Land Subsidence Susceptibility Modelling in Attica, Greece: A Machine Learning Approach Using InSAR and Geospatial Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation
3. Methodology
3.1. SBAS-InSAR Technology
3.2. InSAR Velocity Classification Criteria
3.3. Ensemble Learning Models
3.3.1. Random Forest (RF)
3.3.2. Extreme Gradient Boosting (XGB)
3.3.3. Model Parameter Tuning
3.3.4. Model Training
3.3.5. Model Validation
4. Results and Discussion
4.1. SBAS-InSAR
4.2. Model Accuracy Validation
4.3. Land Subsidence Susceptibility (LSS) Mapping
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Galloway, D.L.; Burbey, T.J. Review: Regional Land Subsidence Accompanying Groundwater Extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Holzer, T.L.; Galloway, D.L. Impacts of Land Subsidence Caused by Withdrawal of Underground Fluids in the United States. In Humans as Geologic Agents; Ehlen, J., Haneberg, W.C., Larson, R.A., Eds.; Geological Society of America: Boulder, CO, USA, 2005; Volume 16, pp. 87–99. ISBN 978-0-8137-4116-1. [Google Scholar]
- Tomás, R.; Romero, R.; Mulas, J.; Marturià, J.J.; Mallorquí, J.J.; Lopez-Sanchez, J.M.; Herrera, G.; Gutiérrez, F.; González, P.J.; Fernández, J.; et al. Radar Interferometry Techniques for the Study of Ground Subsidence Phenomena: A Review of Practical Issues through Cases in Spain. Environ. Earth Sci. 2014, 71, 163–181. [Google Scholar] [CrossRef]
- Bianchini, S.; Moretti, S. Analysis of Recent Ground Subsidence in the Sibari Plain (Italy) by Means of Satellite SAR Interferometry-Based Methods. Int. J. Remote Sens. 2015, 36, 4550–4569. [Google Scholar] [CrossRef]
- Pradhan, B.; Abokharima, M.H.; Jebur, M.N.; Tehrany, M.S. Land Subsidence Susceptibility Mapping at Kinta Valley (Malaysia) Using the Evidential Belief Function Model in GIS. Nat. Hazards 2014, 73, 1019–1042. [Google Scholar] [CrossRef]
- Solari, L.; Ciampalini, A.; Raspini, F.; Bianchini, S.; Moretti, S. PSInSAR Analysis in the Pisa Urban Area (Italy): A Case Study of Subsidence Related to Stratigraphical Factors and Urbanization. Remote Sens. 2016, 8, 120. [Google Scholar] [CrossRef]
- Lee, S.; Park, I. Application of Decision Tree Model for the Ground Subsidence Hazard Mapping near Abandoned Underground Coal Mines. J. Environ. Manag. 2013, 127, 166–176. [Google Scholar] [CrossRef]
- Ng, A.H.-M.; Ge, L.; Li, X.; Abidin, H.Z.; Andreas, H.; Zhang, K. Mapping Land Subsidence in Jakarta, Indonesia Using Persistent Scatterer Interferometry (PSI) Technique with ALOS PALSAR. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 232–242. [Google Scholar] [CrossRef]
- Ittycheria, N.; Vaka, D.S.; Rao, Y.S. Time Series Analysis of Surface Deformation of Bengaluru City Using Sentinel-1 Images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 473–477. [Google Scholar] [CrossRef]
- Notti, D.; Mateos, R.M.; Monserrat, O.; Devanthéry, N.; Peinado, T.; Roldán, F.J.; Fernández-Chacón, F.; Galve, J.P.; Lamas, F.; Azañón, J.M. Lithological Control of Land Subsidence Induced by Groundwater Withdrawal in New Urban AREAS (Granada Basin, SE Spain). Multiband DInSAR Monitoring. Hydrol. Process. 2016, 30, 2317–2331. [Google Scholar] [CrossRef]
- Pulido-Bosch, A.; Delgado, J.; Sola, F.; Vallejos, Á.; Vicente, F.; López-Sánchez, J.M.; Mallorquí, J.J. Identification of Potential Subsidence Related to Pumping in the Almería Basin (SE Spain). Hydrol. Process. 2012, 26, 731–740. [Google Scholar] [CrossRef]
