Application of an Orbital Remote Sensing Vegetation Index for Urban Tree Cover Mapping to Support the Tree Census
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, D.; Fang, C. Urban Remote Sensing with Spatial Big Data: A Review and Renewed Perspective of Urban Studies in Recent Decades. Remote. Sens. 2023, 15, 1307. [Google Scholar] [CrossRef]
- Ennouri, K.; Smaoui, S.; Triki, M.A. Detection of Urban and Environmental Changes via Remote Sensing. Circ. Econ. Sustain. 2021, 1, 1423–1437. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, M.; Tao, M.; Zhou, W.; Lu, X.; Xiong, Y.; Li, F.; Wang, Q. The Role of Satellite Remote Sensing in Mitigating and Adapting to Global Climate Change. Sci. Total Environ. 2023, 904, 166820. [Google Scholar] [CrossRef]
- Li, X.; Yu, Y.; Guan, X.; Feng, R. Overview of the Special Issue on Applications of Remote Sensing Imagery for Urban Areas. Remote. Sens. 2022, 14, 1204. [Google Scholar] [CrossRef]
- Bagheri, S.; Karimzadeh, S.; Feizizadeh, B. Investigation and Modeling of Physical Development of Urban Areas and Its Effects on Light Pollution Using Night Light Data. Int. J. Eng. Geosci. 2023, 8, 98–110. [Google Scholar] [CrossRef]
- Enoguanbhor, E.C. Assessing Urban Spatial Patterns within the Implemented Urban Planned Areas Using GIS and Remote Sensing Data. Int. J. Multidiscip. Perspect. 2023, 04, 87–96. [Google Scholar] [CrossRef]
- García-Pardo, K.A.; Moreno-Rangel, D.; Domínguez-Amarillo, S.; García-Chávez, J.R. Remote Sensing for the Assessment of Ecosystem Services Provided by Urban Vegetation: A Review of the Methods Applied. Urban. Urban. Green. 2022, 74, 127636. [Google Scholar] [CrossRef]
- Tavares, P.A.; Beltrão, N.; Guimarães, U.S.; Teodoro, A.; Gonçalves, P. Urban Ecosystem Services Quantification through Remote Sensing Approach: A Systematic Review. Environments 2019, 6, 51. [Google Scholar] [CrossRef]
- Neyns, R.; Canters, F. Mapping of Urban Vegetation with High-Resolution Remote Sensing: A Review. Remote. Sens. 2022, 14, 1031. [Google Scholar] [CrossRef]
- Nuijten, R.J.G.; Coops, N.C.; Theberge, D.; Prescott, C.E. Estimation of Fine-Scale Vegetation Distribution Information from RPAS-Generated Imagery and Structure to Aid Restoration Monitoring. Sci. Remote. Sens. 2024, 9, 100114. [Google Scholar] [CrossRef]
- Le Louarn, M.; Clergeau, P.; Briche, E.; Deschamps-Cottin, M. “Kill Two Birds with One Stone”: Urban Tree Species Classification Using Bi-Temporal Pléiades Images to Study Nesting Preferences of an Invasive Bird. Remote. Sens. 2017, 9, 916. [Google Scholar] [CrossRef]
- Silvetti, L.E.; Bellis, L.M. Detection of Woody Species Schinopsis Haenkeana Using Phenological Spectral Differences and NDVI Texture Measures in Subtropical Forests. Remote. Sens. Appl. 2024, 33, 101128. [Google Scholar] [CrossRef]
- Bartesaghi-Koc, C.; Osmond, P.; Peters, A. Mapping and Classifying Green Infrastructure Typologies for Climate-Related Studies Based on Remote Sensing Data. Urban. Urban. Green. 2019, 37, 154–167. [Google Scholar] [CrossRef]
- Lee, A.C.K.; Maheswaran, R. The Health Benefits of Urban Green Spaces: A Review of the Evidence. J. Public Health 2011, 33, 212–222. [Google Scholar] [CrossRef]
- Konijnendijk, C.C. Evidence-Based Guidelines for Greener, Healthier, More Resilient Neighbourhoods: Introducing the 3–30–300 Rule. J. Res. 2023, 34, 821–830. [Google Scholar] [CrossRef]
- Vujcic, M.; Tomicevic-Dubljevic, J.; Zivojinovic, I.; Toskovic, O. Connection between Urban Green Areas and Visitors’ Physical and Mental Well-Being. Urban. Urban. Green. 2019, 40, 299–307. [Google Scholar] [CrossRef]
