Assessment of Active Tectonics Using Geomorphic Indices and Morphometric Parameters in the Setifian Highlands Region
Abstract
:1. Introduction
2. Geologic, Geomorphic, and Tectonic Setting
3. Materials, Methods, and Data Acquisition
3.1. Asymmetric Factor
3.2. Hypsometric Curve
3.3. Valley Floor Width-to-Height Ratio
3.4. Stream Length Gradient Index
3.5. Basin Shape Ratio
3.6. Mountain Front Sinuosity
3.7. Index of Relative Active Tectonics (IRTA)
3.8. Lineament Delignation
4. Results
4.1. Results of Asymmetric Factor
4.2. Results of Hypsometric Integral
4.3. Valley Floor Width-to-Height Ratio
4.4. Stream Length Gradient Index
4.5. Basin Shape Ratio
4.6. Mountain Front Sinuosity
4.7. Lineament Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leprêtre, R.; Frizon de Lamotte, D.; Combier, V.; Gimeno-Vives, O.; Mohn, G.; Eschard, R. The Tell-Rif orogenic system (Morocco, Algeria, Tunisia) and the structural heritage of the southern Tethys margin. BSGF-Earth Sci. Bull. 2018, 189, 10. [Google Scholar] [CrossRef]
- Belayouni, H.; Guerrera, F.; Martín-Martín, M.; Tramontana, M.; Bullejos, M. Cenozoic tectono-sedimentary evolution of the onshore-offshore Tunisian Tell: Implications for oil-gas research. Mar. Pet. Geol. 2023, 156, 106426. [Google Scholar] [CrossRef]
- Maouche, S.; Bouhadad, Y.; Harbi, A.; Rouchiche, Y.; Ousadou, F.; Ayadi, A. Active tectonics and seismic hazard in the Tell Atlas (Northern Algeria): A review. In The Geology of the Arab World—An Overview; Springer: Berlin/Heidelberg, Germany, 2019; pp. 381–400. [Google Scholar]
- Mahleb, A.; Hadji, R.; Zahri, F.; Boudjellal, R.; Chibani, A.; Hamed, Y. Water-borne erosion estimation using the revised universal soil loss equation (RUSLE) model over a semiarid watershed: Case study of Meskiana Catchment, Algerian-Tunisian border. Geotech. Geol. Eng. 2022, 40, 4217–4230. [Google Scholar] [CrossRef]
- Taib, H.; Hadji, R.; Hamed, Y. Erosion patterns, drainage dynamics, and their environmental implications: A case study of the hammamet basin using advanced geospatial and morphometric analysis. J. Umm Al-Qura Univ. Appl. Sci. 2023, 1–16. [Google Scholar] [CrossRef]
- Radaideh, O.M.; Mosar, J. Tectonics controls on fluvial landscapes and drainage development in the westernmost part of Switzerland: Insights from DEM-derived geomorphic indices. Tectonophysics 2019, 768, 228179. [Google Scholar] [CrossRef]
- Hadji, R.; Chouabi, A.; Gadri, L.; Raïs, K.; Hamed, Y.; Boumazbeur, A. Application of linear indexing model and GIS techniques for the slope movement susceptibility modeling in Bousselam upstream basin, Northeast Algeria. Arab. J. Geosci. 2016, 9, 192. [Google Scholar] [CrossRef]
- Karim, Z.; Hadji, R.; Hamed, Y. GIS-based approaches for the landslide susceptibility prediction in Setif Region (NE Algeria). Geotech. Geol. Eng. 2019, 37, 359–374. [Google Scholar] [CrossRef]
- Zahri, F.; Boukelloul, M.L.; Hadji, R.; Talhi, K. Slope stability analysis in open pit mines of Jebel Gustar career, NE Algeria–a multi-steps approach. Min. Sci. 2016, 23, 137–146. [Google Scholar] [CrossRef]
