. Forests 2019, 10, 903. [Google Scholar] [CrossRef]
- Bulian, F.; Graystone, J.A. Industrial Wood Coating; Theory and Practice; Elsevier: Amsterdam, The Netherlands, 2009; p. 320. [Google Scholar]
- Pelosi, C.; Agresti, G.; Calienno, L.; Lo Monaco, A.; Picchio, R.; Santamaria, U.; Vinciguerra, V. Application of spectroscopic techniques for the study of the surface changes in poplar wood and possible implications in conservation of wooden artefacts. In Optics for Arts, Architecture, and Archaeology IV; Pezzati, L., Targowski, P., Eds.; SPIE: Washington, DC, USA, 2013; Volume 8790, pp. 1–14. [Google Scholar]
- Bonifazi, G.; Serranti, S.; Capobianco, G.; Agresti, G.; Calienno, L.; Picchio, R.; Lo Monaco, A.; Santamaria, U.; Pelosi, C. Hyperspectral imaging as a technique for investigating the effect of consolidating materials on wood. J. Electron. Imaging 2017, 26, 011003. [Google Scholar] [CrossRef]
- Jones, D.; Sandberg, D.; Goli, G.; Todaro, L. (Eds.) Wood Modification in Europe: A State-of-the-Art about Processes, Products and Applications; Firenze University Press: Florence, Italy, 2019; ISSN 2704-5846. ISBN 978-88-6453-970-6. Available online: www.fupress.com (accessed on 2 September 2020).
- Esteves, B.M.; Pereira, H.M. Wood modification by heat treatment: A review. Bioresources 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Candelier, K.; Thevenon, M.-F.; Petrissans, A.; Dumarcay, S.; Gerardin, P.; Petrissans, M. Control of wood thermal treatment and its effects on decay resistance: A review. Ann. For. Sci. 2016, 73, 571–583. [Google Scholar] [CrossRef]
- Ayadi, N.; Lejeune, F.; Charrier, F.; Charrier, B.; Merlin, A. Color stability of heat-treated wood during artificial weathering. Holz als Roh-und Werkstoff 2003, 61, 221–226. [Google Scholar] [CrossRef]
- Humar, M.; Lesar, B.; Kržišnik, D. Moisture Performance of Façade Elements Made of Thermally Modified Norway Spruce Wood. Forests 2020, 11, 348. [Google Scholar] [CrossRef]
- Melis, M.; Miccoli, M.; Quarta, D. Multispectral hypercolourimetry and automatic guided pigment identification: Some masterpieces case studies. In Proceedings of SPIE 8790, Optics for Arts, Architecture, and Archaeology IV; Pezzati, L., Targowski, P., Eds.; SPIE: Washington, DC, USA, 2013; Volume 8790, pp. 1–14. [Google Scholar]
- Colantonio, C.; Pelosi, C.; D’Alessandro, L.; Sottile, S.; Calabrò, G.; Melis, M. Hypercolourimetric Multispectral Imaging (HMI) system for cultural heritage diagnostics: An innovative study for copper painting examination. Eur. Phys. J. Plus 2018, 133, 1–12. [Google Scholar] [CrossRef]