- Addas, A. Influence of Urban Green Spaces on Quality of Life and Health with Smart City Design. Land 2023, 12, 960. [Google Scholar] [CrossRef]
- Simović, I.; Tomićević Dubljević, J.; Tošković, O.; Vujčić Trkulja, M.; Živojinović, I. Underlying Mechanisms of Urban Green Areas’ Influence on Residents’ Health—A Case Study from Belgrade, Serbia. Forests 2023, 14, 765. [Google Scholar] [CrossRef]
- De Carvalho, R.M.; Szlafsztein, C.F. Urban Vegetation Loss and Ecosystem Services: The Influence on Climate Regulation and Noise and Air Pollution. Environ. Pollut. 2019, 245, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Rouse, J.; Haas, R.H.; Schell, J.A.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS. In Third Earth Resources Technology Satellite-1 Symposium—Volume I: Technical Presentations; Freden, S.C., Mercanti, E.P., Becker, M.A., Eds.; NASA SP-351; NASA: Washington, DC, USA, 1973; Volume 3, pp. 309–317. [Google Scholar]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote. Sens. Env. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Ma, Z.; Dong, N.; Xie, D.; Li, R.; Johnston, D.M.; Gao, Y.G.; Li, Y.; Lei, Y. Developing a More Accurate Method for Individual Plant Segmentation of Urban Tree and Shrub Communities Using LiDAR Technology. Landsc. Res. 2023, 48, 313–330. [Google Scholar] [CrossRef]
- Yamashita, T.J.; Wester, D.B.; Tewes, M.E.; Young, J.H.; Lombardi, J.V. Distinguishing Buildings from Vegetation in an Urban-Chaparral Mosaic Landscape with LiDAR-Informed Discriminant Analysis. Remote. Sens. 2023, 15, 1703. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Ma, W.; Deng, Y.; Pan, J.; Li, J. Vegetation Extraction from Airborne Laser Scanning Data of Urban Plots Based on Point Cloud Neighborhood Features. Forests 2023, 14, 691. [Google Scholar] [CrossRef]
- Robinson, J.M.; Harrison, P.A.; Mavoa, S.; Breed, M.F. Existing and Emerging Uses of Drones in Restoration Ecology. Methods Ecol. Evol. 2022, 13, 1899–1911. [Google Scholar] [CrossRef]
- Kim, J.; Khouakhi, A.; Corstanje, R.; Johnston, A.S.A. Greater Local Cooling Effects of Trees across Globally Distributed Urban Green Spaces. Sci. Total Environ. 2024, 911, 168494. [Google Scholar] [CrossRef]
- He, K.S.; Bradley, B.A.; Cord, A.F.; Rocchini, D.; Tuanmu, M.; Schmidtlein, S.; Turner, W.; Wegmann, M.; Pettorelli, N. Will Remote Sensing Shape the next Generation of Species Distribution Models? Remote. Sens. Ecol. Conserv. 2015, 1, 4–18. [Google Scholar] [CrossRef]
- Skidmore, A.K.; Coops, N.C.; Neinavaz, E.; Ali, A.; Schaepman, M.E.; Paganini, M.; Kissling, W.D.; Vihervaara, P.; Darvishzadeh, R.; Feilhauer, H.; et al. Priority List of Biodiversity Metrics to Observe from Space. Nat. Ecol. Evol. 2021, 5, 896–906. [Google Scholar] [CrossRef]
- Adorno, B.V.; Körting, T.S.; Amaral, S. Contribution of Time-Series Data Cubes to Classify Urban Vegetation Types by Remote Sensing. Urban. Urban. Green. 2023, 79, 127817. [Google Scholar] [CrossRef]
- Costa, D.P.; Araujo, A.S.F.; Pereira, A.P.d.A.; Mendes, L.W.; França, R.F.d.; Silva, T.d.G.E.d.; Oliveira, J.B.d.; Araujo, J.S.; Duda, G.P.; Menezes, R.S.C.; et al. Forest-to-Pasture Conversion Modifies the Soil Bacterial Community in Brazilian Dry Forest Caatinga. Sci. Total Environ. 2022, 810, 151943. [Google Scholar] [CrossRef]
- Porto, F. A Cidade Do Aracaju 1855/1865: Ensaio de Evolução Urbana, 2nd ed.; Governo de Sergipe/FUNDESC: Aracaju, Brazil, 1991.
