Sustainable Exploitation of Biogas Plant Digestate for the Production of High-Quality Products Using Selective Electrodialysis †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Process Description
2.1.1. Raw Digestate Treatment
2.1.2. Solid Fraction Treatment
2.1.3. Liquid Fraction Treatment
2.2. Materials
2.2.1. Biogas Plants’ Digestate
2.2.2. Analysis
3. Results and Discussion
3.1. Digestate Characterization
3.2. Products Availability
- Percentage of water loss during pasteurization (2%).
- Moisture content of recovered solids (70%) [10].
- 100% recovery of nutrient ions during SED.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Katarzyna, C.; Moustakas, K.; Witek-Krowiak, A. Bio-Based Fertilizers: A Practical Approach towards Circular Economy. Bioresour. Technol. 2020, 295, 122223. [Google Scholar] [CrossRef]
- Li, Y.; Manandhar, A.; Li, G.; Shah, A. Life Cycle Assessment of Integrated Solid State Anaerobic Digestion and Composting for On-Farm Organic Residues Treatment. J. Waste Manag. 2018, 76, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Rehl, T.; Müller, J. Life Cycle Assessment of Biogas Digestate Processing Technologies. Resour. Conserv. Recycl. 2011, 56, 92–104. [Google Scholar] [CrossRef]
- Huang, J.; Xu, C.C.; Ridoutt, B.G.; Wang, X.; Ren, P. Nitrogen and Phosphorus Losses and Eutrophication Potential Associated with Fertilizer Application to Cropland in China. J. Clean. Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Gurmessa, B.; Pedretti, E.F.; Cocco, S.; Cardelli, V.; Corti, G. Manure Anaerobic Digestion Effects and the Role of Pre- and Post-Treatments on Veterinary Antibiotics and Antibiotic Resistance Genes Removal Efficiency. Sci. Total Environ. 2020, 721, 137532. [Google Scholar] [CrossRef] [PubMed]
- Logan, M.; Chettiyappan, V. Management Strategies for Anaerobic Digestate of Organic Fraction of Municipal Solid Waste: Current Status and Future Prospects. Waste Manag. Res. 2019, 37 (Suppl. 1), 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baird, R.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Ye, Z.L.; Ghyselbrecht, K.; Monballiu, A.; Pinoy, L.; Meesschaert, B. Fractionating various nutrient ions for resource recovery from swine wastewater using simultaneous anionic and cationic selective-electrodialysis. Water Res. 2019, 60, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Gienau, T.; Brüß, U.; Kraume, M.; Rosenberger, S. Nutrient Recovery from Biogas Digestate by Optimised Membrane Treatment. Waste Biomass Valorization 2018, 9, 2337–2347. [Google Scholar] [CrossRef]
- Tambone, F.; Orzi, V.; D’Imporzano, G.; Adani, F. Solid and Liquid Fractionation of Digestate: Mass Balance, Chemical Characterization, and Agronomic and Environmental Value. Bioresour. Technol. 2017, 243, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Rincón, C.A.; De Guardia, A.; Couvert, A.; Le Roux, S.; Soutrel, I.; Daumoin, M.; Benoist, J.C. Chemical and Odor Characterization of Gas Emissions Released during Composting of Solid Wastes and Digestates. J. Environ. Manag. 2019, 233, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Awiszus, S.; Meissner, K.; Reyer, S.; Müller, J. Ammonia and Methane Emissions during Drying of Dewatered Biogas Digestate in a Two-Belt Conveyor Dryer. Bioresour. Technol. 2018, 247, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Chiumenti, A.; Da Borso, F.; Teri, F.; Chiumenti, R.; Piaia, B. Full-Scale Membrane Filtration System for the Treatment of Digestate from a Co-Digestion Plant. Appl. Eng. Agric. 2013, 29, 985–990. [Google Scholar] [CrossRef]