- Bozzano, F.; Esposito, C.; Franchi, S.; Mazzanti, P.; Perissin, D.; Rocca, A.; Romano, E. Analysis of a Subsidence Process by Integrating Geological and Hydrogeological Modelling with Satellite InSAR Data. In Engineering Geology for Society and Territory—Volume 5; Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., Luino, F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 155–159. [Google Scholar]
- Julio-Miranda, P.; Ortíz-Rodríguez, A.J.; Palacio-Aponte, A.G.; López-Doncel, R.; Barboza-Gudiño, R. Damage Assessment Associated with Land Subsidence in the San Luis Potosi-Soledad de Graciano Sanchez Metropolitan Area, Mexico, Elements for Risk Management. Nat. Hazards 2012, 64, 751–765. [Google Scholar] [CrossRef]
- Abidin, H.Z.; Andreas, H.; Gumilar, I.; Sidiq, T.P.; Fukuda, Y. Land Subsidence in Coastal City of Semarang (Indonesia): Characteristics, Impacts and Causes. Geomat. Nat. Hazards Risk 2013, 4, 226–240. [Google Scholar] [CrossRef]
- Motagh, M.; Djamour, Y.; Walter, T.R.; Wetzel, H.-U.; Zschau, J.; Arabi, S. Land Subsidence in Mashhad Valley, Northeast Iran: Results from InSAR, Levelling and GPS. Geophys. J. Int. 2007, 168, 518–526. [Google Scholar] [CrossRef]
- Cian, F.; Blasco, J.M.D.; Carrera, L. Sentinel-1 for Monitoring Land Subsidence of Coastal Cities in Africa Using PSInSAR: A Methodology Based on the Integration of SNAP and StaMPS. Geosciences 2019, 9, 124. [Google Scholar] [CrossRef]
- Hu, B.; Chen, J.; Zhang, X. Monitoring the Land Subsidence Area in a Coastal Urban Area with InSAR and GNSS. Sensors 2019, 19, 3181. [Google Scholar] [CrossRef] [PubMed]
- Kouhartsiouk, D.; Perdikou, S. The Application of DInSAR and Bayesian Statistics for the Assessment of Landslide Susceptibility. Nat. Hazards 2021, 105, 2957–2985. [Google Scholar] [CrossRef]
- Vaka, D.S.; Sharma, S.; Rao, Y. Comparison of HH and VV Polarizations for Deformation Estimation Using Persistent Scatterer Interferometry. In Proceedings of the 38th Asian Conference on Remote Sensing—Space Applications: Touching Human Lives, ACRS, New Delhi, India, 23–27 October 2017. [Google Scholar]
- Chen, X.; Achilli, V.; Fabris, M.; Menin, A.; Monego, M.; Tessari, G.; Floris, M. Combining Sentinel-1 Interferometry and Ground-Based Geomatics Techniques for Monitoring Buildings Affected by Mass Movements. Remote Sens. 2021, 13, 452. [Google Scholar] [CrossRef]
- Yaragunda, V.R.; Oikonomou, E. Monitoring the Los (Line of Sight) Deformation of the Corinth Canal, Greece Using SBAS and GNSS Techniques. In Proceedings of the IGARSS 2024—2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 11056–11061. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A New Method for Measuring Deformation on Volcanoes and Other Natural Terrains Using InSAR Persistent Scatterers. Geophys. Res. Lett. 2004, 31, L23611. [Google Scholar] [CrossRef]
- Ramirez, R.A.; Abdullah, R.E.E.; Rubio, C.J.P. S1-PSInSAR Monitoring and Hyperbolic Modeling of Nonlinear Ground Subsidence in Naga City, Cebu Island in The Philippines. GEOMATE J. 2022, 23, 102–109. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, Y.; Zeng, R.; Yang, Z.; Chen, X.; Zhao, F.; Meng, X. Detection of Land Subsidence Associated with Land Creation and Rapid Urbanization in the Chinese Loess Plateau Using Time Series InSAR: A Case Study of Lanzhou New District. Remote Sens. 2018, 10, 270. [Google Scholar] [CrossRef]
