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Abstract: This study examines how a floating wind turbine responds to irregular waves. It gives a
detailed explanation of the floating body’s geometrical features as well as the outcomes in terms of
the incident waves. A discussion of the system’s modeling in detail is followed by the presentation of
numerical results in the frequency domain. The floating structure, which is exposed to the action of
regular and irregular waves in finite-depth waters, encompasses a semi-submersible offshore floating
structure, moored with conventional catenary mooring lines, supporting a 15 MW Wind Turbine. The
analysis’s objective is to determine which sea states produce the significant and maximum first-order
forces of the offshore structure, due to operating wave conditions, obtained through wave hindcast
time series in the Mediterranean Sea. Finally, the annual energy output of the 15 MW Wind Turbine
is presented.
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1. Introduction

In recent years, the lack of energy sources has become a primary issue. This makes
the need for renewable energy more pressing than ever. As global warming increases due
to increasing CO2 emissions, there is a gradual shift away from fossil fuels to renewable
energy sources, especially wave and wind energy. The marine environment is a huge source
of renewable energy that is being rapidly exploited. Among marine renewable energy
technologies, offshore wind power stands out, combining three unique features: rapid
technological development, inexhaustible energy source, and low construction costs [1,2].

The main advantage offered by the marine compared to the continental environment
is that the prevailing winds are generally stronger and less variable, thus allowing the
output of a floating wind turbine to be constant and, therefore, more efficient over time. In
recent years, the scientific community has turned to the installation of floating structures in
deep water utilizing the technology of floating wind turbines based on forms of floating
structures that have been used in the extraction of oil and natural gas in deep water, such
as floating semi-submerged [3], tension-leg platforms [4], etc.

Analysis of the wind conditions at the installation sites is necessary to model the
operating environmental conditions of the floating structure. In this paper, the design
values were estimated by applying a suitable bivariate model to describe wind speed and
wave height and thus a common description of their extreme values. The frequency of
occurrence of each sea state (Hs–Tp) was considered as a determining factor for the final
calculation of the absorbed power in a certain period [5].

2. Materials and Methods
2.1. Floating System Properties

The floating system is set for the IEA 15 MW Reference Wind Turbine (WT). Detailed
data are given in [6,7]. The floating platform consists of one central and three outer
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cylinders, which are attached to the WT tower. The structural parts of the structure are
connected by smaller diameter cylindrical members (grey-colored members in Figure 1a).
The draft of the floating structure is 20 m (Figure 1b).
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Figure 1. (a) Three-dimensional representation of the floating system; (b) front view of the floating
platform.

The floating platform has a displacement of 7203.352 t. The floating platform’s center of
mass (CM) is situated 2.543 m below sea water level (SWL), along the platform’s centerline.
The floating platform’s roll, pitch, and yaw inertia are all equal at 5.169 × 106 tm2 and
7.601 × 106 tm2, respectively. The WT has a 2072 t total mass. The tower weighs 860 t and
has a total height of 150 m. The Rotor Nacelle Assembly (RNA) has a mass of 1017 t. The
three blades have a combined mass of 65 t and a length of 117 m without the hub [6].

2.2. Mooring System

There are three uniform mooring lines (87 mm R4-RQ4, Studless Chain, Steel) that
make up the multi-leg catenary mooring system. The floating platform’s three mooring
lines run radially outward from the three outer cylinders and are connected to them at 120◦

angles. The fairlead locations are thought to be 14 m deep, while the water depth is 200 m.
Each mooring line is 850 meters long and weighs 151 kg/m. Table 1 provides the anchor
and fairlead positions in relation to the general inertial frame of reference.

Table 1. Mooring lines fairlead and anchor points.

Mooring Line Number Fairlead (x, y, z) [m] Anchor (x, y, z) [m]

Line 1 −16.934, −29.330 −14.000 −427.034, −739.644, −200.000
Line 2 −16.934, 29.330, −14.000 −427.034, 739.644, −200.000
Line 3 33.868, 0.000, −14.000 854.068, 0.000, −200.000

2.3. The ANSYS-AQWA Software

The potential flow theory is used in this study’s numerical modeling, which is carried
out using the ANSYS-AQWA software [8]. By assuming incompressible (non-viscous) and
irrotational, the velocity potential is obtained:

ϕ = ϕI + ϕD (1)

where
ϕD is the diffraction potential of the waves around the floating structure;
and
ϕI is the incident undisturbed wave potential.
By resolving the Laplace equation, applying the proper boundary conditions, and then

calculating the pressure and ensuing forces acting on the structure, the potential function
can be calculated.

The number of diffracted elements used in this study is 14,102, with a maximum
element size of 2.5 m.
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Hydrodynamic Loads

According to [9,10], the hydrodynamic loads are given:

Fj = −
x

SB
pnjdS (2)

where p is the fluid pressure as determined by Bernoulli’s equation, written as:

p = −ρ
∂Φ

∂t
= −iωϕe

−iωt
(3)

where ϕ is the velocity potential.
For different wave headings (0–90 degrees), the numerical results for the horizontal

wave loads Fx on the floating structure versus the wave frequency ω (rad/s) are displayed
in Figure 2. The amplitude of the wave is H/2. Due to the platform’s symmetry, it has
been noted that the first-order wave excitation forces are equal for 60◦ and 120◦ wave
heading, and for 30◦ and 150◦ wave heading. It is also concluded that the wave direction
significantly affects the shape of the surge excitation force because of the hydrodynamic
interaction between the floating platform’s four cylinders under various wave conditions.
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3. Environmental Conditions

The design environmental parameters for a location in the Mediterranean basin are
presented in this section. The water depth in the study area is about 200 m, coordinates
35.34◦ S, 26.80◦ E, and is located between Crete and Kasos.