- Nascimento, M.M.; Araújo, H.M. The Extensive Urbanization of Aracaju and the Formation of New Housing Clusters: Assessment Based on the Disaggregation of CENSUS-IBGE Data. J. Geogr. 2018, 28, 166. [Google Scholar]
- Duarte, T.E.P.N.; Angeoletto, F.; Santos, J.W.M.C.; Silva, F.F.d.; Bohrer, J.F.C.; Massad, L. Reflexões sobre arborização urbana: Desafios a serem superados para o incremento da arborização urbana no brasil. Rev. Em Agronegócio E Meio Ambiente 2018, 11, 327. [Google Scholar] [CrossRef]
- Martelli, A.; Barbosa Junior, J. Analise Da Incidência De Supressão Arbórea E Suas Principais Causas No Perímetro Urbano Do Município De Itapira-Sp. Rev. Da Soc. Bras. De. Arborização Urbana 2019, 5, 96. [Google Scholar] [CrossRef]
- IBGE Demographic Census (Sergipe). Table 4714 Population Resident and Territorial Area and Demographic Density. Available online: https://sidra.ibge.gov.br/tabela/4714/#/n3/28/n6/inn328/v/all/p/all/d/v6142/l/,p+v,t/resultado (accessed on 30 June 2024).
- SFB—Serviço Florestal Brasileiro. Inventário Florestal Brasileiro—Sergipe: Principais Resultados; Brazilian Forest Service: Brasília, Brazil, 2017.
- Londe, P.R.; Mendes, P.C. A Influência Das Áreas Verdes Na Qualidade de Vida Urbana. Hygeia. Rev. Bras. De. Geogr. Médica E Da Saúde 2014, 10, 264–272. [Google Scholar] [CrossRef]
- SEMA—Secretaria de Meio Ambiente/Aracaju. Plano Municipal de Arborização Urbana de Aracaju-SE, 2nd ed.; Secretaria de Meio Ambiente: Aracaju, Brazil, 2015. Available online: https://www.aracaju.se.gov.br/userfiles/pdf/2017/sema/Projeto_Arborizacao_Atual_JOAO_TELES_MENEZES.pdf (accessed on 8 February 2024).
- Souza, A.L.d.; Ferreira, R.A.; Mello, A.A.d.; Plácido, D.d.R.; Santos, C.Z.A.d.; Graça, D.A.S.d.; Almeida Júnior, P.P.d.; Barretto, S.S.B.; Dantas, J.D.d.M.; Paula, J.W.A.d.; et al. Diagnóstico Quantitativo e Qualitativo Da Arborização Das Praças de Aracaju, SE. Rev. Árvore 2011, 35, 1253–1263. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2009; ISBN 8131716805. [Google Scholar]
- SEMA—Secretaria de Meio Ambiente/Aracaju Sistema Web de Coleta de Dados. Available online: https://transparencia.aracaju.se.gov.br/prefeitura/estrutura-administrativa/contato-sema/ (accessed on 8 February 2024).
- INPE Instituto Nacional de Pesquisas Espaciais—National Institute for Space Research. Datebase. Available online: https://www.gov.br/inpe/pt-br (accessed on 28 June 2024).