- Khan, R.; Li, H.; Afzal, Z.; Basir, M.; Arif, M.; Hassan, W. Monitoring subsidence in urban area by PSInSAR: A case study of Abbottabad City, Northern Pakistan. Remote Sens. 2021, 13, 1651. [Google Scholar] [CrossRef]
- Cheng, G.; Wang, Z.; Huang, C.; Yang, Y.; Hu, J.; Yan, X.; Tan, Y.; Liao, L.; Zhou, X.; Li, Y.; et al. Advances in Deep Learning Recognition of Landslides Based on Remote Sensing Images. Remote Sens. 2024, 16, 1787. [Google Scholar] [CrossRef]
- Portela, J.; Staller, A.; Béjar-Pizarro, M.; Hamling, I.J.; Hernández, D. Tectonic deformation in El Salvador from combined InSAR and GNSS data. Tectonophysics 2024, 882, 230364. [Google Scholar] [CrossRef]
- Champenois, J.; Fruneau, B.; Pathier, E.; Deffontaines, B.; Lin, K.C.; Hu, J.C. Monitoring of active tectonic deformations in the Longitudinal Valley (Eastern Taiwan) using Persistent Scatterer InSAR method with ALOS PALSAR data. Earth Planet. Sci. Lett. 2012, 337, 144–155. [Google Scholar] [CrossRef]
- Ramírez-Herrera, M.T. Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt. Earth Surf. Process. Landf. J. Br. Geomorphol. Group 1998, 23, 317–332. [Google Scholar] [CrossRef]
- Green, D.J. Active Tectonics Earthquakes, Uplift, and Landscape. Environ. Eng. Geosci. 1997, 3, 463–464. [Google Scholar] [CrossRef]
- Bull, W.B. Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- El Hamdouni, R.; Irigaray, C.; Fernández, T.; Chacón, J.; Keller, E.A. Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology 2008, 96, 150–173. [Google Scholar] [CrossRef]
- Mahmood, S.A.; Gloaguen, R. Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis. Geosci. Front. 2012, 3, 407–428. [Google Scholar] [CrossRef]
- Sharma, G.; Mohanty, S. Morphotectonic analysis and GNSS observations for assessment of relative tectonic activity in Alaknanda basin of Garhwal Himalaya, India. Geomorphology 2018, 301, 108–120. [Google Scholar] [CrossRef]
- Anand, A.K.; Pradhan, S.P. Assessment of active tectonics from geomorphic indices and morphometric parameters in part of Ganga basin. J. Mt. Sci. 2019, 16, 1943–1961. [Google Scholar] [CrossRef]
- Kirby, E.; Whipple, K.X. Expression of active tectonics in erosional landscapes. J. Struct. Geol. 2012, 44, 54–75. [Google Scholar] [CrossRef]
- Dill, H.G.; Buzatu, A.; Balaban, S.I. Straight to Low-Sinuosity Drainage Systems in a Variscan-Type Orogen—Constraints from Tectonics, Lithology and Climate. Minerals 2021, 11, 933. [Google Scholar] [CrossRef]
- Wortel MJ, R.; Goes SD, B.; Spakman, W. Structure and seismicity of the Aegean subduction zone. Terra Nova 1990, 2, 554–562. [Google Scholar] [CrossRef]
- Domzig, A.; Yelles, K.; Le Roy, C.; Déverchère, J.; Bouillin, J.-P.; Bracène, R.; de Lépinay, B.M.; Le Roy, P.; Calais, E.; Kherroubi, A.; et al. Searching for the Africa–Eurasia Miocene boundary offshore western Algeria (MARADJA’03 cruise). Comptes rendus. Géoscience 2006, 338, 80–91. [Google Scholar] [CrossRef]
- Durand-Delga, M. Le cadre structural de la Méditerranée occidentale. Georogie Des Chain. Alp. Issues Tethys 1980, 67–85. [Google Scholar]
