Agriculture-Livestock-Forestry Nexus: Pathways to Enhanced Incomes, Soil Health, Food Security and Climate Change Mitigation in Sub-Saharan Africa
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Literature Review Methodology
2.2.1. Eligibility Criteria
2.2.2. Information Search Strategy
2.2.3. Study Article Selection
2.2.4. Diagrammatic Representation of Study Selection
2.2.5. Data Extraction and Analysis
3. Narrative Synthesis of Study Outcomes
3.1. Agriculture-Livestock-Forestry Systems—Key Interactions and Drivers
3.1.1. Key Interactions of ALF Systems
- (i)
- Animal feed—tree leaves, crop residues, legume production and other fibrous by-products provide animal diets [51]. This is very critical, especially during droughts.
- (ii)
- (iii)
- Providing power—In spite of increased mechanization, animals play an important role in providing farm labor such as cultivation, harvesting, and other farm operations in SSA [58]. Trees also provide energy for cooking.
- (iv)
3.1.2. Increasing Urbanization and Diet Changes
3.1.3. Potential to Reduce Poverty and Enhance Livelihoods
3.1.4. Keeping Both Crops, Livestock and Trees in the Same Land Unit
3.1.5. Reduction of Greenhouse Gas Emissions
3.2. ALF’s Pathways to Enhanced Incomes
3.3. ALF’s Pathways to Improved Soil Health
3.4. ALF’s Pathways to Climate Change Adaptation and Mitigation
3.5. ALF’s Pathways to Enhanced Food and Feed Security
4. Interaction of ALF Nexus Components
- ❖
- Policy makers: Responsible for formulating and implementing policies. Their support for policies specifically tailored to specific ALF is essential in the creation of favorable regulations, providing financial incentives and investing in infrastructure.
- ❖
- Researchers: Conduct research that addresses the challenges faced by farmers in adopting and sustaining ALF systems.
- ❖
- Extension agents: Bridge the gap between research and practice. They provide farmers with practical information and technical assistance. This involve disseminating knowledge of new technologies and farming practices and offering training and support.
- ❖
- Agricultural community: Actively participating in the process by adopting recommended practices and providing feedback to researchers and policymakers.
5. Future Prospects and Challenges to Adopt ALF in SSA
5.1. Future Prospects for ALF Adoption
5.1.1. Technological Advancements Precision Agriculture
5.1.2. Agricultural Sustainability
5.1.3. Climate Smart Farming Practices
5.1.4. Government Support and Involvement
5.1.5. Extension Services and Capacity Building
5.1.6. Funding and Investment
5.1.7. Integrating ALF Products into the Value Chain
5.1.8. Risk Sharing and Insurance
5.2. Challenges to ALF Adoption
5.2.1. Financial Constraints
5.2.2. Marketing Challenges
5.2.3. Access to Technology and Skills
5.2.4. Infrastructural Requirements
5.2.5. Unintended Ecological Consequences
5.2.6. Policy and Institutional Barriers
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ALF | Agriculture-livestock-forestry |
NPV | Net Present Value |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
SDG | Sustainable Development Goal |
SSA | Sub-Saharan Africa |
References
- UNDESA. World Population Prospects 2022: Summary of Results. United Nations Department of Economic and Social Affairs, Population Division. 2022. Available online: https://www.un.org/development/desa/pd/content/World-Population-Prospects-2022 (accessed on 20 March 2025).
- Godfray, H.C.; Garnett, T. Food security and sustainable intensification. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20120273. [Google Scholar] [CrossRef]
- Duncan, A.J.; Tarawali, S.A.; Thorne, P.J.; Valbuena, D.; Descheemaeker, K.; Tui, S.H. Integrated crop-livestock systems-a key to sustainable intensification in Africa. Trop. Grassl.-Forrajes Trop. 2013, 1, 202–206. [Google Scholar] [CrossRef]
- Lal, R. Integrating animal husbandry with crops and trees. Front. Sustain. Food Syst. 2020, 4, 113. [Google Scholar] [CrossRef]
- Noort, M.W.; Renzetti, S.; Linderhof, V.; du Rand, G.E.; Marx-Pienaar, N.J.; de Kock, H.L.; Magano, N.; Taylor, J.R. Towards sustainable shifts to healthy diets and food security in sub-Saharan Africa with climate-resilient crops in bread-type products: A food system analysis. Foods 2022, 11, 135. [Google Scholar] [CrossRef]
- Headey, D.D.; Ecker, O.; Comstock, A.R.; Ruel, M.T. Poverty, price and preference barriers to improving diets in sub-Saharan Africa. Glob. Food Secur. 2023, 36, 100664. [Google Scholar] [CrossRef]
- Rao, I.; Peters, M.; Castro, A.; Schultze-Kraft, R.; White, D.; Fisher, M.; Miles, J.; Lascano, C.; Blümmel, M.; Bungenstab, D.; et al. LivestockPlus—The sustainable intensification of forage-based agricultural systems to improve livelihoods and ecosystem services in the tropics. Trop. Grassl.-Forrajes Trop. 2015, 3, 59–82. [Google Scholar] [CrossRef]
- Manono, B.O.; Moller, H.; Benge, J.; Carey, P.; Lucock, D.; Manhire, J. Assessment of soil properties and earthworms in organic and conventional farming systems after seven years of dairy farm conversions in New Zealand. Agroecol. Sustain. Food Syst. 2019, 43, 678–704. [Google Scholar] [CrossRef]
- Peyraud, J.L.; Peeters, A. The role of grassland based production system in the protein security. Grassl. Sci. Eur. 2016, 21, 29–43. [Google Scholar]
- Manono, B.O.; Moller, H. Effects of stock type, irrigation and effluent dispersal on earthworm species composition, densities and biomasses in New Zealand pastures. Pedobiologia 2015, 58, 187–193. [Google Scholar] [CrossRef]
- Broom, D.M.; Galindo, F.A.; Murgueitio, E. Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc. R. Soc. B Biol. Sci. 2013, 280, 20132025. [Google Scholar] [CrossRef]
- Descheemaeker, K.; Amede, T.; Haileslassie, A. Improving water productivity in mixed crop–livestock farming systems of sub-Saharan Africa. Agric. Water Manag. 2010, 97, 579–586. [Google Scholar] [CrossRef]
- Slayi, M.; Zhou, L.; Dzvene, A.R.; Mpanyaro, Z. Drivers and Consequences of Land Degradation on Livestock Productivity in Sub-Saharan Africa: A Systematic Literature Review. Land 2024, 13, 1402. [Google Scholar] [CrossRef]
- Paul, B.K.; Mutegi, J.K.; Wironen, M.B.; Wood, S.A.; Peters, M.; Nyawira, S.S.; Misiko, M.T.; Dutta, S.K.; Zingore, S.; Oberthür, T.; et al. Livestock solutions to regenerate soils and landscapes for sustainable agri-food systems transformation in Africa. Outlook Agric. 2023, 52, 103–115. [Google Scholar] [CrossRef]
- Kitavi, E.K.; Ndung’u, C.K.; Mwangi, M. The influence of intensive agriculture on soil properties and nutrient availability in Kauwi and Zombe wards of Kitui County, Kenya. East Afr. J. Agric. Biotechnol. 2024, 7, 1–2. [Google Scholar] [CrossRef]
- Orek, C. A review of management of major arthropod pests affecting cassava production in Sub-Saharan Africa. Crop Prot. 2024, 175, 106465. [Google Scholar] [CrossRef]
- Ayugi, B.; Eresanya, E.O.; Onyango, A.O.; Ogou, F.K.; Okoro, E.C.; Okoye, C.O.; Anoruo, C.M.; Dike, V.N.; Ashiru, O.R.; Daramola, M.T.; et al. Review of meteorological drought in Africa: Historical trends, impacts, mitigation measures, and prospects. Pure Appl. Geophys. 2022, 179, 1365–1386. [Google Scholar] [CrossRef]
- Diop, M.; Chirinda, N.; Beniaich, A.; El Gharous, M.; El Mejahed, K. Soil and water conservation in Africa: State of play and potential role in tackling soil degradation and building soil health in agricultural lands. Sustainability 2022, 14, 13425. [Google Scholar] [CrossRef]
- Eeswaran, R.; Nejadhashemi, A.P.; Faye, A.; Min, D.; Prasad, P.V.; Ciampitti, I.A. Current and future challenges and opportunities for livestock farming in West Africa: Perspectives from the case of Senegal. Agronomy 2022, 12, 1818. [Google Scholar] [CrossRef]
