Wind Energy Calculations of a 15 MW Floating Wind Turbine System in the Mediterranean Sea †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Floating System Properties
2.2. Mooring System
2.3. The ANSYS-AQWA Software
Hydrodynamic Loads
3. Environmental Conditions
Operational Conditions
4. Annual Wind Energy
5. Discussion and Conclusions
- The most frequently occurring sea state is characterized by the pair Hs = 0–1 m and Tp = 4–5 s.
- The largest value of significant excitation wave force Fx is 6150 kN and corresponds to the pair (Hs–Tp: 5–6 m, 9–10 s), for wave heading 0 degrees (Table 3).
- The 15 MW WT floating structure absorbs wind energy equal to 39,181 MWh/year.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soukissian, T.H.; Denaxa, D.; Karathanasi, F.; Prospathopoulos, A.; Sarantakos, K.; Iona, A.; Georgantas, K.; Mavrakos, S. Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives. Energies 2017, 10, 1512. [Google Scholar] [CrossRef]
- Kardakaris, K.; Boufidi, I.; Soukissian, T. Offshore Wind and Wave Energy Complementarity in the Greek Seas Based on ERA5 Data. Atmosphere 2021, 12, 1360. [Google Scholar] [CrossRef]
- Mazarakos, T.P.; Manolas, D.I.; Mavrakos, S.A. Design and Hydro-aero-elastic Modeling of a Multi Leg Mooring Concept for Floating Wind Turbine Applications. In Proceedings of the Sixteenth International Conference on Ecological Vehicles and Renewable Energies (EVER’ 2021), Grimaldi Forum, Monaco, 5–7 May 2021. [Google Scholar]
- Mazarakos, T.P.; Tsaousis, T.D.; Mavrakos, S.A.; Chatjigeorgiou, I.K. Analytical Investigation of Tension Loads Acting on a TLP Floating Wind Turbine. J. Mar. Sci. Eng. 2022, 10, 318. [Google Scholar] [CrossRef]
- Mazarakos, T.P.; Mavrakos, S.A.; Soukissian, T. Energy Yield of a Floating Hybrid Mooring Wind Turbine System in the Aegean Sea. In Proceedings of the Fifteenth International Conference on Ecological Vehicles and Renewable Energies (EVER’ 2020), Grimaldi Forum, Monaco, 10–12 September 2020. [Google Scholar]
- Evan, G.; Rinker, J.; Sethuraman, L.; Zahle, F.; Anderson, B.; Barter, G.; Abbas, N.; Meng, F.; Bortolotti, P.; Skrzypinski, W.; et al. Definition of the IEA 15-Megawatt Offshore Reference Wind; NREL/TP-5000-75698; National Renewable Energy Laboratory: Golden, CO, USA, 2020. Available online: https://www.nrel.gov/docs/fy20osti/75698.pdf (accessed on 20 February 2023).
- Christopher, A.; Viselli, A.; Dagher, H.; Goupee, A.; Gaertner, E.; Abbas, N.; Hall, M.; Barter, G. Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA Wind 15-Megawatt Offshore Reference Wind Turbine; NREL/TP-5000-76773; National Renewable Energy Laboratory: Golden, CO, USA, 2020. Available online: https://www.nrel.gov/docs/fy20osti/76773.pdf (accessed on 20 February 2023).