- Bouillin, J.P. Le” bassin maghrebin”; une ancienne limite entre l’Europe et l’Afrique a l’ouest des Alpes. Bull. Société Géologique Fr. 1986, 2, 547–558. [Google Scholar] [CrossRef]
- Mattauer, M.; Tapponnier, P.; Proust, F. Sur les mecanismes de formation des chaines intracontinentales; l’exemple des chaines atlasiques du Maroc. Bull. Société Géologique Fr. 1977, 7, 521–526. [Google Scholar] [CrossRef]
- Manchar, N.; Hadji, R.; Bougherara, A.; Boufaa, K. Assessment of relative-active tectonics in rhumel-smendou basin (ne Algeria)–observations from the morphometric indices and hydrographic features obtained by the digital elevation model. Geomat. Landmanagement Landsc. 2022, 4, 47–65. [Google Scholar] [CrossRef]
- Taib, H.; Benabbas, C.; Khiari, A.; Hadji, A.; Dinar, H. Geomatics-based assessment of the neotectonic landscape evolution along the tebessa-morsott-youkous collapsed basin, Algeria. Geomat. Landmanagement Landsc. 2022, 3, 131–146. [Google Scholar] [CrossRef]
- Taib, H.; Hadji, R.; Hamed, Y.; Bensalem, M.S.; Amamria, S. Exploring neotectonic activity in a semiarid basin: A case study of the Ain Zerga watershed. J. Umm Al-Qura Univ. Appl. Sci. 2024, 10, 20–33. [Google Scholar] [CrossRef]
- Taib, H.; Hadji, R.; Hamed, Y.; Gentilucci, M.; Badri, K. Integrated geospatial analysis for identifying regions of active tectonics in the Saharian Atlas, an review analysis of methodology and calculation fundamentals. J. Afr. Earth Sci. 2024, 211, 105188. [Google Scholar] [CrossRef]
- Taib, H.; Hadji, R.; Hamed, Y.; Bensalem, M.S.; Amamria, S.; Houda, B. Evaluation of relative tectonic activity in a semiaridbasin: Analysis of geomorphic indices and morphometric parametersin the Meskiana watershed. Eur. Mediter. J. Environ. Integr. 2024, 9, 843–858. [Google Scholar] [CrossRef]
- Khalifa, A.; Çakir, Z.; Owen, L.A.; Kaya, Ş. Evaluation of the Relative Tectonic Activity of the Adıyaman fault within the Arabian-Anatolian plate boundary (eastern Turkey). Geol. Acta Int. Earth Sci. J. 2019, 17, 1–17. [Google Scholar] [CrossRef]
- Taib, H.; Hadji, R.; Bedri, K.; Defaflia, N.; Hamed, Y.; Gentilucci, M.; Barbieri, M.; Pambianchi, G. Morphometric analysis and risk assessment of flash floods in the Atlas chain of eastern Algeria and the Algerian–Tunisian borders. Euro-Mediterr. J. Environ. Integr. 2024, 1–15. [Google Scholar] [CrossRef]
- Boulemia, S.; Hadji, R.; Hamimed, M. Depositional environment of phosphorites in a semiarid climate region, case of El Kouif area (Algerian–Tunisian border). Carbonates Evaporites 2021, 36, 53. [Google Scholar] [CrossRef]
- Amamria, S.; Bensalem, H.; Taib, H.; Bensalem, M.S.; Hadji, R.; Hamed, Y. Relationship between gravitational flap structures in the backlimb of anticlinal breakthrough Fault-Propagation Folds: Case study of the Southern-Central Tunisian Atlas. J. Mt. Sci. 2023, 20, 3525–3541. [Google Scholar] [CrossRef]