- Devaraj, S.; Yarrakula, K.; Martha, T.R.; Murugesan, G.P.; Vaka, D.S.; Surampudi, S.; Wadhwa, A.; Loganathan, P.; Budamala, V. Time Series SAR Interferometry Approach for Landslide Identification in Mountainous Areas of Western Ghats, India. J. Earth Syst. Sci. 2022, 131, 133. [Google Scholar] [CrossRef]
- Vaka, D.S.; Rao, Y.S.; Bhattacharya, A. Time Series Analysis of the Pre-Seismic and Post-Seismic Surface Deformation of the 2017 Iran–Iraq Earthquake Derived from Sentinel-1 InSAR Data. J. Earth Syst. Sci. 2023, 132, 64. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Arabameri, A.; Saha, S.; Roy, J.; Tiefenbacher, J.P.; Cerda, A.; Biggs, T.; Pradhan, B.; Thi Ngo, P.T.; Collins, A.L. A Novel Ensemble Computational Intelligence Approach for the Spatial Prediction of Land Subsidence Susceptibility. Sci. Total Environ. 2020, 726, 138595. [Google Scholar] [CrossRef]
- Jin, B.; Yin, K.; Li, Q.; Gui, L.; Yang, T.; Zhao, B.; Guo, B.; Zeng, T.; Ma, Z. Susceptibility Analysis of Land Subsidence along the Transmission Line in the Salt Lake Area Based on Remote Sensing Interpretation. Remote Sens. 2022, 14, 3229. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Feizizadeh, B.; Blaschke, T. An Interval Matrix Method Used to Optimize the Decision Matrix in AHP Technique for Land Subsidence Susceptibility Mapping. Environ. Earth Sci. 2018, 77, 584. [Google Scholar] [CrossRef]
- Ranjgar, B.; Razavi-Termeh, S.V.; Foroughnia, F.; Sadeghi-Niaraki, A.; Perissin, D. Land Subsidence Susceptibility Mapping Using Persistent Scatterer SAR Interferometry Technique and Optimized Hybrid Machine Learning Algorithms. Remote Sens. 2021, 13, 1326. [Google Scholar] [CrossRef]
- Mohammady, M.; Pourghasemi, H.R.; Amiri, M. Land Subsidence Susceptibility Assessment Using Random Forest Machine Learning Algorithm. Environ. Earth Sci. 2019, 78, 503. [Google Scholar] [CrossRef]
- Oh, H.-J.; Syifa, M.; Lee, C.-W.; Lee, S. Land Subsidence Susceptibility Mapping Using Bayesian, Functional, and Meta-Ensemble Machine Learning Models. Appl. Sci. 2019, 9, 1248. [Google Scholar] [CrossRef]
- Bui, D.T.; Tsangaratos, P.; Nguyen, V.-T.; Liem, N.V.; Trinh, P.T. Comparing the Prediction Performance of a Deep Learning Neural Network Model with Conventional Machine Learning Models in Landslide Susceptibility Assessment. CATENA 2020, 188, 104426. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Du, J.; Zhang, L.; Song, Y.; Sun, G. Multi-Geohazards Susceptibility Mapping Based on Machine Learning—A Case Study in Jiuzhaigou, China. Nat. Hazards 2020, 102, 851–871. [Google Scholar] [CrossRef]
- Daviran, M.; Shamekhi, M.; Ghezelbash, R.; Maghsoudi, A. Landslide Susceptibility Prediction Using Artificial Neural Networks, SVMs and Random Forest: Hyperparameters Tuning by Genetic Optimization Algorithm. Int. J. Environ. Sci. Technol. 2023, 20, 259–276. [Google Scholar] [CrossRef]
- Huang, F.; Yan, J.; Fan, X.; Yao, C.; Huang, J.; Chen, W.; Hong, H. Uncertainty Pattern in Landslide Susceptibility Prediction Modelling: Effects of Different Landslide Boundaries and Spatial Shape Expressions. Geosci. Front. 2022, 13, 101317. [Google Scholar] [CrossRef]
- Kadavi, P.R.; Lee, C.-W.; Lee, S. Landslide-Susceptibility Mapping in Gangwon-Do, South Korea, Using Logistic Regression and Decision Tree Models. Environ. Earth Sci. 2019, 78, 116. [Google Scholar] [CrossRef]
- Arabameri, A.; Saha, S.; Roy, J.; Chen, W.; Blaschke, T.; Tien Bui, D. Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran. Remote Sens. 2020, 12, 475. [Google Scholar] [CrossRef]
- Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Bui, D.T.; Duan, Z.; Ma, J. A Comparative Study of Logistic Model Tree, Random Forest, and Classification and Regression Tree Models for Spatial Prediction of Landslide Susceptibility. CATENA 2017, 151, 147–160. [Google Scholar] [CrossRef]
- Deng, H.; Wu, X.; Zhang, W.; Liu, Y.; Li, W.; Li, X.; Zhou, P.; Zhuo, W. Slope-Unit Scale Landslide Susceptibility Mapping Based on the Random Forest Model in Deep Valley Areas. Remote Sens. 2022, 14, 4245. [Google Scholar] [CrossRef]
- Vaka, D.S.; Yaragunda, V.R.; Perdikou, S.; Papanicolaou, A. InSAR Integrated Machine Learning Approach for Landslide Susceptibility Mapping in California. Remote Sens. 2024, 16, 3574. [Google Scholar] [CrossRef]
- Chai, L.; Xie, X.; Wang, C.; Tang, G.; Song, Z. Ground Subsidence Risk Assessment Method Using PS-InSAR and LightGBM: A Case Study of Shanghai Metro Network. Int. J. Digit. Earth 2024, 17, 2297842. [Google Scholar] [CrossRef]
- Zhao, F.; Miao, F.; Wu, Y.; Xiong, Y.; Gong, S.; Sun, D. Land Subsidence Susceptibility Mapping in Urban Settlements Using Time-Series PS-InSAR and Random Forest Model. Gondwana Res. 2024, 125, 406–424. [Google Scholar] [CrossRef]
- Bammou, Y.; Benzougagh, B.; Ouallali, A.; Kader, S.; Raougua, M.; Igmoullan, B. Improving Landslide Susceptibility Mapping in Semi-Arid Regions Using Machine Learning and Geospatial Techniques. DYSONA Appl. Sci. 2025, 6, 269–290. [Google Scholar] [CrossRef]
- Mohammady, M.; Pourghasemi, H.R.; Amiri, M. Assessment of Land Subsidence Susceptibility in Semnan Plain (Iran): A Comparison of Support Vector Machine and Weights of Evidence Data Mining Algorithms. Nat. Hazards 2019, 99, 951–971. [Google Scholar] [CrossRef]
- Yu, H.; Arabameri, A.; Costache, R.; Crăciun, A.; Arora, A. Land Subsidence Susceptibility Assessment Using Advanced Artificial Intelligence Models. Geocarto Int. 2022, 37, 18067–18093. [Google Scholar] [CrossRef]
- Gounaridis, D.; Symeonakis, E.; Chorianopoulos, I.; Koukoulas, S. Incorporating Density in Spatiotemporal Land Use/Cover Change Patterns: The Case of Attica, Greece. Remote Sens. 2018, 10, 1034. [Google Scholar] [CrossRef]
- Kaitantzian, A.; Loupasakis, C. Preliminary Investigation of the Land Subsidence Phenomena Occurring at the Industrial-Commersial Area of Eleonas, Athens, Greece. Bull. Geol. Soc. Greece 2017, 50, 1703. [Google Scholar] [CrossRef]
- Parcharidis, I.; Lagios, E.; Sakkas, V.; Raucoules, D.; Feurer, D.; Mouélic, S.; King, C.; Carnec, C.; Novali, F.; Ferretti, A.; et al. Subsidence Monitoring within the Athens Basin (Greece) Using Space Radar Interferometric Techniques. Earth Planets Space 2006, 58, 505–513. [Google Scholar] [CrossRef]
- Tavoularis, N.; Papathanassiou, G.; Ganas, A.; Argyrakis, P. Development of the Landslide Susceptibility Map of Attica Region, Greece, Based on the Method of Rock Engineering System. Land 2021, 10, 148. [Google Scholar] [CrossRef]
- Zhou, Z.; Whittaker, A.C.; Bell, R.E.; Hampson, G.J. Unravelling Tectonic and Lithological Effects on Transient Landscapes in the Gulf of Corinth, Greece. Basin Res. 2024, 36, e12901. [Google Scholar] [CrossRef]
- Photiades, A.; Zananiri, I. Digital Geological Map of Greece in Scale 1:1000 000, Harmonized To One Geology Europe. In Proceedings of the 8th EUREGEO Conference—Geological 3D Modelling, Barcelona, Spain, 15–17 June 2015; pp. 117–118. Available online: http://www.researchgate.net/publication/311885407 (accessed on 20 June 2025).
