Calculation of Inhaled Dose of Particulate Matter for Different Age Groups in the Metro Public Transport System in Athens, Greece †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spyropoulos, G.C.; Nastos, P.T.; Moustris, K.P.; Chalvatzis, K.J. Transportation and Air Quality Perspectives and Projections in a Mediterranean Country, the Case of Greece. Land 2022, 11, 152. [Google Scholar] [CrossRef]
- Ntourou, K.; Moustris, K.; Spyropoulos, G.; Fameli, K.-M.; Manousakis, N. Adverse Health Effects (Bronchitis Cases) Due to Particulate Matter Exposure: A Twenty-Year Scenario Analysis for the Greater Athens Area (Greece) Using the AirQ+ Model. Atmosphere 2023, 14, 389. [Google Scholar] [CrossRef]
- Guo, L.C.; Lv, Z.; Ma, W.; Xiao, J.; Lin, H.; He, G.; Li, X.; Zeng, W.; Hu, J.; Zhou, Y.; et al. Contribution of heavy metals in PM2.5 to cardiovascular disease mortality risk, a case study in Guangzhou, China. Chemosphere 2022, 297, 134102. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Guo, X.; Li, C.; Ding, H.; Tang, L.; Ji, H. Characteristics of PM2.5 in Miyun, the northeastern suburb of Beijing: Chemical composition and evaluation of health risk. Environ. Sci. Pollut. Res. 2015, 22, 16688–16699. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef]
- Moreno, T.; Martins, V.; Querol, X.; Jones, T.; BéruBé, K.; Minguillón, M.C.; Amato, F.; Capdevila, M.; De Miguel, E.; Centelles, S.; et al. A new look at inhalable metalliferous airborne particles on rail subway platforms. Sci. Total Environ. 2015, 505, 367–375. [Google Scholar] [CrossRef] [PubMed]
- PurpleAir, Inc. PurpleAir, Sensors for Real Time Air Quality Monitoring. 2023. Available online: https://www.purpleair.com/ (accessed on 15 February 2023).
- Spyropoulos, G.; Nastos, P.; Moustris, K. Performance of Aether Low-Cost Sensor Device for Air Pollution Measurements in Urban Environments. Accuracy Evaluation Applying the Air Quality Index (AQI). Atmosphere 2021, 12, 1246. [Google Scholar] [CrossRef]
- Spyropoulos, G.; Nastos, P.; Moustris, K.; Katopodis, T.; Ntourou, K. The use of low-cost sensing for air pollution measurements in urban outdoor environments. In Proceedings of the 14th International Conference on Meteorology, Climatology and Atmospheric Physics (COMECAP), Alexandroupolis, Greece, 15–17 October 2018. [Google Scholar]
- Novak, R.; Kocman, D.; Robinson, J.A.; Kanduč, T.; Sarigiannis, D.; Horvat, M. Comparing Airborne Particulate Matter Intake Dose Assessment Models Using Low-Cost Portable Sensor Data. Sensors 2020, 20, 1406. [Google Scholar] [CrossRef] [PubMed]
- Collado, J.T.; Abalos, J.G.; De Los Reyes, I.; Cruz, M.T.; Leung, G.F.; Abenojar, K.; Manalo, C.R.; Go, B.; Chan, C.L.; Gonzales, C.K.G.; et al. Spatiotemporal Assessment of PM2.5 Exposure of a High-risk Occupational Group in a Southeast Asian Megacity. AQQR 2023, 23, 220134. [Google Scholar] [CrossRef]
- Bussard, D. Exposure Factors Handbook. 2011. Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252 (accessed on 1 September 2011).