The ECMWF’s (European Center for Medium-Range Weather Forecasts) Era-20C
dataset was used to generate numerical model simulation results for this region [11]. The
initial simulations cover 111 years, from 1900 to 2010. Data from the years 1980 through
2010 covering the most recent 31 years of time series were examined [12,13]. The recording
interval for the time series of characteristic wind and wave values is 3 hours. More details
on the environmental analysis can be found in [5].

The data of significant wave height and peak period and their appearances in time
form the Hs–Tp frequency table (see Table 2) and the area’s most prevalent sea state can be
characterized. The most frequent Hs–Tp value pair is (0–1 m, 4–5 s).

Table 2. Hs–Tp frequency table for the examined location.

Peak Period (s) Significant Wave Height (m)

0–1 1–2 2–3 3–4 4–5 5–6 6–7
2–3 221 0 0 0 0 0 0
3–4 6702 7 0 0 0 0 0
4–5 24,291 1634 0 0 0 0 0
5–6 18,937 11,619 41 0 0 0 0
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Table 2. Cont.

Peak Period (s) Significant Wave Height (m)

6–7 6869 11,028 1498 1 0 0 0
7–8 462 2492 2328 223 1 0 0
8–9 100 463 747 517 30 0 0

9–10 24 58 76 121 57 7 0
10–11 0 9 8 5 3 3 0
11–12 0 1 1 0 0 0 0

Operational Conditions

Having calculated the first-order exciting wave forces of the floating structure as a
result of the presence of harmonic waves at different incidence angles (see Section 2), the
first-order exciting wave force response spectra are obtained, i.e.,

Si (ω) = (Fi)
2Sζ (ω) (4)

where i indicates the degree of freedom (i = 1: surge,), Si is the response spectrum and Sζ is
the wave spectrum.

The significant values of the response spectrum are:

Fi( 1
3 )

= 2
√∫ ∞

0
Si (ω)dω (5)

The maximum values of the response spectrum are 1.86 times higher than the signifi-
cant values [9,10].

Table 3 shows the significant values for the first-order exciting wave forces (in kN)
of the floating structure, for wave heading 0 degrees, applying the Jonswap spectrum
with γ = 1 [10]. The largest of the significant values displayed in the table is 6150 kN
(Hs–Tp: 5–6 m, 9–10 s).

Table 3. Significant values for the first-order exciting wave forces (in kN).

Peak Period (s) Significant Wave Height (m)

0–1 1–2 2–3 3–4 4–5 5–6 6–7
2–3 47
3–4 246 738
4–5 473 1418
5–6 612 1835 3058
6–7 628 1883 3138 4393
7–8 602 1805 3008 4211 5414
8–9 578 1733 2888 4043 5198

9–10 559 1677 2796 3914 5032 6150
10–11 1619 2698 3777 4856 5935
11–12 1555 2592

4. Annual Wind Energy

The amount of energy that the under-study device with the 15 MW WT can produce
in actual sea conditions is calculated in this section. To estimate the typical operating
circumstances for offshore WT at the investigated location, the results shown in Table 3 will
be further elaborated. Additionally, a study was conducted regarding the power that the
WT absorbs for a variety of different wind speeds and the corresponding most likely sea
states (see Table 4). Ref. [14] contains additional information. Moreover, we calculated the
amount of absorbed wind power over wind speed using [6] for the absorbed power for the
15 MW WT.
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Table 4. Most probable values of Hs–Tp and sub-sample size for various bins of the wind speed at
the examined location and calculations of the absorbed power from the 15 MW WT.

Subsample Size 17,292 24,182 24,565 15,133 6527 2175 621 89
Uw (m/s) 2–4 4–6 6–8 8–10 10–12 12–14 14–16 16–18.62

HS (m) 0.548 0.709 0.944 1.576 1.886 2.488 3.116 3.994
Tp (s) 3.777 3.792 4.906 4.906 6.256 6.914 7.573 8.331

Wind Power (MW) [6] 0.0 1.4 4.0 8.7 15.0 15.0 15.0 15.0
Final Absorbed Power

(MWh/yr) 62.2 3174.8 9572.7 12708.9 9474.7 3157.3 901.5 129.2

After calculating the absorbed wind power of the WT for the specific sea area, the
annual produced energy (in MWh) was determined, via extrapolation of the historical wind-
wave data to a one-year period, while maintaining contribution ratios (time of occurrence)
of each data (wave/wind) pair specific for the location. The results can be found in Table 4.
Figure 3 shows the distribution of the absorbed power, for different wind speed values in
the examined location.
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5. Discussion and Conclusions

A semisubmersible offshore structure with a catenary mooring system, supporting
the IEA 15 MW Reference WT, has been presented. A frequency domain method has been
used to calculate the system’s exciting wave forces. Additionally, the significant first-order
forces of the system have been calculated using a Jonswap spectrum for the irregular waves.
Using wave hind-cast data between the Mediterranean islands of Crete and Kasos, the
annual wind energy has been calculated.

The study reached the following conclusions:

1. The most frequently occurring sea state is characterized by the pair Hs = 0–1 m and
Tp = 4–5 s.

2. The largest value of significant excitation wave force Fx is 6150 kN and corresponds
to the pair (Hs–Tp: 5–6 m, 9–10 s), for wave heading 0 degrees (Table 3).

3. The 15 MW WT floating structure absorbs wind energy equal to 39,181 MWh/year.

The development of technology for the exploitation of green energy sources requires
the interdisciplinary cooperation of various scientific fields, to become more targeted and,
therefore, more efficient. The optimization of floating wind turbines and their support
structures will give great impetus to the development of alternative energy sources. In this
direction, the effort to utilize this inexhaustible energy resource will continue to be an area
of further scientific investigation in the coming years.
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