- Ganas, A. NOAFAULTS KMZ Layer, Version 5.0; Zenodo: Athens, Greece, 2023. [Google Scholar]
- Ashraf, T.; Yin, F.; Liu, L.; Zhang, Q. Land Subsidence Detection Using SBAS- and Stacking-InSAR with Zonal Statistics and Topographic Correlations in Lakhra Coal Mines, Pakistan. Remote Sens. 2024, 16, 3815. [Google Scholar] [CrossRef]
- Guo, J.; Hu, J.; Li, B.; Zhou, L.; Wang, W. Land Subsidence in Tianjin for 2015 to 2016 Revealed by the Analysis of Sentinel-1A with SBAS-InSAR. J. Appl. Remote Sens. 2017, 11, 026024. [Google Scholar] [CrossRef]
- Hakim, W.L.; Achmad, A.R.; Lee, C.-W. Land Subsidence Susceptibility Mapping in Jakarta Using Functional and Meta-Ensemble Machine Learning Algorithm Based on Time-Series InSAR Data. Remote Sens. 2020, 12, 3627. [Google Scholar] [CrossRef]
- Zhao, R.; Arabameri, A.; Santosh, M. Land Subsidence Susceptibility Mapping: A New Approach to Improve Decision Stump Classification (DSC) Performance and Combine It with Four Machine Learning Algorithms. Environ. Sci. Pollut. Res. 2024, 31, 15443–15466. [Google Scholar] [CrossRef]
- Moretto, S.; Bozzano, F.; Mazzanti, P. The Role of Satellite InSAR for Landslide Forecasting: Limitations and Openings. Remote Sens. 2021, 13, 3735. [Google Scholar] [CrossRef]
- Yao, Z.; Chen, M.; Zhan, J.; Zhuang, J.; Sun, Y.; Yu, Q.; Yu, Z. Refined Landslide Susceptibility Mapping by Integrating the SHAP-CatBoost Model and InSAR Observations: A Case Study of Lishui, Southern China. Appl. Sci. 2023, 13, 12817. [Google Scholar] [CrossRef]
- Huang, F.; Xie, G.; Xiao, R. Research on Ensemble Learning. In Proceedings of the 2009 International Conference on Artificial Intelligence and Computational Intelligence, Shanghai, China, 7–8 November 2009; Volume 3, pp. 249–252. [Google Scholar]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Nam, K.; Kim, J.; Chae, B.-G. Exploring Class Imbalance with Under-Sampling, over-Sampling, and Hybrid Sampling Based on Mahalanobis Distance for Landslide Susceptibility Assessment: A Case Study of the 2018 Iburi Earthquake Induced Landslides in Hokkaido, Japan. Geosci. J. 2024, 28, 71–94. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, S.; Zhu, Z.; Ma, H.; He, T. Soil Moisture Content Retrieval from Landsat 8 Data Using Ensemble Learning. ISPRS J. Photogramm. Remote Sens. 2022, 185, 32–47. [Google Scholar] [CrossRef]
- Ahmad, M.; Al-Mansob, R.A.; Kashyzadeh, K.R.; Keawsawasvong, S.; Sabri Sabri, M.M.; Jamil, I.; Alguno, A.C. Extreme Gradient Boosting Algorithm for Predicting Shear Strengths of Rockfill Materials. Complexity 2022, 2022, 9415863. [Google Scholar] [CrossRef]
- Sharma, N.; Saharia, M.; Ramana, G.V. High Resolution Landslide Susceptibility Mapping Using Ensemble Machine Learning and Geospatial Big Data. CATENA 2024, 235, 107653. [Google Scholar] [CrossRef]
- Papoutsis, I.; Charalabos, K.; Paradissis, D. Multi-Stack Persistent Scatterer Interferometry Analysis in Wider Athens, Greece. Remote Sens. 2017, 9, 276. [Google Scholar] [CrossRef]