- El Hadj, Y.B.; Mohammed, C.; El-Hadi, M.; Ramdane, M.; Rami, D.; Younes, M.C.; Khoudir, K. Tectono-sedimentary evolution of eastern Algerian alpine foreland during Middle to Late Jurassic. Arab. J. Geosci. 2021, 14, 2476. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.J.; Vissers, R.L.; Spakman, W. Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation. Tectonics 2014, 33, 393–419. [Google Scholar] [CrossRef]
- Benmarce, K.; Hadji, R.; Hamed, Y.; Zahri, F.; Zighmi, K.; Hamad, A.; Gentilucci, M.; Ncibi, K.; Besser, H. Hydrogeological and water quality analysis of thermal springs in the Guelma region of North-Eastern Algeria: A study using hydrochemical, statistical, and isotopic approaches. Journal of African Earth Sciences 205 (2023): 105011. [CrossRef]
- Zerzour, O.; Gadri, L.; Hadji, R.; Mebrouk, F.; Hamed, Y. Semi-variograms and kriging techniques in iron ore reserve categorization: Application at Jebel Wenza deposit. Arab. J. Geosci. 2020, 13, 820. [Google Scholar] [CrossRef]
- Brahmi, S.; Fehdi, C.; Hadji, R.; Brahmi, S.; Hamad, A.; Hamed, Y. Karst-Induced Sinkhole Detection Using a Tomography Imaging Survey, Case of Setifian High Plain, NE Algeria. Geotech. Geol. Eng. 2023, 41, 1961–1976. [Google Scholar] [CrossRef]
- Benmarce, K.; Hadji, R.; Zahri, F.; Khanchoul, K.; Chouabi, A.; Zighmi, K.; Hamed, Y. Hydrochemical and geothermometry characterization for a geothermal system in semiarid dry climate: The case study of Hamma spring (NE Algeria). J. Afr. Earth Sci. 2021, 182, 104285. [Google Scholar] [CrossRef]
- Hare, P.W.; Gardner, T.W. Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. Tecton. Geomorphol. 1985, 4, 75–104. [Google Scholar]
- Willgoose, G.; Hancock, G. Revisiting the hypsometric curve as an indicator of form and process in transport-limited catchment. Earth Surf. Process. Landf. J. Br. Geomorphol. Group 1998, 23, 611–623. [Google Scholar] [CrossRef]
- Fox, D.; Berolo, W.; Carrega, P.; Darboux, F. Mapping erosion risk and selecting sites for simple erosion control measures after a forest fire in Mediterranean France. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2006, 31, 606–621. [Google Scholar] [CrossRef]
- Bull, W.B. South Front of the San Gabriel Mountains, Southern California: Final Technical Report; U.S. Geological Survey: Reston, VA, USA, 1978.
- Keller, E.A. Investigation of active tectonics: Use of surficial earth processes. Act. Tecton. 1986, 1, 136–147. [Google Scholar]
- Tsodoulos, I.M.; Koukouvelas, I.K.; Pavlides, S. Tectonic geomorphology of the easternmost extension of the Gulf of Corinth (Beotia, Central Greece). Tectonophysics 2008, 453, 211–232. [Google Scholar] [CrossRef]
- Bull, W.B.; McFadden, L.D. Tectonic geomorphology north and south of the Garlock fault, California. In Geomorphology in Arid Regions; Routledge: London, UK, 2020. [Google Scholar]
- Rockwell, T.K.; Keller, E.A.; Johnson, D.L. Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California. In Tectonic Geomorphology, Proceedings of the 15th Annual Geomorphology Symposium, Binghamton, NY, USA, 25 September 1985; Allen and Unwin Publishers: Boston, MA, USA, 1985; pp. 183–207. [Google Scholar]