- ANSYS. Aqwa User Manual; Release 2022 R1; ANSYS, Inc.: Canonsburg, PA, USA, 2022. [Google Scholar]
- Faltinsen, O.M. Sea Loads on Ships and Offshore Structures; Ocean Technology Series; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Mazarakos, T.P. Second-Order Wave Loading and Wave Drift Damping on Floating Marine Structures. Ph.D. Thesis, School of Naval Architecture and Marine Engineering, Division of Marine Structures, Laboratory of Floating Structures and Mooring Systems, National Technical University of Athens, Athens, Greece, 2010. [Google Scholar] [CrossRef]
- European Centre for Medium-Range Weather Forecasts. 2014, Updated Daily. ERA-20C Project (ECMWF Atmospheric Reanalysis of the 20th Century). Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Available online: http://doi.org/10.5065/D6VQ30QG (accessed on 10 June 2015). [CrossRef]
- Coles, S. An Introduction to Statistical Modelling of Extreme Values; Springer Series in Statistics; Springer: London, UK, 2001. [Google Scholar]
- Soukissian, T.H.; Kalantzi, G. Extreme value analysis methods used for wave prediction. In Proceedings of the 16th International Offshore and Polar Engineering Conference, San Francisco, CA, USA, 28 May–2 June 2006. [Google Scholar]
- Mazarakos, T.P.; Mavrakos, S.A. Mean Second Order Wave Drift Forces Contour of a Floating Structure Concept for Wind Energy Exploitation. In Proceedings of the 4th International Conference on Renewable Energies Offshore (RENEW 2020), Lisbon, Portugal, 12–15 October 2020. [Google Scholar]
Mooring Line Number | Fairlead (x, y, z) [m] | Anchor (x, y, z) [m] |
---|---|---|
Line 1 | −16.934, −29.330 −14.000 | −427.034, −739.644, −200.000 |
Line 2 | −16.934, 29.330, −14.000 | −427.034, 739.644, −200.000 |
Line 3 | 33.868, 0.000, −14.000 | 854.068, 0.000, −200.000 |
Peak Period (s) | Significant Wave Height (m) | ||||||
---|---|---|---|---|---|---|---|
0–1 | 1–2 | 2–3 | 3–4 | 4–5 | 5–6 | 6–7 | |
2–3 | 221 | 0 | 0 | 0 | 0 | 0 | 0 |
3–4 | 6702 | 7 | 0 | 0 | 0 | 0 | 0 |
4–5 | 24,291 | 1634 | 0 | 0 | 0 | 0 | 0 |
5–6 | 18,937 | 11,619 | 41 | 0 | 0 | 0 | 0 |
6–7 | 6869 | 11,028 | 1498 | 1 | 0 | 0 | 0 |
7–8 | 462 | 2492 | 2328 | 223 | 1 | 0 | 0 |
8–9 | 100 | 463 | 747 | 517 | 30 | 0 | 0 |
9–10 | 24 | 58 | 76 | 121 | 57 | 7 | 0 |
10–11 | 0 | 9 | 8 | 5 | 3 | 3 | 0 |
11–12 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
Peak Period (s) | Significant Wave Height (m) | ||||||
---|---|---|---|---|---|---|---|
0–1 | 1–2 | 2–3 | 3–4 | 4–5 | 5–6 | 6–7 | |
2–3 | 47 | ||||||
3–4 | 246 | 738 | |||||
4–5 | 473 | 1418 | |||||
5–6 | 612 | 1835 | 3058 | ||||
6–7 | 628 | 1883 | 3138 | 4393 | |||
7–8 | 602 | 1805 | 3008 | 4211 | 5414 | ||
8–9 | 578 | 1733 | 2888 | 4043 | 5198 | ||
9–10 | 559 | 1677 | 2796 | 3914 | 5032 | 6150 | |
10–11 | 1619 | 2698 | 3777 | 4856 | 5935 | ||
11–12 | 1555 | 2592 |
Subsample Size | 17,292 | 24,182 | 24,565 | 15,133 | 6527 | 2175 | 621 | 89 |
Uw (m/s) | 2–4 | 4–6 | 6–8 | 8–10 | 10–12 | 12–14 | 14–16 | 16–18.62 |
HS (m) | 0.548 | 0.709 | 0.944 | 1.576 | 1.886 | 2.488 | 3.116 | 3.994 |
Tp (s) | 3.777 | 3.792 | 4.906 | 4.906 | 6.256 | 6.914 | 7.573 | 8.331 |
Wind Power (MW) [6] | 0.0 | 1.4 | 4.0 | 8.7 | 15.0 | 15.0 | 15.0 | 15.0 |
Final Absorbed Power (MWh/yr) | 62.2 | 3174.8 | 9572.7 | 12708.9 | 9474.7 | 3157.3 | 901.5 | 129.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazarakos, T.P. Wind Energy Calculations of a 15 MW Floating Wind Turbine System in the Mediterranean Sea. Environ. Sci. Proc. 2023, 26, 191. https://doi.org/10.3390/environsciproc2023026191
Mazarakos TP. Wind Energy Calculations of a 15 MW Floating Wind Turbine System in the Mediterranean Sea. Environmental Sciences Proceedings. 2023; 26(1):191. https://doi.org/10.3390/environsciproc2023026191
Chicago/Turabian StyleMazarakos, Thomas P. 2023. "Wind Energy Calculations of a 15 MW Floating Wind Turbine System in the Mediterranean Sea" Environmental Sciences Proceedings 26, no. 1: 191. https://doi.org/10.3390/environsciproc2023026191
APA StyleMazarakos, T. P. (2023). Wind Energy Calculations of a 15 MW Floating Wind Turbine System in the Mediterranean Sea. Environmental Sciences Proceedings, 26(1), 191. https://doi.org/10.3390/environsciproc2023026191