- Światczak, P.; Cydzik-Kwiatkowska, A.; Zielińska, M. Treatment of Liquid Phase of Digestate from Agricultural Biogas Plant in a System with Aerobic Granules and Ultrafiltration. Water 2019, 11, 104. [Google Scholar] [CrossRef]
- Masse, L.; Beaudette, V.; Muir, M. Size Distribution and Composition of Particles. J. Aerosol. Sci. 2005, 48, 1943–1950. [Google Scholar]
Feedstock | Location | Process | Electricity Generation | Annual Digestate Arisings |
---|---|---|---|---|
Food waste | UK | Mesophilic | 3.6 MWe | 36,400 t |
Animal residues | Greece | Mesophilic | 100 kWe | 100 t |
Vegetable oil | Greece | Mesophilic | 120 kWe | 800 t |
Agricultural residues | Italy | Mesophilic | 7900 MWh | 20,000–22,000 t |
WWTP sludge | Malta | Mesophilic | 1 MW | 7220 t |
Digestate | pH | ΤΝ | TKN | TP | K | COD | Dry Matter |
---|---|---|---|---|---|---|---|
Units | - | gN/kg DM | gNH4/kg DM | gPO4/kg DM | g/kg DM | g/kg DM | % |
Food waste digestate (FWD) | 8.8 | 145 | 145 | 11 | 113 | 1425 | 5.7 |
Animal residues digestate (ARD) | 8.1 | 125 | 125 | 27 | 102 | 1075 | 3.4 |
Vegetable oil digestate (VOD) | 8.3 | 150 | 149 | 17 | 85 | 882 | 6.3 |
Wastewater Treatment Plant Sludge digestate (WWTPD) | 7.6 | 51 | 51 | 17 | 18 | 918 | 4.0 |
Crop residues digestate (CRD) | 8.0 | 117 | 116 | 8 | 118 | 774 | 7.9 |
Units | Animal Residues Digestate (ARD) | Food Waste Digestate (FWD) | Urban Wastewater Sludges Digestate (UWSD) | Vegetable Oil Digestate (VOD) | Crop Residues Digestate (CRD) | ||
---|---|---|---|---|---|---|---|
Digestate treated | L | 1000 | 1000 | 1000 | 1000 | 1000 | |
Recovered wet fibre | kg | 123 | 164 | 128 | 210 | 263 | |
Total Nitrogen in the wet fibre | % | 0.27 | 0.27 | 0.22 | 1.1 | 1.4 | |
Nutrients recovery with SED | PO43− | kg | 0.04 | 0.05 | 0.007 | 0.24 | 0.07 |
NH4+ | kg | 0.99 | 2.28 | 0.35 | 2.52 | 1.36 | |
K+ | kg | 0.81 | 1.46 | 0.15 | 0.85 | 2.48 | |
Ca2+ | kg | 0.22 | 0.07 | 0.25 | 3.11 | 0.17 | |
Mg2+ | kg | 0.11 | 1.46 | 0.15 | 0.03 | 0.02 | |
Water recovery | % | 42.9 | 36.4 | 39.7 | 38.5 | 35.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Proskynitopoulou, V.; Lorentzou, S.; Yaman, R.; Herbert, B.; Rincon, F.J.R.; Plakas, K.; Kougias, P.; Zouboulis, A.; Panopoulos, K. Sustainable Exploitation of Biogas Plant Digestate for the Production of High-Quality Products Using Selective Electrodialysis. Environ. Sci. Proc. 2022, 21, 75. https://doi.org/10.3390/environsciproc2022021075
Proskynitopoulou V, Lorentzou S, Yaman R, Herbert B, Rincon FJR, Plakas K, Kougias P, Zouboulis A, Panopoulos K. Sustainable Exploitation of Biogas Plant Digestate for the Production of High-Quality Products Using Selective Electrodialysis. Environmental Sciences Proceedings. 2022; 21(1):75. https://doi.org/10.3390/environsciproc2022021075
Chicago/Turabian StyleProskynitopoulou, Vera, Souzana Lorentzou, Rokiah Yaman, Ben Herbert, Francisco Javier Rubio Rincon, Konstantinos Plakas, Panagiotis Kougias, Anastasios Zouboulis, and Kyriakos Panopoulos. 2022. "Sustainable Exploitation of Biogas Plant Digestate for the Production of High-Quality Products Using Selective Electrodialysis" Environmental Sciences Proceedings 21, no. 1: 75. https://doi.org/10.3390/environsciproc2022021075
APA StyleProskynitopoulou, V., Lorentzou, S., Yaman, R., Herbert, B., Rincon, F. J. R., Plakas, K., Kougias, P., Zouboulis, A., & Panopoulos, K. (2022). Sustainable Exploitation of Biogas Plant Digestate for the Production of High-Quality Products Using Selective Electrodialysis. Environmental Sciences Proceedings, 21(1), 75. https://doi.org/10.3390/environsciproc2022021075