- Mattei, M.; D’Agostino, N.; Zananiri, I.; Kondopoulou, D.; Pavlides, S.; Spatharas, V. Tectonic Evolution of Fault-Bounded Continental Blocks: Comparison of Paleomagnetic and GPS Data in the Corinth and Megara Basins (Greece). J. Geophys. Res. Solid. Earth 2004, 109, B02106. [Google Scholar] [CrossRef]
- Pallikarakis, A.; Papanikolaοu, I.; Triantaphyllou, M.; Grützner, C.; Migiros, G.; Reicherter, K.; Mason, J.; Schneiderwind, S. Magnetic Susceptibility Changes Correlated with Paleoenvironmental and Lithological Changes, Within Borehole Cores on Either Sides of The Kalamaki-Isthmia Fault in Corinth Canal. Bull. Geol. Soc. Greece 2017, 50, 104. [Google Scholar] [CrossRef]
- Mariolakos, I.; Stiros, S. Quaternary Deformation of the Isthmus and Gulf of Corinthos (Greece). Geology 1987, 15, 225–228. [Google Scholar] [CrossRef]
- Daskalaki, P.; Voudouris, K. Groundwater Quality of Porous Aquifers in Greece: A Synoptic Review. Environ. Geol. 2008, 54, 505–513. [Google Scholar] [CrossRef]
- Kallioras, A.; Pliakas, F.-K.; Marinos, P. Groundwater Resources Assessment of Granular Aquifers in Greece. Bull. Geol. Soc. Greece 2017, 50, 701. [Google Scholar] [CrossRef]
- Bathrellos, G.; Skilodimou, H.; Kelepertsis, A.; Alexakis, D.; Chrisanthaki, I.; Archonti, D. Environmental Research of Groundwater in the Urban and Suburban Areas of Attica Region, Greece. Environ. Geol. 2008, 56, 11–18. [Google Scholar] [CrossRef]
- Kourgialas, N.N. A Critical Review of Water Resources in Greece: The Key Role of Agricultural Adaptation to Climate-Water Effects. Sci. Total Environ. 2021, 775, 145857. [Google Scholar] [CrossRef]
- Deligiannakis, G.; Papanikolaou, I.D.; Roberts, G. Fault Specific GIS Based Seismic Hazard Maps for the Attica Region, Greece. Geomorphology 2018, 306, 264–282. [Google Scholar] [CrossRef]
- Ganas, A.; Pavlides, S.; Karastathis, V. DEM-Based Morphometry of Range-Front Escarpments in Attica, Central Greece, and Its Relation to Fault Slip Rates. Geomorphology 2005, 65, 301–319. [Google Scholar] [CrossRef]
- Grützner, C.; Schneiderwind, S.; Papanikolaou, I.; Deligiannakis, G.; Pallikarakis, A.; Reicherter, K. New Constraints on Extensional Tectonics and Seismic Hazard in Northern Attica, Greece: The Case of the Milesi Fault. Geophys. J. Int. 2016, 204, 180–199. [Google Scholar] [CrossRef]
- Papanikolaou, D.; Papanikolaou, I. Geological, Geomorphological and Tectonic Structure of NE Attica and Seismic Hazard Implications for the Northern Edge of the Athens Plain. Bull. Geol. Soc. Greece 2007, 40, 425–438. [Google Scholar] [CrossRef]
Factor | Classification Criteria | Categories |
---|---|---|
Slope | ≤2° | Flat |
2–10° | Moderate | |
10–20° | Steep | |
>20° | Very Steep | |
Aspect | −1 | Flat |
0–22.5 | North | |
22.5–67.5 | Northeast | |
67.5–112.5 | East | |
112.5–157.5 | Southeast | |
157.5–202.5 | South | |
202.5–247.5 | Southwest | |
247.5–292.5 | West | |
292.5–337.5 | Northwest | |
337.5–360 | North | |
Curvature | ≤−20 | Concave |
−20 to −5 | Slightly Concave | |
−5 to 5 | Flat | |