- Mafongoya, P.; Gubba, A.; Moodley, V.; Chapoto, D.; Kisten, L.; Phophi, M. Climate change and rapidly evolving pests and diseases in Southern Africa. In New Frontiers in Natural Resources Management in Africa; Springer: Cham, Switzerland, 2019; pp. 41–57. [Google Scholar] [CrossRef]
- Ajayi, O.C.; Akinnifesi, F.K.; Sileshi, G.; Chakeredza, S.; Mn’gomba, S.; Ajayi, O.; Chineke, T. Local solutions to global problems: The potential of agroforestry for climate change adaptation and mitigation in southern Africa. In Proceedings of the Tropical Forests and Climate Change Adaptation (TroFCCA) Regional Meeting “Knowledge and Action on Forests for Climate Change Adaptation in Africa”, Accra, Ghana, 18–20 November 2008. [Google Scholar]
- Kuyah, S.; Muoni, T.; Bayala, J.; Chopin, P.; Dahlin, A.S.; Hughes, K.; Jonsson, M.; Kumar, S.; Sileshi, G.W.; Dimobe, K.; et al. Grain legumes and dryland cereals contribute to carbon sequestration in the drylands of Africa and South Asia. Agric. Ecosyst. Environ. 2023, 355, 108583. [Google Scholar] [CrossRef]
- Hirwa, H.; Li, F.; Qiao, Y.; Measho, S.; Muhirwa, F.; Tian, C.; Leng, P.; Ingabire, R.; Itangishaka, A.C.; Chen, G.; et al. Climate change–drylands–food security nexus in Africa: From the perspective of technical advances, challenges, and opportunities. Front. Environ. Sci. 2022, 10, 851249. [Google Scholar] [CrossRef]
- Valbuena, D.; Erenstein, O.; Tui, S.H.; Abdoulaye, T.; Claessens, L.; Duncan, A.J.; Gérard, B.; Rufino, M.C.; Teufel, N.; van Rooyen, A.; et al. Conservation agriculture in mixed crop–livestock systems: Scoping crop residue trade-offs in Sub-Saharan Africa and South Asia. Field Crops Res. 2012, 132, 175–184. [Google Scholar] [CrossRef]
- Birhanu, B.Z.; Desta, G.; Cofie, O.; Tilahun, S.A.; Mabhaudhi, T. Restoring degraded landscapes and sustaining livelihoods: Sustainability assessment (cum-review) of integrated landscape management in sub-Saharan Africa. Front. Clim. 2024, 6, 1338259. [Google Scholar] [CrossRef]
- Peterson, C.A.; Deiss, L.; Gaudin, A.C. Commercial integrated crop-livestock systems achieve comparable crop yields to specialized production systems: A meta-analysis. PLoS ONE 2020, 15, e0231840. [Google Scholar] [CrossRef]
- de Moraes, A.; de Faccio Carvalho, P.C.; Anghinoni, I.; Lustosa, S.B.; de Andrade, S.E.; Kunrath, T.R. Integrated crop–livestock systems in the Brazilian subtropics. Eur. J. Agron. 2014, 57, 4–9. [Google Scholar] [CrossRef]
- Fiebrig, I.; Zikeli, S.; Bach, S.; Gruber, S. Perspectives on permaculture for commercial farming: Aspirations and realities. Org. Agric. 2020, 10, 379–394. [Google Scholar] [CrossRef]
- Soni, R.P.; Katoch, M.; Ladohia, R. Integrated farming systems-a review. IOSR J. Agric. Vet. Sci. 2014, 7, 36–42. [Google Scholar] [CrossRef]
- Capone, R.; El Bilali, H.; Debs, P.; Cardone, G.; Driouech, N. Food System Sustainability and Food Security: Connecting the Dots. J. Food Secur. 2014, 2, 13–22. [Google Scholar]
- El Bilali, H.; Callenius, C.; Strassner, C.; Probst, L. Food and nutrition security and sustainability transitions in food systems. Food Energy Secur. 2019, 8, e00154. [Google Scholar] [CrossRef]
- Fieldsend, A.F.; Varga, E.; Biró, S.; Von Münchhausen, S.; Häring, A.M. Multi-actor co-innovation partnerships in agriculture, forestry and related sectors in Europe: Contrasting approaches to implementation. Agric. Syst. 2022, 202, 103472. [Google Scholar] [CrossRef]
- Seddon, N.; Smith, A.; Smith, P.; Key, I.; Chausson, A.; Girardin, C.; House, J.; Srivastava, S.; Turner, B. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 2021, 27, 1518–1546. [Google Scholar] [CrossRef]
- Barbier, E.B.; Delacote, P.; Wolfersberger, J. The economic analysis of the forest transition: A review. J. For. Econ. 2017, 27, 10–17. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Montalba, R. Technological approaches to sustainable agriculture at a crossroads: An agroecological perspective. Sustainability 2017, 9, 349. [Google Scholar] [CrossRef]
- Lemaire, G.; Franzluebbers, A.; de Faccio Carvalho, P.C.; Dedieu, B. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- de Faccio Carvalho, P.C.; da Silveira Pontes, L.; Barro, R.S.; Simões, V.J.; Dominschek, R.; dos Santos Cargnelutti, C.; Maurício, R.M.; de São José, J.F.; Bremm, C. Integrated crop-livestock-forestry systems as a nature-based solution for sustainable agriculture. Agrofor. Syst. 2024, 98, 2309–2323. [Google Scholar] [CrossRef]
- Marchão, R.L.; Mendes, I.C.; Vilela, L.; Júnior, R.G.; Niva, C.C.; Pulrolnik, K.; Souza, K.W.; de Carvalho, A.M. Integrated crop–livestock–forestry systems for improved soil health, environmental benefits, and sustainable production. Soil Health Ser. Soil Health Sustain. Agric. Braz. 2024, 3, 19–61. [Google Scholar]
- Amejo, A.G.; Gebere, Y.M.; Kassa, H. Integrating crop and livestock in smallholder production systems for food security and poverty reduction in sub-Saharan Africa. Afr. J. Agric. Res. 2018, 13, 1272–1282. [Google Scholar] [CrossRef]
- Mugwe, J.; Otieno, E.O. Integrated soil fertility management approaches for climate change adaptation, mitigation, and enhanced crop productivity. In Handbook of Climate Change Management: Research, Leadership, Transformation; Springer: Cham, Switzerland, 2020; pp. 1–22. [Google Scholar]
- Kabato, W.; Getnet, G.T.; Sinore, T.; Nemeth, A.; Molnár, Z. Towards Climate-Smart Agriculture: Strategies for Sustainable Agricultural Production, Food Security, and Greenhouse Gas Reduction. Agronomy 2025, 15, 565. [Google Scholar] [CrossRef]
- Datta, P.; Behera, B.; Timsina, J. Achieving sustainable development through agriculture-forestry-livestock nexus in Bangladesh: Synergies and trade-offs. Agric. Syst. 2024, 215, 103854. [Google Scholar] [CrossRef]
- Cernev, T.; Fenner, R. The importance of achieving foundational Sustainable Development Goals in reducing global risk. Futures 2020, 115, 102492. [Google Scholar] [CrossRef]
- van Noordwijk, M.; Duguma, L.A.; Dewiz, S.; Leimona, B.; Catacutan, D.C.; Lusiana, B.; Öborn, I.; Hairiah, K.; Minang, P.A. SDG synergy between agriculture and forestry in the food, energy, water and income nexus: Reinventing agroforestry? Curr. Opin. Environ. Sustain. 2018, 34, 33–42. [Google Scholar] [CrossRef]
- Mann, W.; Lipper, L.; Tennigkeit, T.; McCarthy, N.; Branca, G.; Paustian, K. Food Security and Agricultural Mitigation in Developing Countries: Options for Capturing Synergies; FAO: Rome, Italy, 2009. [Google Scholar]
- Kalovoto Damariis, M.; Kimiti Jacinta, M.; Manono Bonface, O. Influence of women empowerment on adoption of agroforestry technologies to counter climate change and variability in semi-arid Makueni County, Kenya. Int. J. Environ. Sci. Nat. Resour. 2020, 24, 47–55. [Google Scholar]
- Gninkplékpo, E.L.; Koura, B.I.; Lesse, P.; Toko, I.; Demblon, D.; Houinato, M.R.; Cabaraux, J.F. Small ruminant farmers’ feeding strategies to cope with climate change across five agroecological zones of Benin, West Africa. Heliyon 2024, 10, 21. [Google Scholar] [CrossRef]
- Monteiro, A.; Barreto-Mendes, L.; Fanchone, A.; Morgavi, D.P.; Pedreira, B.C.; Magalhães, C.A.; Abdalla, A.L.; Eugène, M. Crop-livestock-forestry systems as a strategy for mitigating greenhouse gas emissions and enhancing the sustainability of forage-based livestock systems in the Amazon biome. Sci. Total Environ. 2024, 906, 167396. [Google Scholar] [CrossRef]
- Bale, J.S.; Van Lenteren, J.C.; Bigler, F. Biological control and sustainable food production. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 761–776. [Google Scholar] [CrossRef]
- Thornton, P.K.; Herrero, M. Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proc. Natl. Acad. Sci. USA 2010, 107, 19667–19672. [Google Scholar] [CrossRef]
- Abraham, G.; Kechero, Y.; Andualem, D.; Dingamo, T. Indigenous legume fodder trees and shrubs with emphasis on land use and agroecological zones: Identification, diversity, and distribution in semi-humid condition of southern Ethiopia. Vet. Med. Sci. 2022, 5, 2126–2137. [Google Scholar] [CrossRef]