- Mascarenhas, L.M.A.; Ferreira, M.E.; Ferreira, L.G. Sensoriamento Remoto Como Instrumento de Controle e Proteção Ambiental: Análise Da Cobertura Vegetal Remanescente Na Bacia Do Rio Araguaia. Soc. Nat. 2009, 21, 5–18. [Google Scholar] [CrossRef]
- Harder, I.C.F.; Ribeiro, R.d.C.S.; Tavares, A.R. Índices de Área Verde e Cobertura Vegetal Para as Praças Do Municipio de Vinhedo, SP. Rev. Árvore 2006, 30, 277–282. [Google Scholar] [CrossRef]
- Nucci, J.C. Qualidade Ambiental e Adensamento Urbano: Um Estudo de Ecologia e Planejamento da Paisagem Aplicado ao Distrito de Santa Cecília (MSP), 2nd ed.; Autor, O.: Curitiba, Brazil, 2008; ISBN 978-85-908251-0-4. [Google Scholar]
- Aryal, J.; Sitaula, C.; Aryal, S. NDVI Threshold-Based Urban Green Space Mapping from Sentinel-2A at the Local Governmental Area (LGA) Level of Victoria, Australia. Land 2022, 11, 351. [Google Scholar] [CrossRef]
- Martinez, A.d.l.I.; Labib, S.M. Demystifying Normalized Difference Vegetation Index (NDVI) for Greenness Exposure Assessments and Policy Interventions in Urban Greening. Env. Res. 2023, 220, 115155. [Google Scholar] [CrossRef] [PubMed]
- SBAU. Sociedade Brasileira de Arborização Urbana. Carta A Londrina E Ibiporã 1996, 3, 5. [Google Scholar]
- Martin, B.; Belliss, S.; Pairman, D.; Soliman, T.; Schindler, J.; Amies, A. Quantifying the Historical Evolution of Green Space in New Zealand’s Cities. Extension: Measuring Urban Green Space and Vegetation from Infrared Imagery; Manaaki Whenua—Landcare Research Contract Report LC4159; Parliamentary Commissioner for the Environment: Lincoln, New Zealand, 2022; 42p, Available online: https://pce.parliament.nz/media/jh1lzghv/manaaki-whenua-quantifying-the-historical-evolution-of-green-space-in-new-zealands-cities-measuring-urban-green-space-and-vegetation-from-infrared-imagery.pdf (accessed on 7 July 2025).
For the Entire Municipality of Aracaju | ||
NDVI < 0.2 | Non-vegetated | 137.814 km2 |
NDVI ≥ 0.2 | Vegetated | 44.349 km2 |
Roadways excluding recreational areas | ||
NDVI < 0.2 | Non-vegetated | 29.628 km2 |
NDVI ≥ 0.2 | Vegetated | 2.574 km2 |
Roadways including recreational areas (13 de Julho Promenade, Atalaia Shoreline, Industrial District Riverside, Sementeira Park, City Park, João Cleophas Exhibition Park, and Cajueiros Park) | ||
NDVI < 0.2 | Non-vegetated | 32.201 km2 |
NDVI ≥ 0.2 | Vegetated | 3.965 km2 |
Neighborhood (Aracaju District) | Urban Tree Cover (m2) | Urban Tree Cover (m2) Including Recreational Areas | Population (Inhabitants) | Green Area Index (GAI) | Green Area Index (GAI) Including Recreational Areas |
---|---|---|---|---|---|
Matapoã | 281,250 | 281,250 | |||
Areia Branca | 285,704 | 285,704 | |||
Mosqueiro | 254,852 | 254,852 | |||
São José dos Náufragos | 275,313 | 275,313 | |||
Santa Maria | 425,702 | 425,702 | |||
Robalo | 159,312 | 159,312 | |||
Jabotiana | 163,181 | 163,181 | 9715 * | 12.46 | 12.46 |
Gameleira | 79,928 | 79,928 | |||
Aruana | 62,241 | 66,891 | |||
Coroa do Meio | 50,827 | 109,350 | 14,950 | 3.32 | 48.87 |
Capucho | 40,024 | 40,024 | 889 | 48.43 | 48.43 |
Aeroporto | 41,331 | 41,331 | 9175 | 4.49 | 4.49 |
Industrial | 22,037 | 33,389 | 15,074 * | 2.56 | 3.64 |
Inácio Barbosa | 45,157 | 45,157 | 7741 | 4.95 | 4.95 |
Porto Dantas | 35,072 | 1,295,703 | 9743 | 3.58 | 133.13 |