5 to 20 | Slightly Convex | |
>20 | Convex | |
Plan Curvature | ≤−15 | Strongly Concave |
−15 to −5 | Moderately Concave | |
−5 to 5 | Flat | |
5 to 15 | Moderately Convex | |
>15 | Strongly Convex | |
Profile Curvature | ≤−15 | Strongly Concave |
−15 to −5 | Moderately Concave | |
−5 to 5 | Flat | |
5 to 15 | Moderately Convex | |
>15 | Strongly Convex | |
Flow Direction | Classified using eight directional values | 1, 2, 4, 8, 16, 32, 64, 128 (Directional flow values) |
Distance to Streams (m) | ≤100 | Very close |
100–500 | Close | |
500–1000 | Moderate | |
1000–2000 | Far | |
>2000 | Very far | |
Distance to Roads (m) | ≤250 | Very close |
250–500 | Close | |
500–1000 | Moderate | |
1000–1500 | Far | |
>1500 | Very far | |
NDVI | <0.0 | Bare/Sparse |
0.0–0.2 | Low | |
0.2–0.4 | Moderate | |
0.4–0.6 | High | |
>0.6 | Very High | |
Geology | Categorical data with geological formations | 1. Limestones |
2. Limestone and Marbles | ||
3. Hornstones | ||
4. Tertiary and Quaternary deposits | ||
5. Limestones and Dolomites | ||
6. Flysch | ||
7. Marine Deposits | ||
8. Ophiolites | ||
9. Schists and Limestones | ||
10. Clastic and conglomerates | ||
11. Metamorphic Rocks | ||
Groundwater Level Change | ≤50 | Minimal |
50–100 | Low | |
100–150 | Moderate | |
150–200 | High | |
>200 | Very High | |
Land Use | Categorical land use types | Water |
Trees | ||
Built-up | ||
Croplands | ||
Rangelands | ||
Bare Ground | ||
Rainfall (mm/y) | ≤100 | Low |
100–200 | Moderate | |
200–300 | High | |
>300 | Very High | |
Distance to Faults (m) | ≤2000 | Very Close |
2000–5000 | Close | |
5000–10000 | Moderate | |
10000–20000 | Far | |
>20000 | Very far |
Classification | Susceptibility Class |
---|---|
Velocity Interval: from 0 to 2 mm/y | Stable/Negligible susceptibility—No significant ground motion detectable at this scale |
Velocity Interval: from −2 to −4 mm/y | Low susceptibility |
Velocity Interval: from −4 to −7 mm/y | Moderate susceptibility |
Velocity Interval: <−7 mm/y | High susceptibility |
Study | Velocity Classification | Susceptibility |
---|---|---|
Current Study | 0 to −2.0 mm/y | Stable/Negligible—No significant ground motion detectable at this scale |
−2.0 to −4.0 mm/y | Low | |
−4.0 to −7.0 mm/y | Moderate | |
<−7.0 mm/y | High | |
Yao et al. [61] | >−2.46 mm/y | Very low |
−2.46 to −5.39 | Low | |
−5.39 to −9.14 | Moderate | |
−9.14 to −14.88 | High | |
<−14.88 | Very high | |
Chai et al. [44] | >0 mm/y | Very low |
0 to −5 mm/y | low | |
−5 to −10 mm/y | Medium | |
−10 to −20 mm/y | High | |
<−20 mm/y | Very high | |
Zhao et al. [45] | −6 mm/y | Low |
−8 mm/y | Moderate | |
−10 mm/y | High | |
−12 mm/y | Very high | |
Vaka et al. [43] | 0 to −2 mm/y | No |
2 to −5 mm/y | Low | |
5 to −15 mm/y | Moderate | |
<−15 mm/y | High |
Factors | Point A (−16.32 mm/yr) | Point B (−4.14 mm/yr.) | Point C (−5.95 mm/yr.) | Point D (−13.13 mm/yr.) | Point E (−10.48 mm/yr.) | Point F (−3.03 mm/yr.) |
---|---|---|---|---|---|---|