- Dimkpa, C.; Adzawla, W.; Pandey, R.; Atakora, W.K.; Kouame, A.K.; Jemo, M.; Bindraban, P.S. Fertilizers for food and nutrition security in sub-Saharan Africa: An overview of soil health implications. Front. Soil Sci. 2023, 3, 1123931. [Google Scholar] [CrossRef]
- Manono, B.O.; Moller, H.; Morgan, R. Effects of irrigation, dairy effluent dispersal and stocking on soil properties of the Waimate District, New Zealand. Geoderma Reg. 2016, 7, 59–66. [Google Scholar] [CrossRef]
- Bell, L.W.; Moore, A.D.; Kirkegaard, J.A. Evolution in crop–livestock integration systems that improve farm productivity and environmental performance in Australia. Eur. J. Agron. 2014, 57, 10–20. [Google Scholar] [CrossRef]
- Kebede, E. Contribution, utilization, and improvement of legumes-driven biological nitrogen fixation in agricultural systems. Front. Sustain. Food Syst. 2021, 5, 767998. [Google Scholar] [CrossRef]
- Venkatesh, G.; Gopinath, K.A.; Ramana, D.B.; Kumari, V.V.; Srinivas, I.; Shanker, A.K.; Rao, K.V.; Prasad, J.V.; Reddy, K.S.; Sridhar, K.B.; et al. Agrosilvopastoral systems for improved crop and fodder productivity and soil health in the rainfed environments of South India. Agric. Syst. 2024, 214, 103812. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, A.; Kahlon, C.S.; Brar, A.S.; Grover, K.K.; Dia, M.; Steiner, R.L. The role of cover crops towards sustainable soil health and agriculture—A review paper. Am. J. Plant Sci. 2018, 9, 1935–1951. [Google Scholar] [CrossRef]
- Daum, T.; Seidel, A.; Awoke, B.G.; Birner, R. Animal traction, two-wheel tractors, or four-wheel tractors? A best-fit approach to guide farm mechanization in Africa. Exp. Agric. 2023, 59, e12. [Google Scholar] [CrossRef]
- Flax, V.L.; Ouma, E.A.; Baltenweck, I.; Omosa, E.; Girard, A.W.; Jensen, N.; Dominguez-Salas, P. Pathways from livestock to improved human nutrition: Lessons learned in East Africa. Food Secur. 2023, 5, 1293–1312. [Google Scholar] [CrossRef]
- Jemal, O.M.; Callo-Concha, D.; van Noordwijk, M. Coffee agroforestry and the food and nutrition security of small farmers of south-western Ethiopia. Front. Sustain. Food Syst. 2021, 5, 608868. [Google Scholar] [CrossRef]
- Derebe, B.; Alemu, A. Non-timber forest product types and its income contribution to rural households in the Horn of Africa: A systematic review. For. Sci. Technol. 2023, 19, 210–220. [Google Scholar] [CrossRef]
- Hashmiu, I.; Adams, F.; Etuah, S.; Quaye, J. Food-cash crop diversification and farm household welfare in the Forest-Savannah Transition Zone of Ghana. Food Secur. 2024, 16, 487–509. [Google Scholar] [CrossRef]
- Quandt, A.; Neufeldt, H.; McCabe, J.T. Building livelihood resilience: What role does agroforestry play? Clim. Dev. 2019, 11, 485–500. [Google Scholar] [CrossRef]
- Duffy, C.; Toth, G.G.; Hagan, R.P.; McKeown, P.C.; Rahman, S.A.; Widyaningsih, Y.; Sunderland, T.C.; Spillane, C. Agroforestry contributions to smallholder farmer food security in Indonesia. Agrofor. Syst. 2021, 95, 1109–1124. [Google Scholar] [CrossRef]
- Datta, P.; Behera, B. Climate change adaptation through agroforestry: Empirical evidence from Indian Eastern Himalayan Foothills. In Strategizing Agricultural Management for Climate Change Mitigation and Adaptation; Springer International Publishing: Cham, Switzerland, 2023; pp. 167–181. [Google Scholar] [CrossRef]
- Rahman, M.H.; Ahrends, H.E.; Raza, A.; Gaiser, T. Current approaches for modeling ecosystem services and biodiversity in agroforestry systems: Challenges and ways forward. Front. For. Glob. Chang. 2023, 5, 1032442. [Google Scholar] [CrossRef]
- Lal, R. Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience 2010, 60, 708–721. [Google Scholar] [CrossRef]
- Soussana, J.F.; Lemaire, G. Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agric. Ecosyst. Environ. 2014, 190, 9–17. [Google Scholar] [CrossRef]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef]
- Salton, J.C.; Mercante, F.M.; Tomazi, M.; Zanatta, J.A.; Concenço, G.; Silva, W.M.; Retore, M. Integrated crop-livestock system in tropical Brazil: Toward a sustainable production system. Agric. Ecosyst. Environ. 2014, 190, 70–79. [Google Scholar] [CrossRef]
- Maitima, J.M.; Mugatha, S.M.; Reid, R.S.; Gachimbi, L.N.; Majule, A.; Lyaruu, H.; Pomery, D.; Mathai, S.; Mugisha, S. The linkages between land use change, land degradation and biodiversity across East Africa. Afr. J. Environ. Sci. Technol. 2009, 3, 10. [Google Scholar]
- Bretagnolle, V.; Villers, A.; Denonfoux, L.; Cornulier, T.; Inchausti, P.; Badenhausser, I. Rapid recovery of a depleted population of Little Bustards Tetrax tetrax following provision of alfalfa through an agri-environment scheme. Ibis 2011, 153, 4–13. [Google Scholar] [CrossRef]
- Khasabulli, B.D.; Mutisya, M.D.; Anyango, S.P.; Manono, B.O.; Odhiambo, D.G. Soil Microbial Biomass, Microbial Population and Diversity in Maize-Banana Based Agroforestry System in Kisii County, Kenya. Asian J. Res. Crop Sci. 2023, 8, 230–239. [Google Scholar] [CrossRef]
- Seo, S.N. Is an integrated farm more resilient against climate change? A micro-econometric analysis of portfolio diversification in African agriculture. Food Policy 2010, 35, 32–40. [Google Scholar] [CrossRef]
- Mburu, S.W.; Koskey, G.; Kimiti, J.M.; Ombori, O.; Maingi, J.M.; Njeru, E.M. Agrobiodiversity conservation enhances food security in subsistence-based farming systems of Eastern Kenya. Agric. Food Secur. 2016, 5, 19. [Google Scholar] [CrossRef]
- Nie, Z.; McLean, T.; Clough, A.; Tocker, J.; Christy, B.; Harris, R.; Riffkin, P.; Clark, S.; McCaskill, M. Benefits, challenges and opportunities of integrated crop-livestock systems and their potential application in the high rainfall zone of southern Australia: A review. Agric. Ecosyst. Environ. 2016, 235, 17–31. [Google Scholar] [CrossRef]
- Costa, M.P.; Schoeneboom, J.C.; Oliveira, S.A.; Vinas, R.S.; de Medeiros, G.A. A socio-eco-efficiency analysis of integrated and non-integrated crop-livestock-forestry systems in the Brazilian Cerrado based on LCA. J. Clean. Prod. 2018, 171, 1460–1471. [Google Scholar] [CrossRef]
- Hoagland, L.; Hodges, L.; Helmers, G.A.; Brandle, J.R.; Francis, C.A. Labor availability in an integrated agricultural system. J. Sustain. Agric. 2010, 34, 532–548. [Google Scholar] [CrossRef]
- Gonçalves, C.D.; Schlindwein, M.M.; Martinelli, G.D. Agroforestry systems: A systematic review focusing on traditional indigenous practices, food and nutrition security, economic viability, and the role of women. Sustainability 2021, 13, 11397. [Google Scholar] [CrossRef]
- Smith, L.G.; Westaway, S.; Mullender, S.; Ghaley, B.B.; Xu, Y.; Lehmann, L.M.; Pisanelli, A.; Russo, G.; Borek, R.; Wawer, R.; et al. Assessing the multidimensional elements of sustainability in European agroforestry systems. Agric. Syst. 2022, 197, 103357. [Google Scholar] [CrossRef]
- Bekele, M.; Mengistu, A.; Tamir, B. Livestock and feed water productivity in the mixed crop-livestock system. Animal 2017, 10, 1852–1860. [Google Scholar] [CrossRef]
- Kiptot, E.; Franzel, S.; Degrande, A. Gender, agroforestry and food security in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 104–109. [Google Scholar] [CrossRef]
- Nozdrovická, J.; Dostál, I.; Petrovič, F.; Jakab, I.; Havlíček, M.; Skokanová, H.; Falťan, V.; Mederly, P. Land-Use Dynamics in Transport-Impacted Urban Fabric: A Case Study of Martin–Vrútky, Slovakia. Land 2020, 9, 273. [Google Scholar] [CrossRef]
- Manono, B.O. Effects of Irrigation, Effluent Dispersal and Organic Farming on Earthworms and Soil Microbes in New Zealand Dairy Farms. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2014. Available online: https://hdl.handle.net/10523/5097 (accessed on 25 May 2025).