- Laureti, S.; Colantonio, C.; Burrascano, P.; Melis, M.; Calabrò, G.; Malekmohammadi, H.; Sfarra, S.; Ricci, M.; Pelosi, C. Development of integrated innovative techniques for the examination of paintings: The case studies of The Resurrection of Christ attributed to Andrea Mantegna and the Crucifixion of Viterbo attributed to Michelangelo’s workshop. J. Cult. Herit. 2019, 40, 1–16. [Google Scholar] [CrossRef]
- Agresti, G.; Bonifazi, G.; Calienno, L.; Capobianco, G.; Lo Monaco, A.; Pelosi, C.; Picchio, R.; Serranti, S. Surface investigation of photo-degraded wood by colour monitoring, infrared spectroscopy and hyperspectral imaging. J. Spectrosc. 2013, 1, 1–13. [Google Scholar] [CrossRef]
Cycle Nr. | UV Irradiation | Leaching (Hours) |
---|---|---|
1 | 72 h | 5 |
2 | 1st cycle + 96 h | 10 |
3 | 2nd cycle + 168 h | 15 |
4 | 3rd cycle + 168 h | 20 |
5 | 4th cycle + 168 h | 25 |
6 | 5th cycle + 336 h | 30 |
Specimen | L* | a* | b* |
---|---|---|---|
T = 0 | |||
1 (untreated) | 72.44 ± 1.01 | 7.56 ± 0.37 | 28.23 ± 0.58 |
2 (untreated) | 73.71 ± 1.10 | 7.22 ± 0.27 | 27.53 ± 0.53 |
3 (heat-treated) | 40.26 ± 1.06 | 11.07 ± 0.77 | 19.82 ± 1.23 |
4 (heat-treated) | 39.12 ± 0.89 | 10.11 ± 0.51 | 17.65 ± 0.82 |
1st cycle | |||
1 (untreated) | 66.09 ± 1.84 | 9.07 ± 0.26 | 34.11 ± 0.76 |
2 (untreated) | 66.30 ± 1.07 | 9.25 ± 0.38 | 34.83 ± 0.64 |
3 (heat-treated) | 42.23 ± 1.83 | 11.25 ± 0.23 | 25.26 ± 0.88 |
4 (heat-treated) | 39.66 ± 1.16 | 10.43 ± 0.26 | 22.19 ± 0.72 |
2nd cycle | |||
1 (untreated) | 64.87 ± 1.80 | 10.46 ± 0.29 | 34.80 ± 0.70 |
2 (untreated) | 65.34 ± 1.26 | 10.29 ± 0.44 | 34.55 ± 0.75 |
3 (heat-treated) | 46.01 ± 1.25 | 11.38 ± 0.22 | 27.24 ± 0.70 |
4 (heat-treated) | 42.86 ± 1.58 | 10.92 ± 0.27 | 24.21 ± 0.80 |
3rd cycle | |||
1 (untreated) | 63.81 ± 1.90 | 10.80 ± 0.37 | 33.10 ± 0.83 |
2 (untreated) | 63.83 ± 1.25 | 10.80 ± 0.36 | 33.36 ± 0.49 |
3 (heat-treated) | 48.35 ± 1.36 | 11.04 ± 0.34 | 27.60 ± 0.68 |
4 (heat-treated) | 45.60 ± 1.25 | 11.01 ± 0.28 | 25.47 ± 0.64 |
4th cycle | |||
1 (untreated) | 64.56 ± 1.94 | 10.74 ± 0.38 | 32.62 ± 0.81 |
2 (untreated) | 63.96 ± 0.87 | 10.64 ± 0.34 | 32.42 ± 0.49 |
3 (heat-treated) | 51.18 ± 1.22 | 10.24 ± 0.45 | 27.08 ± 0.59 |
4 (heat-treated) | 47.93 ± 1.45 | 10.48 ± 0.44 | 25.52 ± 0.61 |
5th cycle | |||
1 (untreated) | 64.12 ± 1.92 | 10.44 ± 0.42 | 31.41 ± 0.79 |
2 (untreated) | 63.97 ± 0.13 | 10.33 ± 0.43 | 31.22 ± 0.62 |
3 (heat-treated) | 52.92 ± 1.14 | 9.58 ± 0.47 | 25.89 ± 0.61 |
4 (heat-treated) | 49.71 ± 1.83 | 9.92 ± 0.56 | 24.78 ± 0.72 |
6th cycle | |||
1 (untreated) | 64.78 ± 1.70 | 9.70 ± 0.43 | 30.44 ± 0.91 |
2 (untreated) | 64.05 ± 1.19 | 9.50 ± 0.40 | 30.04 ± 0.58 |
3 (heat-treated) | 55.84 ± 1.20 | 8.43 ± 0.44 | 25.76 ± 0.57 |
4 (heat-treated) | 52.10 ± 2.54 | 9.17 ± 0.87 | 25.00 ± 0.99 |
Specimen | ΔL* | Δa* | Δb* | ΔE |
---|---|---|---|---|