Soledade | 31,043 | 31,043 | 7777 | 4.29 | 4.29 |
Farolândia | 33,209 | 33,209 | 35,336 | 0.94 | 0.94 |
Marivan | 34,768 | 34,768 | 9175 | 2.96 | 2.96 |
Atalaia | 27,525 | 71,624 | 10,464 | 2.48 | 2.48 |
São Conrado | 95,464 | 95,464 | 23,622 * | 1.07 | 1.07 |
Jardins | 25,281 | 256,282 | 5175 | 4.71 | 27.32 |
17 de Março | 30,064 | 30,064 | |||
Luzia | 17,556 | 17,556 | 21,924 | 0.71 | 0.71 |
Cidade Nova | 15,228 | 15,228 | 18,538 | 0.83 | 0.83 |
Santos Dumont | 12,726 | 12,726 | 25,061 | 0.49 | 0.49 |
Lamarão | 10,687 | 10,687 | 6655 | 1.59 | 1.59 |
18 do Forte | 11,160 | 11,160 | 21,025 | 0.45 | 0.45 |
Ponto Novo | 11,731 | 11,731 | 22,044 | 0.42 | 0.42 |
Santo Antônio | 22,903 | 22,903 | 11,950 | 0.72 | 0.72 |
Grageru | 8766 | 8766 | 16,227 | 0.53 | 0.53 |
Japãozinho | 11,605 | 11,605 | 7441 | 1.13 | 1.13 |
América | 7869 | 7869 | 15,962 | 0.49 | 0.49 |
Dom Luciano | 5759 | 5759 | 18,538 | 0.28 | 0.28 |
Siqueira Campos | 7321 | 7321 | 15,705 | 0.29 | 0.29 |
Getúlio Vargas | 5148 | 5148 | 7188 | 0.61 | 0.61 |
São José | 3603 | 3603 | 5940 | 0.61 | 0.61 |
Suíssa | 2988 | 2988 | 11,780 | 0.25 | 0.25 |
José Conrado de Araújo | 3101 | 5724 | 13,881 | 0.21 | 0.44 |
Jardim Centenário | 2147 | 2147 | 13,919 | 0.15 | 0.15 |
Centro | 1787 | 1787 | 8117 | 0.22 | 0.22 |
Novo Paraíso | 1618 | 1618 | 11,627 | 0.14 | 0.14 |
Bugio | 1560 | 1560 | 15,558 | 0.1 | 0.1 |
13 de Julho | 1372 | 21,399 | 8384 | 0.16 | 0.16 |
Salgado Filho | 941 | 941 | 4298 | 0.22 | 0.22 |
Pereira Lobo | 765 | 765 | 5443 | 0.14 | 0.14 |
Cirurgia | 495 | 495 | 5767 | 0.09 | 0.09 |
Palestina | 749 | 749 | 4217 | 0.1 | 0.1 |
Olaria | 3684 | 3684 | |||
TOTAL | 2,672,554 | 4,305,460 |
Location | Tree-Covered Area (Current Study) | Tree-Covered Area (Census) | Confidence (Current Study vs. Census) |
---|---|---|---|
Roadways | 2.672 km2 53,185 individuals ** | 2,813,289.28 m2 55,997 individuals | 94.9% |
Parks and Recreational Areas * | 1.632 km2 9220 individuals *** | 1,013,679 m2 5727 individuals | 62.1% |
Roadways, Parks, and Recreational Areas | 4,305,460 m2 62,405 individuals | 3,826,968.28 m2, 61,724 individuals | Tree-Covered Area: 88.8% Individuals: 98.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, C.F.V.; Guerra, F.C.; Ferreira, A.T.d.S.; Gonçalves, R.D. Application of an Orbital Remote Sensing Vegetation Index for Urban Tree Cover Mapping to Support the Tree Census. Earth 2025, 6, 87. https://doi.org/10.3390/earth6030087
Martins CFV, Guerra FC, Ferreira ATdS, Gonçalves RD. Application of an Orbital Remote Sensing Vegetation Index for Urban Tree Cover Mapping to Support the Tree Census. Earth. 2025; 6(3):87. https://doi.org/10.3390/earth6030087
Chicago/Turabian StyleMartins, Cássio Filipe Vieira, Franciele Caroline Guerra, Anderson Targino da Silva Ferreira, and Roger Dias Gonçalves. 2025. "Application of an Orbital Remote Sensing Vegetation Index for Urban Tree Cover Mapping to Support the Tree Census" Earth 6, no. 3: 87. https://doi.org/10.3390/earth6030087
APA StyleMartins, C. F. V., Guerra, F. C., Ferreira, A. T. d. S., & Gonçalves, R. D. (2025). Application of an Orbital Remote Sensing Vegetation Index for Urban Tree Cover Mapping to Support the Tree Census. Earth, 6(3), 87. https://doi.org/10.3390/earth6030087