- Bonaudo, T.; Bendahan, A.B.; Sabatier, R.; Ryschawy, J.; Bellon, S.; Leger, F.; Magda, D.; Tichit, M. Agroecological principles for the redesign of integrated crop–livestock systems. Eur. J. Agron. 2014, 57, 43–51. [Google Scholar] [CrossRef]
- Kumar, C.; Begeladze, S.; Calmon, M.; Saint-Laurent, C. Enhancing Food Security Through Forest Landscape Restoration: Lessons from Burkina Faso, Brazil, Guatemala, Viet Nam, Ghana, Ethiopia and Philippines; IUCN: Gland, Switzerland, 2015; pp. 5–217. [Google Scholar]
- Sow, A.; Seye, D.; Faye, E.; Benoit, L.; Galan, M.; Haran, J.; Brévault, T. Birds and bats contribute to natural regulation of the millet head miner in tree-crop agroforestry systems. Crop Prot. 2020, 132, 105127. [Google Scholar] [CrossRef]
- Clover, J. Food security in sub-Saharan Africa. Afr. Secur. Rev. 2003, 12, 5–15. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 29, 372. [Google Scholar] [CrossRef]
- Franzel, S.C.; Wambugu, C.; Tuwei, P. The adoption and dissemination of fodder shrubs in central Kenya. In Proceedings of the NEPAD/IGAD regional conference “Agricultural Successes in the Greater Horn of Africa”, Nairobi, Kenya, 22–25 November 2004. [Google Scholar]
- Hafner, J.M.; Steinke, J.; Uckert, G.; Sieber, S.; Kimaro, A.A. Allometric equations for estimating on-farm fuel production of Gliricidia sepium (Gliricidia) shrubs and Cajanus cajan (pigeon pea) plants in semi-arid Tanzania. Energy Sustain. Soc. 2021, 11, 43. [Google Scholar] [CrossRef]
- Albrecht, A.; Kandji, S.T. Carbon sequestration in tropical agroforestry systems. Agric. Ecosyst. Environ. 2003, 99, 15–27. [Google Scholar] [CrossRef]
- Bado, B.V.; Whitbread, A.; Manzo, M.L. Improving agricultural productivity using agroforestry systems: Performance of millet, cowpea, and ziziphus-based cropping systems in West Africa Sahel. Agric. Ecosyst. Environ. 2021, 305, 107175. [Google Scholar] [CrossRef]
- Kisaka, M.O.; Shisanya, C.; Cournac, L.; Manlay, J.R.; Gitari, H.; Muriuki, J. Integrating no-tillage with agroforestry augments soil quality indicators in Kenya’s dry-land agroecosystems. Soil Tillage Res. 2023, 227, 105586. [Google Scholar] [CrossRef]
- Pinard, F.; Boffa, J.M.; Rwakagara, E. Scattered shade trees improve low-input smallholder Arabica coffee productivity in the Northern Lake Kivu region of Rwanda. Agrofor. Syst. 2014, 88, 707–718. [Google Scholar] [CrossRef]
- Gwali, S.; Agaba, H.; Balitta, P.; Hafashimana, D.; Nkandu, J.; Kuria, A.; Pinard, F.; Sinclair, F. Tree species diversity and abundance in coffee farms adjacent to areas of different disturbance histories in Mabira forest system, central Uganda. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 309–317. [Google Scholar] [CrossRef]
- Roessler, R.; Cicek, H.; Cournac, L.; Gnissien, M.; Männle, J.; Koomson, E.; Founoune-Mboup, H.; Coulibaly, K.; Diouf, A.A.; Sanon, H.O.; et al. Towards transdisciplinary identification of suitable woody perennials for resilient agro-silvopastoral systems in the Sudano-Sahelian zone of West Africa. Agrofor. Syst. 2025, 99, 26. [Google Scholar] [CrossRef]
- Rodenburg, J.; Mollee, E.; Coe, R.; Sinclair, F. Global analysis of yield benefits and risks from integrating trees with rice and implications for agroforestry research in Africa. Field Crops Res. 2022, 281, 108504. [Google Scholar] [CrossRef]
- Mukangango, M.; Nduwamungu, J.; Naramabuye, F.X.; Nyberg, G.; Dahlin, A.S. Biomass production and nutrient content of three agroforestry tree species growing on an acid Anthropic Ferralsol under recurrent harvesting at different cutting heights. Agrofor. Syst. 2020, 94, 857–867. [Google Scholar] [CrossRef]
- Reppin, S.; Kuyah, S.; de Neergaard, A.; Oelofse, M.; Rosenstock, T.S. Contribution of agroforestry to climate change mitigation and livelihoods in Western Kenya. Agrofor. Syst. 2020, 94, 203–220. [Google Scholar] [CrossRef]
- Ramadhani, T.; Otsyina, R.; Franzel, S. Improving household incomes and reducing deforestation using rotational woodlots in Tabora district, Tanzania. Agric. Ecosyst. Environ. 2002, 89, 229–239. [Google Scholar] [CrossRef]
- Kwesiga, F.R.; Franzel, S.; Place, F.; Phiri, D.; Simwanza, C.P. Sesbania sesban improved fallows in eastern Zambia: Their inception, development and farmer enthusiasm. Agrofor. Syst. 1999, 47, 49–66. [Google Scholar] [CrossRef]
- Vyamana, V.G.; Andrew, S.M.; Chamshama, S.A. Integration of indigenous agroforestry tree species in agricultural fields enhances fuelwood production in Tanzania. Environ. Sustain. Indic. 2023, 18, 100246. [Google Scholar] [CrossRef]
- Chirwa, P.W.; Musokwa, M.; Mwale, S.E.; Handavu, F.; Nyamadzawo, G. Agroforestry systems for mitigating climate change and reducing carbon footprints of land-use systems in southern Africa. Carbon Footpr. 2023, 2, 1. [Google Scholar] [CrossRef]
- Awazi, N.P. Agroforestry for climate change adaptation, resilience enhancement and vulnerability attenuation in smallholder farming systems in Cameroon. J. Atmos. Sci. Res. 2022, 5, 25–33. [Google Scholar] [CrossRef]
- Hoffmeister, S.; Bohn Reckziegel, R.; Du Toit, B.; Hassler, S.K.; Kestel, F.; Maier, R.; Sheppard, J.P.; Zehe, E. Hydrological and pedological effects of combining Italian alder and blackberries in an agroforestry windbreak system in South Africa. Hydrol. Earth Syst. Sci. Discuss. 2023, 28, 3963–3982. [Google Scholar] [CrossRef]
- Mekonnen, M.; Worku, T.; Yitaferu, B.; Cerdà, A.; Keesstra, S. Economics of agroforestry land use system, Upper Blue Nile Basin, northwest Ethiopia. Agrofor. Syst. 2021, 97, 305–317. [Google Scholar] [CrossRef]
- Fungo, B.; Buyinza, J.; Sekatuba, J.; Nansereko, S.; Ongodia, G.; Kwaga, P.; Mudondo, S.; Eryau, K.; Akelem, R.; Musinguzi, P.; et al. Forage biomass and soil aggregate carbon under fodder banks with contrasting management regimes. Agrofor. Syst. 2020, 94, 1023–1035. [Google Scholar] [CrossRef]
- Sarabia, L.; Solorio, F.J.; Ramírez, L.; Ayala, A.; Aguilar, C.; Ku, J.; Almeida, C.; Cassador, R.; Alves, B.J.; Boddey, R.M. Improving the nitrogen cycling in livestock systems through silvopastoral systems. In Nutrient Dynamics for Sustainable Crop Production; Springer: Singapore, 2020; pp. 189–213. [Google Scholar] [CrossRef]
- Baker, T.; England, J.; Brooks, S.; Stewart, S.; Mendham, D. Effect of silvopasture, paddock trees and linear agroforestry systems on agricultural productivity: A global quantitative analysis. Agric. Syst. 2025, 224, 104240. [Google Scholar] [CrossRef]
- Hoosbeek, M.R.; Remme, R.P.; Rusch, G.M. Trees enhance soil carbon sequestration and nutrient cycling in a silvopastoral system in south-western Nicaragua. Agrofor. Syst. 2018, 92, 263–273. [Google Scholar] [CrossRef]
- Fahmi, M.K.; Dafa-Alla, D.A.; Kanninen, M.; Luukkanen, O. Impact of agroforestry parklands on crop yield and income generation: Case study of rainfed farming in the semi-arid zone of Sudan. Agrofor. Syst. 2018, 92, 785–800. [Google Scholar] [CrossRef]
- Fadl, K.E.; Sheikh, S.E. Effect of Acacia Senegal on growth and yield of groundnut, sesame and roselle in an agroforestry system in North Kordofan state, Sudan. Agrofor. Syst. 2010, 78, 243–252. [Google Scholar] [CrossRef]
- Luedeling, E.; Sileshi, G.; Beedy, T.; Dietz, J. Carbon sequestration potential of agroforestry systems in Africa. In Carbon Sequestration Potential of Agroforestry Systems: Opportunities and Challenges; Springer: Dordrecht, The Netherlands, 2011; pp. 61–83. [Google Scholar]
- Manaye, A.; Tesfamariam, B.; Tesfaye, M.; Worku, A.; Gufi, Y. Tree diversity and carbon stocks in agroforestry systems in northern Ethiopia. Carbon Balance Manag. 2021, 16, 14. [Google Scholar] [CrossRef]