- Barmparesos, N.; Assimakopoulos, V.D.; Niki Assimakopoulos, M.; Tsairidi, E. Particulate matter levels and comfort conditions in the trains and platforms of the Athens underground metro. AIMS Environ. Sci. 2016, 3, 199–219. [Google Scholar] [CrossRef]
Males | Age Groups: | 16–21 | 21–31 | 31–41 | 41–51 | 51–61 |
---|---|---|---|---|---|---|
Average: (μg/min) | Time Interval 1 (6:00–9:00) | 0.1731 | 0.1535 | 0.1674 | 0.1836 | 0.2028 |
Time Interval 2 (9:00–12:00) | 0.1946 | 0.1727 | 0.1882 | 0.2065 | 0.2281 | |
Time Interval 3 (12:00–15:00) | 0.1718 | 0.1524 | 0.1661 | 0.1822 | 0.2013 | |
Median: (μg/min) | Time Interval 1 (6:00–9:00) | 0.1698 | 0.1506 | 0.1642 | 0.1801 | 0.1990 |
Time Interval 2 (9:00–12:00) | 0.1971 | 0.1749 | 0.1906 | 0.2091 | 0.2310 | |
Time Interval 3 (12:00–15:00) | 0.1815 | 0.1610 | 0.1755 | 0.1926 | 0.2127 | |
Maximum: (μg/min) | Time Interval 1 (6:00–9:00) | 0.2416 | 0.2143 | 0.2336 | 0.2563 | 0.2831 |
Time Interval 2 (9:00–12:00) | 0.2740 | 0.2431 | 0.2650 | 0.2907 | 0.3212 | |
Time Interval 3 (12:00–15:00) | 0.2565 | 0.2276 | 0.2481 | 0.2721 | 0.3006 | |
Cumulative: (μg) | Time Interval 1 (6:00–9:00) | 7.2690 | 6.4487 | 7.0292 | 7.7107 | 8.5184 |
Time Interval 2 (9:00–12:00) | 8.1744 | 7.2520 | 7.9048 | 8.6711 | 9.5794 | |
Time Interval 3 (12:00–15:00) | 7.2153 | 6.4011 | 6.9773 | 7.6537 | 8.4554 |
Female | Age Groups: | 16–21 | 21–31 | 31–41 | 41–51 | 51–61 |
---|---|---|---|---|---|---|
Average: (μg/min) | Time Interval 1 (6:00–9:00) | 0.1430 | 0.1259 | 0.1301 | 0.1427 | 0.1490 |
Time Interval 2 (9:00–12:00) | 0.1608 | 0.1416 | 0.1463 | 0.1605 | 0.1676 | |
Time Interval 3 (12:00–15:00) | 0.1420 | 0.1250 | 0.1291 | 0.1417 | 0.1479 | |
Median: (μg/min) | Time Interval 1 (6:00–9:00) | 0.1403 | 0.1235 | 0.1276 | 0.1400 | 0.1462 |
Time Interval 2 (9:00–12:00) | 0.1629 | 0.1434 | 0.1482 | 0.1625 | 0.1697 | |
Time Interval 3 (12:00–15:00) | 0.1500 | 0.1320 | 0.1365 | 0.1497 | 0.1563 | |
Maximum: (μg/min) | Time Interval 1 (6:00–9:00) | 0.1996 | 0.1757 | 0.1816 | 0.1400 | 0.2080 |
Time Interval 2 (9:00–12:00) | 0.2265 | 0.1994 | 0.2060 | 0.2260 | 0.2360 | |
Time Interval 3 (12:00–15:00) | 0.2120 | 0.1866 | 0.1928 | 0.2115 | 0.2209 | |
Cumulative: (μg) | Time Interval 1 (6:00–9:00) | 6.0070 | 5.2877 | 5.4644 | 5.9944 | 6.2594 |
Time Interval 2 (9:00–12:00) | 6.7552 | 5.9463 | 6.1450 | 6.7411 | 7.0391 | |
Time Interval 3 (12:00–15:00) | 5.9626 | 5.2486 | 5.4240 | 5.9501 | 6.2132 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodanas, D.-M.; Moustris, K.; Spyropoulos, G. Calculation of Inhaled Dose of Particulate Matter for Different Age Groups in the Metro Public Transport System in Athens, Greece. Environ. Sci. Proc. 2023, 26, 67. https://doi.org/10.3390/environsciproc2023026067
Rodanas D-M, Moustris K, Spyropoulos G. Calculation of Inhaled Dose of Particulate Matter for Different Age Groups in the Metro Public Transport System in Athens, Greece. Environmental Sciences Proceedings. 2023; 26(1):67. https://doi.org/10.3390/environsciproc2023026067
Chicago/Turabian StyleRodanas, Dimitrios-Michael, Konstantinos Moustris, and Georgios Spyropoulos. 2023. "Calculation of Inhaled Dose of Particulate Matter for Different Age Groups in the Metro Public Transport System in Athens, Greece" Environmental Sciences Proceedings 26, no. 1: 67. https://doi.org/10.3390/environsciproc2023026067
APA StyleRodanas, D. -M., Moustris, K., & Spyropoulos, G. (2023). Calculation of Inhaled Dose of Particulate Matter for Different Age Groups in the Metro Public Transport System in Athens, Greece. Environmental Sciences Proceedings, 26(1), 67. https://doi.org/10.3390/environsciproc2023026067