Slope | 1.39 (≤2°—Flat) | 17.71 (>20°—Very Steep) | 0 (≤2°—Flat) | 8.29 (2 to 10°—Moderate) | 2.42 (2 to 10°—Moderate) | 0.65 (≤2°—Flat) |
Aspect | 115.7 (Southeast) | 59.51 (Northeast) | −1 (Flat) | 344.85 (North) | 172.4 (South) | 74.8 (East) |
Curvature | −0.9 (−5 to 5 Flat) | 0.1 (−5 to 5 Flat) | 0 (−5 to 5 Flat) | −0.44 (−5 to 5 Flat) | −0.19 (−5 to 5 Flat) | 0.22 (−5 to 5 Flat) |
Plan Curvature | −0.72 (−5 to 5 Flat) | 0.19 (−5 to 5 Flat) | 0 (−5 to 5 Flat) | −0.12 (−5 to 5 Flat) | −0.09 (−5 to 5 Flat) | 0.17 (−5 to 5 Flat) |
Profile Curvature | 0.18 (−5 to 5 Flat) | 0.08 (−5 to 5 Flat) | 0 (−5 to 5 Flat) | 0.32 (−5 to 5 Flat) | 0.09 (−5 to 5 Flat) | −0.44 (−5 to 5 Flat) |
Flow Direction | 1 (East) | 128 (Northeast) | 4 (South) | 64 (North) | 2 (Southeast) | 32 (Northwest) |
Dist. to Streams | 201.24 (100 to 500—Close) | 92.19 (100 to 500—Close) | 20 (100 to 500—Close) | 60.82 (100 to 500—Close) | 150 (100 to 500—Close) | 142.1 (100 to 500—Close) |
Dist. to Roads | 120 (≤250—Very close) | 0 (≤250—Very close) | 41.23 (≤250—Very close) | 41.23 (≤250—Very close) | 0 (≤250—Very close) | 0 (≤250—Very close) |
NDVI | 0.13 (Low) | 0.2 (Low) | 0.07 (Low) | 0.09 (Low) | 0.23 (Moderate) | 0.05 (Low) |
Geology | Tertiary and Quaternary Deposits | Tertiary and Quaternary Deposits | Tertiary and Quaternary Deposits | Tertiary and Quaternary Deposits | Marine Deposits | Tertiary and Quaternary Deposits |
Groundwater Level Change | 15.35 (≤50—Minimal) | 165.6 (150 to 200—High) | 8.96 (≤50—Minimal) | 67.75 (50 to 100—Low) | 54.3 (50 to 100—Low) | 29.04 (50 to 100—Low) |
Land Use | 11 (Rangeland) | 7 (Built Area) | 7 (Built Area) | 11 (Rangeland) | 5 (Crops) | 7 (Buit Area) |
Rainfall | 298.61 (200 to 300—High) | 202.4 (200 to 300—High) | 213.8 (200 to 300—High) | 289.4 (200 to 300—High) | 250.6 (200 to 300—High) | 248 (200 to 300—High) |
Distance to Faults | 5737.8 (5000 to 10,000—Moderate) | 461.4 (≤2000—Very Close) | 13761.8 (10,000 to 20,000—Far) | 4226.8 (2000 to 5000—Close) | 1058.4 (≤2000—Very Close) | 7678 (5000 to 10,000—Moderate) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaragunda, V.R.; Vaka, D.S.; Oikonomou, E. Land Subsidence Susceptibility Modelling in Attica, Greece: A Machine Learning Approach Using InSAR and Geospatial Data. Earth 2025, 6, 61. https://doi.org/10.3390/earth6030061
Yaragunda VR, Vaka DS, Oikonomou E. Land Subsidence Susceptibility Modelling in Attica, Greece: A Machine Learning Approach Using InSAR and Geospatial Data. Earth. 2025; 6(3):61. https://doi.org/10.3390/earth6030061
Chicago/Turabian StyleYaragunda, Vishnuvardhan Reddy, Divya Sekhar Vaka, and Emmanouil Oikonomou. 2025. "Land Subsidence Susceptibility Modelling in Attica, Greece: A Machine Learning Approach Using InSAR and Geospatial Data" Earth 6, no. 3: 61. https://doi.org/10.3390/earth6030061
APA StyleYaragunda, V. R., Vaka, D. S., & Oikonomou, E. (2025). Land Subsidence Susceptibility Modelling in Attica, Greece: A Machine Learning Approach Using InSAR and Geospatial Data. Earth, 6(3), 61. https://doi.org/10.3390/earth6030061