- Fuchs, L.E.; Orero, L.; Ngoima, S.; Kuyah, S.; Neufeldt, H. Asset-based adaptation project promotes tree and shrub diversity and above-ground carbon stocks in smallholder agroforestry Systems in Western Kenya. Front. For. Glob. Change 2022, 4, 773170. [Google Scholar] [CrossRef]
- Kpoviwanou, M.R.; Sourou, B.K.; OUINSAVI, C.A. Challenges in adoption and wide use of agroforestry technologies in Africa and pathways for improvement: A systematic review. Trees For. People 2024, 3, 100642. [Google Scholar] [CrossRef]
- Kwesiga, F.; Franzel, S.; Mafongoya, P.; Ajayi, O.C.; Phiri, D.; Katanga, R.; Kuntashula, E.; Chirwa, T. Successes in African Agriculture: Case Study of Improved Fallows in Eastern Zambia; Environment and Production Technology Division (EPTD) Discussion Paper; International Food Policy Research Institute: Washington, DC, USA, 2005; Volume 130, pp. 1–87. [Google Scholar]
- Bekele-Tesemma, A. Profitable Agroforestry Innovations for Eastern Africa; RELMA World Agroforestry Centre: Nairobi, Kenya, 2007. [Google Scholar]
- Ojiem, J.O.; Franke, A.C.; Vanlauwe, B.; De Ridder, N.; Giller, K.E. Benefits of legume–maize rotations: Assessing the impact of diversity on the productivity of smallholders in Western Kenya. Field Crops Res. 2014, 168, 75–85. [Google Scholar] [CrossRef]
- Admasu, T.G.; Jenberu, A.A. TheImpacts of Apple-based Agroforestry Practices on the Livelihoods of Smallholder Farmers in Southern Ethiopia. Trees For. People 2022, 7, 100205. [Google Scholar] [CrossRef]
- Pawlak, K.; Kołodziejczak, M. The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. Sustainability 2020, 12, 5488. [Google Scholar] [CrossRef]
- Mazungwi, B.; Njoloma, J.P.; Khataza, R.R.; Mwase, W. Why do farmers wait so long before adopting fruit tree-based agroforestry technologies in Malawi? An application of hazard duration analysis. Agrofor. Syst. 2024, 98, 2973–2983. [Google Scholar] [CrossRef]
- Angima, S.D.; Stott, D.E.; O’neill, M.K.; Ong, C.K.; Weesies, G.A. Use of calliandra–Napier grass contour hedges to control erosion in central Kenya. Agric. Ecosyst. Environ. 2002, 91, 15–23. [Google Scholar] [CrossRef]
- Cyamweshi, A.R.; Kuyah, S.; Mukuralinda, A.; Muthuri, C.W. Potential of Alnus acuminata based agroforestry for carbon sequestration and other ecosystem services in Rwanda. Agrofor. Syst. 2021, 95, 1125–1135. [Google Scholar] [CrossRef]
- Kinyili, B.M.; Ndunda, E.; Kitur, E. Agroforestry stand age influence physical and chemical soil parameters. Trees For. People 2024, 18, 100694. [Google Scholar] [CrossRef]
- Isaac, M.; Muhammad, L.; Joweria, N. Social and Ecological Contributions of the Taungya Agroforestry System in the Restoration of Mount Elgon National Park, Uganda. East Afr. J. For. Agrofor. 2024, 7, 343–356. [Google Scholar] [CrossRef]
- Zerihun, M.F. Agroforestry practices in livelihood improvement in the Eastern Cape Province of South Africa. Sustainability 2021, 13, 8477. [Google Scholar] [CrossRef]
- Acheampong, E.; Insaidoo, T.F.; Ros-Tonen, M.A. Management of Ghana’s modified taungya system: Challenges and strategies for improvement. Agrofor. Syst. 2016, 90, 659–674. [Google Scholar] [CrossRef]
- Ntawuruhunga, D.; Ngowi, E.E.; Mangi, H.O.; Salanga, R.J.; Shikuku, K.M. Climate-smart agroforestry systems and practices: A systematic review of what works, what doesn’t work, and why. For. Policy Econ. 2023, 150, 102937. [Google Scholar] [CrossRef]
- Mlambo, D.; Sebata, A.; Chichinye, A.; Mabidi, A. Agroforestry and biodiversity conservation. In Agroforestry for Carbon and Ecosystem Management; Academic Press: Cambridge, MA, USA, 2024; pp. 63–78. [Google Scholar] [CrossRef]
- Soratto, R.P.; Perdoná, M.J.; Parecido, R.J.; Pinotti, R.N.; Gitari, H.I. Turning biennial into biannual harvest: Long-term assessment of Arabica coffee–macadamia intercropping and irrigation synergism by biological and economic indices. Food Energy Secur. 2022, 11, e365. [Google Scholar] [CrossRef]
- Chirwa, P.W.; Araia, M.; Avana-Tientcheu, M.L.; Muledi, J.I.; Syampungani, S.; Akinnifesi, F.K.; Assogbadjo, A.E.; Chia, E.L. Trees in Multifunctional Landscapes: Definition, Classification, Systems, Structure, Functionality, Examples in Africa. In Trees in a Sub-Saharan Multi-Functional Landscape: Research, Management, and Policy; Springer Nature: Cham, Switzerland, 2024; pp. 9–40. [Google Scholar] [CrossRef]
- Chappa, L.R.; Nungula, E.Z.; Makwinja, Y.H.; Ranjan, S.; Sow, S.; Alnemari, A.M.; Maitra, S.; Seleiman, M.F.; Mwadalu, R.; Gitari, H.I. Outlooks on major agroforestry systems. Agroforestry 2024, 15, 21–48. [Google Scholar] [CrossRef]
- Mahmud, A.A.; Raj, A.; Jhariya, M.K. Agroforestry systems in the tropics: A critical review. Agric. Biol. Res. 2021, 37, 83–87. [Google Scholar]
- Mukhlis, I.; Rizaludin, M.S.; Hidayah, I. Understanding socio-economic and environmental impacts of agroforestry on rural communities. Forests 2022, 13, 556. [Google Scholar] [CrossRef]
- Jemal, O.; Callo-Concha, D.; Van Noordwijk, M. Local agroforestry practices for food and nutrition security of smallholder farm households in southwestern Ethiopia. Sustainability 2018, 10, 2722. [Google Scholar] [CrossRef]
- Kinyili, B.M.; Ndunda, E.; Kitur, E. Influence of Agroforestry on Rural Income and Livelihood of Smallholder Farmers in the Semi-Arid Region of Sub Saharan Africa. J. Trop. For. Environ. 2020, 10, 87–100. [Google Scholar] [CrossRef]
- Ahmad, A.; Rahman, M.; Khan, S. Impact of understory crop yields on farmers’ income and food security in agroforestry systems. J. Sustain. Agric. 2021, 45, 123–135. [Google Scholar]
- Oluwadare, O.S. Taungya farming-a strategy for sustainable land management and agricultural development in Nigeria. Adv. For. Lett. 2014, 3, 16–22. [Google Scholar]
- Duffy, R.; Datta, P. The economic and environmental benefits of alley cropping: A review of agroforestry practices in sustainable agriculture. Agrofor. Syst. 2021, 45, 567–582. [Google Scholar]
- Simelton, E.; Dam, B.V.; Catacutan, D. Trees and agroforestry for coping with extreme weather events: Experiences from northern and central Viet Nam. Agrofor. Syst. 2015, 89, 1065–1082. [Google Scholar] [CrossRef]
- Agroforestry Network. Scaling Up Agroforestry: Potential, Challenges and Barriers. A Review of Environmental, Social and Economic Aspects on the Farmer, Community and Landscape Level; Agroforestry Network: Stockholm, Sweden, 2018. [Google Scholar]
- Iskandar, J.; Iskandar, B.S.; Partasasmita, R. Responses to environmental and socio-economic changes in the Karangwangi traditional agroforestry system, South Cianjur, West Java. Biodiversitas J. Biol. Divers. 2016, 17, 332–341. [Google Scholar] [CrossRef]
- Ollinaho, O.I.; Kröger, M. Agroforestry transitions: The good, the bad and the ugly. J. Rural Stud. 2021, 82, 210–221. [Google Scholar] [CrossRef]
- Borish, D.; King, N.; Dewey, C. Enhanced community capital from primary school feeding and agroforestry program in Kenya. Int. J. Educ. Dev. 2017, 52, 10–18. [Google Scholar] [CrossRef]
- Hughes, K.; Morgan, S.; Baylis, K.; Oduol, J.; Smith-Dumont, E.; Vågen, T.G.; Kegode, H. Assessing the downstream socioeconomic impacts of agroforestry in Kenya. World Dev. 2020, 128, 104835. [Google Scholar] [CrossRef]
- Duguma, L.A. Financial analysis of agroforestry land uses and its implications for smallholder farmers livelihood improvement in Ethiopia. Agrofor. Syst. 2013, 87, 217–231. [Google Scholar] [CrossRef]
- Schroth, G.; Burkhard, J. Nutrient leaching. In Trees, Crops and Soil Fertility—Concepts and Research Methods; Schroth, G., Sinclair, F.L., Eds.; CABI Publishing: Wallingford, UK, 2003. [Google Scholar]