1st cycle | ||||
1 (untreated) | −6.35 | 1.50 | 5.88 | 8.78 |
2 (untreated) | −7.41 | 2.03 | 7.30 | 10.6 |
3 (heat-treated) | 1.97 | 0.18 | 5.43 | 5.78 |
4 (heat-treated) | 0.54 | 0.33 | 4.55 | 4.59 |
2nd cycle | ||||
1 (untreated) | −7.57 | 2.90 | 6.57 | 10.4 |
2 (untreated) | −8.37 | 3.07 | 7.02 | 11.3 |
3 (heat-treated) | 5.75 | 0.32 | 7.42 | 9.40 |
4 (heat-treated) | 3.74 | 0.82 | 6.57 | 7.60 |
3rd cycle | ||||
1 (untreated) | −8.63 | 3.23 | 4.86 | 10.4 |
2 (untreated) | −9.88 | 3.58 | 5.82 | 12.0 |
3 (heat-treated) | 8.09 | −0.03 | 7.78 | 11.2 |
4 (heat-treated) | 6.48 | 0.90 | 7.82 | 10.2 |
4th cycle | ||||
1 (untreated) | −7.88 | 3.17 | 4.39 | 9.56 |
2 (untreated) | −9.75 | 3.41 | 4.88 | 11.4 |
3 (heat-treated) | 10.2 | −0.82 | 7.26 | 13.1 |
4 (heat-treated) | 8.81 | 0.38 | 7.88 | 11.8 |
5th cycle | ||||
1 (untreated) | −8.32 | 2.88 | 3.18 | 9.36 |
2 (untreated) | −9.74 | 3.11 | 3.69 | 10.9 |
3 (heat-treated) | 12.7 | −1.49 | 6.07 | 14.1 |
4 (heat-treated) | 10.6 | −0.18 | 7.14 | 12.8 |
6th cycle | ||||
1 (untreated) | −7.66 | 2.14 | 2.21 | 8.25 |
2 (untreated) | −9.66 | 2.28 | 2.51 | 10.2 |
3 (heat-treated) | 15.6 | −2.63 | 5.94 | 16.9 |
4 (heat-treated) | 13.0 | −0.94 | 7.35 | 14.9 |
Cycle Nr. | pH | Conductivity (µS/cm) | ||
---|---|---|---|---|
Untreated Specimens | Heat-treated Specimens | Untreated Specimens | Heat-Treated Specimens | |
1 | 4.43 | 4.58 | 318 | 136 |
2 | 4.38 | 4.37 | 110 | 94 |
3 | 4.17 | 4.01 | 105 | 179 |
4 | 4.14 | 4.03 | 203 | 96 |
5 | 4.34 | 4.18 | 165 | 114 |
6 | 4.12 | 4.25 | 168 | 135 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelosi, C.; Agresti, G.; Lanteri, L.; Picchio, R.; Gennari, E.; Monaco, A.L. Artificial Weathering Effect on Surface of Heat-Treated Wood of Ayous (Triplochiton scleroxylon K. Shum). Environ. Sci. Proc. 2021, 3, 15. https://doi.org/10.3390/IECF2020-07975
Pelosi C, Agresti G, Lanteri L, Picchio R, Gennari E, Monaco AL. Artificial Weathering Effect on Surface of Heat-Treated Wood of Ayous (Triplochiton scleroxylon K. Shum). Environmental Sciences Proceedings. 2021; 3(1):15. https://doi.org/10.3390/IECF2020-07975
Chicago/Turabian StylePelosi, Claudia, Giorgia Agresti, Luca Lanteri, Rodolfo Picchio, Emiliano Gennari, and Angela Lo Monaco. 2021. "Artificial Weathering Effect on Surface of Heat-Treated Wood of Ayous (Triplochiton scleroxylon K. Shum)" Environmental Sciences Proceedings 3, no. 1: 15. https://doi.org/10.3390/IECF2020-07975
APA StylePelosi, C., Agresti, G., Lanteri, L., Picchio, R., Gennari, E., & Monaco, A. L. (2021). Artificial Weathering Effect on Surface of Heat-Treated Wood of Ayous (Triplochiton scleroxylon K. Shum). Environmental Sciences Proceedings, 3(1), 15. https://doi.org/10.3390/IECF2020-07975