- Sahu, S.S.; Mohanty, S.P. Demarcation of zones of neotectonic activity around regional faults: Morphometric analysis from the Wagad Highland, Kachchh, India. J. Earth Syst. Sci. 2021, 130, 219. [Google Scholar] [CrossRef]
- Peter, K.D.; Kolm, K.E.; Downey, J.S.; Nichols, T.C. Lineaments: Significance, criteria for determination, and varied effects on ground-water systems—A case history in the use of remote sensing. In Geotechnical Applications of Remote Sensing and Remote Data Transmission; ASTM International: West Conshohocken, PA, USA, 1988. [Google Scholar] [CrossRef]
- Oyawale, A.A.; Adeoti, F.O.; Ajayi, T.R.; Omitogun, A.A. Applications of remote sensing and geographic information system (GIS) in regional lineament mapping and structural analysis in Ikare Area, Southwestern Nigeria. J. Geol. Min. Res. 2020, 12, 13–24. [Google Scholar] [CrossRef]
- McElfresh, S.B.; Harbert, W.; Ku, C.Y.; Lin, J.S. Stress modeling of tectonic blocks at Cape Kamchatka, Russia using principal stress proxies from high-resolution SAR: New evidence for the Komandorskiy Block. Tectonophysics 2002, 354, 239–256. [Google Scholar] [CrossRef]
- Silva, P.G.; Goy, J.L.; Zazo, C.; Bardajı, T. Fault-generated mountain fronts in southeast Spain: Geomorphologic assessment of tectonic and seismic activity. Geomorphology 2003, 50, 203–225. [Google Scholar] [CrossRef]
- Machuca, S.; García-Delgado, H.; Velandia, F. Studying active fault-related folding on tectonically inverted orogens: A case study at the Yariguíes Range in the Colombian Northern Andes. Geomorphology 2021, 375, 107515. [Google Scholar] [CrossRef]
- Youssef, A.B.; Khafaga, T.A.; El-Tarabily, S.S. Mountain front sinuosity and its relation to tectonic activity in the Eastern Mediterranean region. Tectonophysics 2018, 745, 89–102. [Google Scholar] [CrossRef]
- Zeqiri, R.R.; Riheb, H.; Karim, Z.; Younes, G.; Rania, B.; Aniss, M. Analysis of safety factor of security plates in the mine” Trepça” Stantërg. Min. Sci. 2019, 26, 21. [Google Scholar] [CrossRef]
- Vila, J.M. The Alpine Chain of Eastern Algeria and the Algerian-Tunisian Borders. Ph.D. Thesis, Pierre and Marie Curie University, Paris, France, 1980. [Google Scholar]
- Yelles-Chaouche, A.; Allili, T.; Alili, A.; Messemen, W.; Beldjoudi, H.; Semmane, F.; Nait Sidi Said, C. The new Algerian Digital Seismic Network (ADSN): Towards an earthquake early-warning system. Adv. Geosci. 2013, 36, 31–38. [Google Scholar] [CrossRef]
- Yelles-Chaouche, A.K.; Abacha, I.; Semmane, F.; Beldjoudi, H.; Djellit, H. The Beni-Ilmane (north-central Algeria) earthquake sequence of May 2010. Pure Appl. Geophys. 2014, 171, 1283–1298. [Google Scholar] [CrossRef]
Class of Tectonic Activity | |||
---|---|---|---|
Index | Class 1 (High) | Class 2 (Moderate) | Class 3 (Low) |
SL | SL > 600 | 300 < SL ≤ 600 | SL ≤ 300 |
Af | Af < 35 | 35 ≤ Af ≤ 50 | Af > 50 |
HI | HI > 0.5 | 0.3 ≤ HI ≤ 0.5 | HI < 0.3 |
Vf | Vf < 0.5 | 0.5 ≤ Vf ≤ 1.0 | Vf > 1.0 |
Bs | Bs > 2.9 | 1.9 ≤ Bs ≤ 2.9 | Bs < 1.9 |
Smf | Smf < 1.1 | 1.1 ≤ Smf ≤ 1.5 | Smf > 1.5 |
Basin | HI | SMF | Bs | SL | VF | AF | AF-50 |