- Chatterjee, N.; Nair, P.R.; Chakraborty, S.; Nair, V.D. Changes in soil carbon stocks across the Forest-Agroforest-Agriculture/Pasture continuum in various agroecological regions: A meta-analysis. Agric. Ecosyst. Environ. 2018, 266, 55–67. [Google Scholar] [CrossRef]
- Khasabulli, B.D.; David, M.M.; Phoebe, S.A.; Manono, B.O. Soil carbon and nutrient dynamics in a maize-banana based agroforestry system in Kisii County, Kenya. IAR J. Agric. Res. Life Sci. 2023, 4, 14–31. [Google Scholar]
- Hailu, G. A review on the comparative advantage of intercropping systems. J. Biol. Agric. Healthc. 2015, 5, 28–38. [Google Scholar]
- Amadalo, B.; Jama, B. Improved Fallows for Western Kenya: An Extension Guideline; World Agroforestry Centre: Nairobi, Kenya, 2003. [Google Scholar]
- Borges, W.L.; Calonego, J.C.; Rosolem, C.A. Impact of crop-livestock-forest integration on soil quality. Agrofor. Syst. 2019, 93, 2111–2119. [Google Scholar] [CrossRef]
- Kumari, V.V.; Balloli, S.S.; Ramana, D.B.; Kumar, M.; Maruthi, V.; Prabhakar, M.; Osman, M.; Indoria, A.K.; Manjunath, M.; Chary, G.R.; et al. Crop and livestock productivity, soil health improvement and insect dynamics: Impact of different fodder-based cropping systems in a rainfed region of India. Agric. Syst. 2023, 208, 103646. [Google Scholar] [CrossRef]
- Sanginga, N. Role of biological nitrogen fixation in legume based cropping systems; a case study of West Africa farming systems. Plant Soil 2003, 252, 25–39. [Google Scholar] [CrossRef]
- Mowo, J.; Bishaw, B.; Abdelkadir, A. Agroforestry in Kenya and Ethiopia. In Farmers’ Strategies for Adapting to and Mitigating Climate Variability and Change Through Agroforestry in Ethiopia and Kenya; Caryn, M.D., Bernart, B., Dmitriev, A., Eds.; Forestry Communications Group, Oregon State University: Corvallis, OR, USA, 2013. [Google Scholar]
- Jacobs, S.; Webber, H.; Niether, W.; Grahmann, K.; Luettschwager, D.; Schwartz, C.; Breuer, L.; Bellingrath-Kimura, S. Modification of the microclimate and water balance through the integration of trees into temperate cropping systems. Agric. For. Meteorol. 2022, 323, 109065. [Google Scholar] [CrossRef]
- Muhie, S.H. Novel approaches and practices to sustainable agriculture. J. Agric. Food Res. 2022, 10, 100446. [Google Scholar] [CrossRef]
- Wei, W.; Liu, T.; Zhang, S.; Shen, L.; Wang, X.; Li, L.; Zhu, Y.; Zhang, W. Root spatial distribution and belowground competition in an apple/ ryegrass agroforestry system. Agric. Syst. 2024, 215, 103869. [Google Scholar] [CrossRef]
- Muchane, M.N.; Sileshi, G.W.; Gripenberg, S.; Jonsson, M.; Pumariño, L.; Barrios, E. Agroforestry boosts soil health in the humid and sub-humid tropics: A meta-analysis. Agric. Ecosyst. Environ. 2020, 295, 106899. [Google Scholar] [CrossRef]
- Kim, D.G.; Isaac, M.E. Nitrogen dynamics in agroforestry systems. A review. Agron. Sustain. Dev. 2022, 42, 60. [Google Scholar] [CrossRef]
- IPCC. 2019: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. 2019. Available online: https://www.ipcc.ch/srccl/ (accessed on 20 March 2025).
- Betemariyam, M.; Negash, M.; Worku, A. Comparative analysis of carbon stocks in home garden and adjacent coffee based agroforestry systems in Ethiopia. Small-Scale For. 2020, 19, 319–334. [Google Scholar] [CrossRef]
- David, S.; Raussen, T. The agronomic and economic potential of tree fallows on scoured terrace benches in the humid highlands of Southwestern Uganda. Agric. Ecosyst. Environ. 2003, 95, 359–369. [Google Scholar] [CrossRef]
- Dilla, A.M.; Smethurst, P.J.; Barry, K.; Parsons, D. Preliminary estimate of carbon sequestration potential of Faidherbia albida (Delile) A. Chev in an agroforestry parkland in the Central Rift Valley of Ethiopia. For. Trees Livelihoods 2019, 28, 79–89. [Google Scholar] [CrossRef]
- Hagos, H.; Tesfay, G.; Brhane, E.; Abrha, H.; Bezabh, T.; Tesfay, B.; Yisehak, B. Comparison of carbon stock potential of farmland trees in the midlands of Hawzen, Northern Ethiopia. Sustain. Environ. 2021, 7, 1973696. [Google Scholar] [CrossRef]
- Atangana, A.; Khasa, D.; Chang, S.; Degrande, A.; Atangana, A.; Khasa, D.; Chang, S.; Degrande, A. Carbon sequestration in agroforestry systems. Trop. Agrofor. 2014, 108, 237–307. [Google Scholar] [CrossRef]
- Dissanayaka, D.M.; Udumann, S.S.; Atapattu, A.J. Synergies Between Tree Crops and Ecosystems in Tropical Agroforestry. Agroforestry 2024, 49–87. [Google Scholar] [CrossRef]
- Nair, R.; Mehta, C.R.; Sharma, S. Carbon sequestration in soils-A Review. Agric. Rev. 2015, 36, 81–99. [Google Scholar] [CrossRef]
- Aba, S.C.; Ndukwe, O.O.; Amu, C.J.; Baiyeri, K.P. The role of trees and plantation agriculture in mitigating global climate change. Afr. J. Food Agric. Nutr. Dev. 2017, 17, 12691–12707. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Soil organic carbon sequestration in agroforestry systems. A review. Agron. Sustain. Dev. 2014, 34, 443–454. [Google Scholar] [CrossRef]
- Kumar, B.M.; Nair, P.R. (Eds.) CARBON Sequestration Potential of Agroforestry Systems: Opportunities and Challenges; Advances in Agronomy; Springer: Dordrecht, The Netherlands, 2011; Volume 108, pp. 1–50. [Google Scholar] [CrossRef]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Lebrazi, S.; Fikri-Benbrahim, K. Potential of tree legumes in agroforestry systems and soil conservation. In Advances in Legumes for Sustainable Intensification; Academic Press: Cambridge, MA, USA, 2022; pp. 461–482. [Google Scholar]
- Brouwer, E. Report of sub-committee on constants and factors. In Proceedings of the 3rd Symposium on Energy Metabolism; Academic Press: Cambridge, MA, USA, 1965. [Google Scholar]
- Devendra, C.; Sevilla, C.C. Availability and use of feed resources in crop–animal systems in Asia. Agric. Syst. 2002, 71, 59–73. [Google Scholar] [CrossRef]
- Torres, C.M.; Jacovine, L.A.; Nolasco de Olivera Neto, S.; Fraisse, C.W.; Soares, C.P.; de Castro Neto, F.; Ferreira, L.R.; Zanuncio, J.C.; Lemes, P.G. Greenhouse gas emissions and carbon sequestration by agroforestry systems in southeastern Brazil. Sci. Rep. 2017, 7, 16738. [Google Scholar] [CrossRef]
- Meijer, S.S.; Sileshi, G.W.; Catacutan, D.; Nieuwenhuis, M. Agroforestry and deforestation in Malawi: Inter-linkages between attitudes, beliefs and behaviours. Agrofor. Syst. 2016, 90, 645–658. [Google Scholar] [CrossRef]
- Mbow, C.; Smithz, P.; Skole, D.; Duguma, L.; Bustamante, M. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 8–14. [Google Scholar] [CrossRef]
- Garrity, D.P.; Akinnifesi, F.K.; Ajayi, O.C.; Weldesemayat, S.G.; Mowo, J.G.; Kalinganire, A.; Larwanou, M.; Bayala, J. Evergreen Agriculture: A robust approach to sustainable food security in Africa. Food Secur. 2010, 2, 197–214. [Google Scholar] [CrossRef]
- Aju, P.C. The role of forestry in agriculture and food security. Am. J. Agric. 2014, 2, 109–121. [Google Scholar]
- Khan, Z.R.; Midega, C.A.; Pittchar, J.O.; Murage, A.W.; Birkett, M.A.; Bruce, T.J.; Pickett, J.A. Achieving food security for one million sub-Saharan African poor through push–pull innovation by 2020. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20120284. [Google Scholar] [CrossRef]
- Lenné, J.M.; Thomas, D. Integrating Crop—Livestock Research and Development in Sub-Saharan Africa: Option, Imperative or Impossible? Outlook Agric. 2006, 35, 167–175. [Google Scholar] [CrossRef]
- Akinnifesi, F.K.; Chirwa, P.W.; Ajayi, O.C.; Sileshi, G.; Matakala, P.; Kwesiga, F.R.; Harawa, H.; Makumba, W. Contributions of agroforestry research to livelihood of smallholder farmers in Southern Africa: 1. Taking stock of the adaptation, adoption and impact of fertilizer tree options. Agric. J. 2008, 3, 58–75. [Google Scholar]
- Sileshi, G.; Akinnifesi, F.K.; Ajayi, O.C.; Place, F. Meta-analysis of maize yield response to woody and herbaceous legumes in sub-Saharan Africa. Plant Soil 2008, 307, 1–9. [Google Scholar] [CrossRef]
- Rosenstock, T.S.; Dawson, I.K.; Aynekulu, E.; Chomba, S.; Degrande, A.; Fornace, K.; Jamnadass, R.; Kimaro, A.; Kindt, R.; Lamanna, C.; et al. A planetary health perspective on agroforestry in Sub-Saharan Africa. One Earth 2019, 1, 330–344. [Google Scholar] [CrossRef]
- Raj, A.; Jhariya, M.K.; Bargali, S.S. Bund Based Agroforestry Using Eucalyptus Species: A Review. Curr. Agric. Res. J. 2016, 4, 148–158. [Google Scholar] [CrossRef]
- Ponnusamy, K.; Devi, M.K. Impact of integrated farming system approach on doubling farmers’ income. Agric. Econ. Res. Rev. 2017, 30, 233–240. [Google Scholar] [CrossRef]
- Kouassi, J.L.; Kouassi, A.; Bene, Y.; Konan, D.; Tondoh, E.J.; Kouame, C. Exploring barriers to agroforestry adoption by cocoa farmers in South-Western Côte d’Ivoire. Sustainability 2021, 13, 13075. [Google Scholar] [CrossRef]
- Karunathilake, E.M.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Demestichas, K.; Daskalakis, E. Data lifecycle management in precision agriculture supported by information and communication technology. Agronomy 2020, 10, 1648. [Google Scholar] [CrossRef]
- Redhu, N.S.; Thakur, Z.; Yashveer, S.; Mor, P. Artificial intelligence: A way forward for agricultural sciences. In Bioinformatics in Agriculture; Academic Press: Cambridge, MA, USA, 2022; pp. 641–668. [Google Scholar] [CrossRef]
- Gómez-Carmona, O.; Buján-Carballal, D.; Casado-Mansilla, D.; López-de-Ipiña, D.; Cano-Benito, J.; Cimmino, A.; Poveda-Villalón, M.; García-Castro, R.; Almela-Miralles, J.; Apostolidis, D.; et al. Mind the gap: The AURORAL ecosystem for the digital transformation of smart communities and rural areas. Technol. Soc. 2023, 74, 102304. [Google Scholar] [CrossRef]
- Bezner Kerr, R.; Liebert, J.; Kansanga, M.; Kpienbaareh, D. Human and social values in agroecology: A review. Elem. Sci. Anth. 2022, 10, 00090. [Google Scholar] [CrossRef]
- Manono, B. Agro-ecological role of earthworms (Oligochaetes) in sustainable agriculture and nutrient use efficiency: A review. J. Agric. Ecol. Res. Int. 2016, 8, 1–18. [Google Scholar] [CrossRef]
- Scherr, S.J.; Shames, S.; Friedman, R. From climate-smart agriculture to climate-smart landscapes. Agric. Food Secur. 2012, 1, 12. [Google Scholar] [CrossRef]
- Manono, B.O.; Khan, S.; Kithaka, K.M. A Review of the Socio-Economic, Institutional, and Biophysical Factors Influencing Smallholder Farmers’ Adoption of Climate Smart Agricultural Practices in Sub-Saharan Africa. Earth 2025, 6, 48. [Google Scholar] [CrossRef]
- Sánchez, A.C.; Kamau, H.N.; Grazioli, F.; Jones, S.K. Financial profitability of diversified farming systems: A global meta-analysis. Ecol. Econ. 2022, 201, 107595. [Google Scholar] [CrossRef]
- Nuwarapaksha, T.D.; Udumann, S.S.; Dissanayaka, N.S.; Atapattu, A.J. Coconut-based livestock farming: A sustainable approach to enhancing food security in Sri Lanka. In Transitioning to Zero Hunger; MDPI Books: Basel, Switzerland, 2023; pp. 197–213. [Google Scholar]
- Lee, J.; Gereffi, G.; Beauvais, J. Global value chains and agrifood standards: Challenges and possibilities for smallholders in developing countries. Proc. Natl. Acad. Sci. USA 2012, 109, 12326–12331. [Google Scholar] [CrossRef]
- Sharma, P.K.; Bali, A.S.; Sharma, B.C. Effect of intercropping systems and fertility levels of winter maize (Zea mays L.) on production potential and nutrient uptake by succeeding maize crop. J. Pharm. Innov. 2022, 11, 1860–1866. [Google Scholar]
- Adeyemi, O.; Grove, I.; Peets, S.; Norton, T. Advanced monitoring and management systems for improving sustainability in precision irrigation. Sustainability 2017, 9, 353. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef]
- Berti, G.; Mulligan, C. Competitiveness of small farms and innovative food supply chains: The role of food hubs in creating sustainable regional and local food systems. Sustainability 2016, 8, 616. [Google Scholar] [CrossRef]
- Pretty, J. Intensification for redesigned and sustainable agricultural systems. Science 2018, 362, eaav0294. [Google Scholar] [CrossRef]
- Edwards, P. Aquaculture environment interactions: Past, present and likely future trends. Aquaculture 2015, 447, 2–14. [Google Scholar] [CrossRef]
- Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. Various natural and anthropogenic factors responsible for water quality degradation: A review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- Manono, B.O. Carbon dioxide, nitrous oxide and methane emissions from the Waimate District (New Zealand) pasture soils as influenced by irrigation, effluent dispersal and earthworms. Cogent Environ. Sci. 2016, 2, 1256564. [Google Scholar] [CrossRef]
- Emmerson, M.; Morales, M.B.; Oñate, J.J.; Batary, P.; Berendse, F.; Liira, J.; Aavik, T.; Guerrero, I.; Bommarco, R.; Eggers, S.; et al. How agricultural intensification affects biodiversity and ecosystem services. In Advances in Ecological Research; Academic Press: Cambridge, MA, USA, 2016; Volume 55, pp. 43–97. [Google Scholar] [CrossRef]
- Šūmane, S.; Kunda, I.; Knickel, K.; Strauss, A.; Tisenkopfs, T.; des Ios Rios, I.; Rivera, M.; Chebach, T.; Ashkenazy, A. Local and farmers’ knowledge matters! How integrating informal and formal knowledge enhances sustainable and resilient agriculture. J. Rural Stud. 2018, 59, 232–241. [Google Scholar] [CrossRef]
- Delphin, S.; Snyder, K.A.; Tanner, S.; Musálem, K.; Marsh, S.E.; Soto, J.R. Obstacles to the development of integrated land-use planning in developing countries: The case of Paraguay. Land 2022, 11, 1339. [Google Scholar] [CrossRef]
- Manono, B.O. New Zealand dairy farm effluent, irrigation and soil biota management for sustainability: Farmer priorities and monitoring. Cogent Food Agric. 2016, 2, 1221636. [Google Scholar] [CrossRef]
Benefit | How It Is Achieved | Effect | References |
---|---|---|---|
Provision of food and feed |
|
| [24,49,50,51] |
Improved soil health |
|
| [49,52,53,54,55,56,57] |
Provision of power |
|
| [46,58,59,60] |
Provision of cash flows |
|
| [46,61,62,63,64,65] |
Removing atmospheric CO2 |
|
| [66,67,68,69] |
Reclamation of degraded lands |
|
| [4,70] |
Enhanced biodiversity |
|
| [48,71,72,73,74,75] |
Efficient labor utilization |
|
| [36,76,77,78,79,80] |
Higher water productivity |
|
| [12,81] |
Promotes gender equality |
|
| [46,82] |
Increased productivity |
|
| [83,84,85] |
Controls pests and diseases |
|
| [49,57,86,87] |
Inclusion Criteria | Exclusion Criteria |
---|---|
Studies published in English | Studies published in other languages |
Studies focused on countries in the SSA region | Studies focused on other regions |
Studies relevant to ALF benefits | Studies not relevant to ALF benefits |
Studies that reported data relevant to at least one of the selected outcomes | Studies that did not report on any relevant data. |
Peer reviewed studies | Grey literature and reports |
Agroforestry System/Practice | Description | References |
---|---|---|
Home gardens | These are perennial crops cultivated near the homestead in association with livestock. | [60,90] |
Alley cropping/Hedgerow intercropping | In these systems, rows of woody plants are grown along annual crops in alleys. Trees are spaced at regular intervals and are pruned regularly to reduce shading and provide mulch for the cultivated alleys. The mulch reduces soil water loss (evaporation), suppresses weeds and provides organic matter into the soil. When nitrogen fixing plants are used, they naturally fix nitrogen to the soil. | [91,92,93,94] |