---|---|---|---|---|---|---|---|
1 | 0.26 | 0.85 | 1.80 | 92.48 | 6.94 | 17.59 | −32.41 |
2 | 0.3 | 0.69 | 2.22 | 54.4 | 1.47 | 66.63 | 16.63 |
3 | 0.35 | 0.43 | 3.09 | 61.44 | 3.4 | 40.15 | −9.85 |
4 | 0.34 | 0.8 | 6.35 | 71.14 | 4.87 | 49.82 | −0.18 |
5 | 0.34 | 0.5 | 2.17 | 129.67 | 6.1 | 84.18 | 34.18 |
6 | 0.3 | 0.72 | 3.96 | 94.33 | 3.5 | 31.19 | −18.81 |
7 | 0.27 | 0.66 | 2.81 | 74.49 | 3.9 | 22.25 | −27.75 |
8 | 0.3 | 0.5 | 1.70 | 33.34 | 4.6 | 53.15 | 3.15 |
9 | 0.29 | N | 2.41 | 150.32 | 3.29 | 44.45 | −5.55 |
10 | 0.38 | 0.78 | 4.27 | 79.05 | 2.1 | 61.20 | 11.20 |
11 | 0.23 | N | 5.60 | 51.1 | 15.33 | 38.03 | −11.97 |
12 | 0.38 | 0.6 | 2.88 | 50.96 | 7.21 | 15.04 | −34.96 |
13 | 0.36 | 0.85 | 2.53 | 51.46 | 4.32 | 71.60 | 21.60 |
14 | 0.37 | 0.89 | 4.76 | 50.48 | 6.5 | 66.01 | 16.01 |
15 | 0.21 | N | 3.86 | 52.42 | 6.66 | 31.42 | −18.58 |
16 | 0.25 | N | 3.52 | 52.64 | 6.6 | 73.33 | 23.33 |
Basin | AF Class | HI Class | SMF Class | Bs Class | SL Class | VF Class | S/N | IRTA | Assessment |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 3 | 1 | 3 | 3 | 2 | 1.86 | 2 | High |
2 | 1 | 3 | N | 2 | 3 | 2 | 1.57 | 2 | High |
3 | 2 | 3 | N | 1 | 3 | 2 | 1.57 | 2 | High |
4 | 3 | 3 | 1 | 1 | 3 | 2 | 1.86 | 2 | High |
5 | 1 | 3 | 1 | 2 | 3 | 2 | 1.71 | 2 | High |
6 | 1 | 3 | 1 | 1 | 3 | 2 | 1.57 | 2 | High |
7 | 1 | 2 | 1 | 2 | 3 | 2 | 1.57 | 2 | High |
8 | 3 | 3 | 1 | 3 | 3 | 2 | 2.14 | 3 | Moderate |
9 | 2 | 3 | 1 | 2 | 3 | 2 | 1.86 | 2 | High |
10 | 2 | 3 | 1 | 1 | 3 | 2 | 1.71 | 2 | High |
11 | 2 | 3 | N | 1 | 3 | 1 | 1.43 | 1 | Very high |
12 | 1 | 3 | N | 2 | 3 | 1 | 1.43 | 1 | Very high |
13 | 1 | 3 | 1 | 3 | 3 | 2 | 1.86 | 2 | High |
14 | 1 | 3 | 1 | 1 | 3 | 2 | 1.57 | 2 | High |
15 | 1 | 3 | 1 | 1 | 3 | 2 | 1.57 | 2 | High |
16 | 1 | 3 | 1 | 1 | 3 | 2 | 1.57 | 2 | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadji, R.; Taib, H.; Gentilucci, M.; Hamed, Y.; Khalil, R.; Asghar, B.; Barbieri, M.; Pambianchi, G. Assessment of Active Tectonics Using Geomorphic Indices and Morphometric Parameters in the Setifian Highlands Region. Earth 2024, 5, 583-603. https://doi.org/10.3390/earth5040030
Hadji R, Taib H, Gentilucci M, Hamed Y, Khalil R, Asghar B, Barbieri M, Pambianchi G. Assessment of Active Tectonics Using Geomorphic Indices and Morphometric Parameters in the Setifian Highlands Region. Earth. 2024; 5(4):583-603. https://doi.org/10.3390/earth5040030
Chicago/Turabian StyleHadji, Riheb, Hassan Taib, Matteo Gentilucci, Younes Hamed, Rayan Khalil, Basim Asghar, Maurizio Barbieri, and Gilberto Pambianchi. 2024. "Assessment of Active Tectonics Using Geomorphic Indices and Morphometric Parameters in the Setifian Highlands Region" Earth 5, no. 4: 583-603. https://doi.org/10.3390/earth5040030
APA StyleHadji, R., Taib, H., Gentilucci, M., Hamed, Y., Khalil, R., Asghar, B., Barbieri, M., & Pambianchi, G. (2024). Assessment of Active Tectonics Using Geomorphic Indices and Morphometric Parameters in the Setifian Highlands Region. Earth, 5(4), 583-603. https://doi.org/10.3390/earth5040030