Perennial tree-crop systems | Cash crops such as coffee, tea, cacao and coconut are intercropped with a multipurpose tree or shade tolerant herbaceous crops as the main components. The cash crops generate income. This system optimizes land use to enhance productivity and ecological resilience. | [93,95,96,97,98] |
Woodlots | This is a section within the farm entirely dedicated to trees. It can comprise either single or mixed tree species. They can sometimes be intercropped with vegetables in the initial years before they fully establish. | [99,100,101,102] |
Agroforestry Fuelwood Production | In this system, several fuelwood species are interplanted on or near the farming area. The main purpose is to generate firewood. However, the trees can serve as barriers, windbreaks and boundary markers. They serve the farmer by providing their energy needs while supplying their traditional agricultural needs. Firewood trees frequently utilized include Eucalyptus tereticornis, Acacia nilotica, Casuarina equisetifolia, Prosopis juliflora, Cassia siamea, Dalbergia sissoo, and Albizia lebbek. | [103,104] |
Windbreaks | This is the deliberate cultivation of trees to create barriers whose main purpose is to protect crops from wind damage and soil from erosion. They also create a microclimate that optimizes crop growth within the agroforestry framework. | [105,106] |
Scattered trees on farm | Scattered trees grown on cropland. They may either be random or linear. | [100,107] |
Silvopastoral systems | This system involves the integration of trees with livestock. Animals either roam and graze under natural tree stands in croplands or are fed with forage from farm-grown fodder trees/shrubs. | [46,56,89,108,109,110,111] |
Agrisilviculture | This system integrates trees with crops within the same land to boost overall productivity and sustainability. | [46] |
Parkland agroforestry systems | In this system, scattered multipurpose trees are retained on cultivated or recently fallowed land. Crops are grown beneath the tree crowns. | [112,113,114] |
Boundary planting | In this system, trees are planted in rows on farm boundaries. Other products can be derived from the tree’s pruning. | [100,115,116,117] |
Improved fallow | In this system, fast-growing tree species are grown on land rested from cultivation for varied timespans (single to multi-year). The objective is to enhance soil fertility by fixing nitrogen, restoring the depleted nutrients and adding organic matter. Trees commonly used include Calliandra calothyrsus, Sesbania sesban, and Prosopis chilensis. | [20,73,102,117,118,119,120] |
Fruit tree-based agroforestry | In this system, annual or perennial crops are integrated with fruit plants on the same land area. Examples are orchards or low intensity home gardens with apple (Malus domestica), mango (Mangifera indica), avocado (Persea americana) intercropped with staples. | [121,122,123] |
Trees on soil conservation structures | This system involves planting trees on soil-conservation structures with the aim of mitigating soil loss, enhancing soil health while stabilizing the structures. This way, land utilization is maximized. Examples of these systems include tree strips, grass strips with trees, planted trees on bench terraces and progressive terraces or soil bunds. This system enhances the ecological resilience of the land. | [18,124,125,126] |
Taungya system | This system originated from Southeast Asia but is widely used in SSA. It entails concurrent cultivation of trees and crops on the same land area. Trees are planted and crops are cultivated between rows of the newly established trees. As the trees mature, farmers generate income from cultivated crops. When the trees mature, crop cultivation stops and allows the establishment of a forest. Mature trees yield forest products such as timber. | [127,128,129] |
Multispecies Tree Gardens | This involves cultivating a wide variety of tree species together. The objective is to produce food, wood products, and livestock fodder. They are often irregularly dispersed or arranged on terraces, bunds. In some cases, they are planted on boundaries to demarcate land, as a fence or providing other social values. Common woody species planted in this system include Syzygium aromaticum, Acacia catechu, Acacia albida, Cocos nucifera, Casuarina equisetifolia, Artocarpus spp., Leucaena leucocephala, Areca catechu, Phoenix dactilifera, Cassia siamea, and Mangifera indica. | [130,131,132,133] |
Shelterbelts | This agroforestry system involves planting trees for the purpose of providing protection through enhanced microclimate conditions and landscape resilience. For example, they can protect crops from wind damage. | [134,135] |
Riparian buffer | In this system, tree components are deliberately integrated along water bodies. The intention is to protect aquatic ecosystems and enhance water quality by reducing nutrient runoff and sedimentation. | [116,131] |
Agroforestry Practice | Aboveground Carbon | Soil Organic Carbon | References |
---|---|---|---|
Boundary planting | 26.7 ± 14.1 | 112.7 | [100,115,116] |
Hedgerows | 2.5 ± 0.2 | [116] | |
Homegarden agroforestry | 28.2 ± 6.0 | 115.7 ± 15.1 | [100,115,164] |
Improved fallow | 14.1 ± 1.7 | [165,166] | |
Parkland systems | 4.9 ± 2.5 | 41.6 ± 11.3 | [115,166] |
Perennial treecrop systems | 23.7 ± 10.0 | 110.9 ± 30.3 | [164] |
Scattered trees on farm | 8.2 ± 1.4 | 52.5 ± 23.4 | [100,167] |
Silvopasture | 2.1 ± 0.01 | 73.0 ± 35.6 | [100] |
Woodlot | 25.0 ± 5.6 | 58.6 ± 8.5 | [115] |
Factor | Description | References |
---|---|---|
Land use changes | Changes in land use, such as deforestation or conversion of land for agriculture, can physically divide areas and disrupt the interconnectedness of the ALF nexus. | [76,117,143] |
Habitat fragmentation | Habitat fragmentation, whether naturally or through human activity, can isolate different components of the ecosystem, reducing the effectiveness of the nexus. | [46] |
Stakeholder disagreements | Differing values and priorities among stakeholders (farmers, foresters, etc.) can lead to fragmented approaches and hinder collaborative solutions. | [19,129] |
Socio-economic factors | Issues like population growth, land ownership patterns, and market dynamics can contribute to the division of land and resources, impacting the ALF nexus. Short term gain over long term sustainability | [46] |
Policy fragmentation | Separately developed policies for agriculture, livestock, and forestry can inadvertently create silos and impede integrated management. | [190] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manono, B.O.; Gichana, Z. Agriculture-Livestock-Forestry Nexus: Pathways to Enhanced Incomes, Soil Health, Food Security and Climate Change Mitigation in Sub-Saharan Africa. Earth 2025, 6, 74. https://doi.org/10.3390/earth6030074
Manono BO, Gichana Z. Agriculture-Livestock-Forestry Nexus: Pathways to Enhanced Incomes, Soil Health, Food Security and Climate Change Mitigation in Sub-Saharan Africa. Earth. 2025; 6(3):74. https://doi.org/10.3390/earth6030074
Chicago/Turabian StyleManono, Bonface O., and Zipporah Gichana. 2025. "Agriculture-Livestock-Forestry Nexus: Pathways to Enhanced Incomes, Soil Health, Food Security and Climate Change Mitigation in Sub-Saharan Africa" Earth 6, no. 3: 74. https://doi.org/10.3390/earth6030074
APA StyleManono, B. O., & Gichana, Z. (2025). Agriculture-Livestock-Forestry Nexus: Pathways to Enhanced Incomes, Soil Health, Food Security and Climate Change Mitigation in Sub-Saharan Africa. Earth, 6(3), 74. https://doi.org/10.3390/earth6030074