A Spatial Econometric Analysis of Weather Effects on Milk Production
Abstract
:1. Introduction
2. Literature Review
2.1. Weather and Milk Productivity
2.2. Econometric Analysis of Climate Effects on Agricultural Production
3. Materials and Methods
3.1. Data
3.2. Model Specification
4. Results
4.1. Results without Spatial Interactions
4.2. Spatial Panel Model Results
4.3. Model Comparison
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar] [CrossRef]
- Hristov, A.N.; Degaetano, A.T.; Rotz, C.A.; Hoberg, E.; Skinner, R.; Felix, T.; Li, H.; Patterson, P.H.; Roth, G.; Hall, M.; et al. Climate Change Effects on Livestock in the Northeast US and Strategies for Adaptation. Clim. Change 2018, 146, 33–45. [Google Scholar] [CrossRef]
- Thornton, P.K.; Van de Steeg, J.; Notenbaert, A.; Herrero, M. The Impacts of Climate Change on Livestock and Livestock Systems in Developing Countries: A Review of What We Know and What We Need to Know. Agric. Syst. 2009, 101, 113–127. [Google Scholar] [CrossRef]
- Mauger, G.; Bauman, Y.; Nennich, T.; Salathé, E. Impacts of Climate Change on Milk Production in the United States. Prof. Geogr. 2015, 67, 121–131. [Google Scholar] [CrossRef]
- Blanc, E.; Schlenker, W. The Use of Panel Models in Assessments of Climate Impacts on Agriculture. Rev. Environ. Econ. Policy 2017, 11, 258–279. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Mur, J.; Angulo, A. A Closer Look at the Spatial Durbin Model. ERSA Conference Papers. In Proceedings of the European Regional Science Association, Amsterdam, The Netherlands, 23–27 August 2005. [Google Scholar]
- Fingleton, B.; López-Bazo, E. Empirical Growth Models with Spatial Effects. Pap. Reg. Sci. 2006, 85, 177–198. [Google Scholar] [CrossRef]
- Schlenker, W.; Hanemann, W.M.; Fisher, A.C. The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions. Rev. Econ. Stat. 2006, 88, 113–125. [Google Scholar] [CrossRef]
- Ortiz-Bobea, A. The Impacts of Climate Change on US Agriculture: Accounting for Omitted Spatial Dependence in the Hedonic Approach. 2015. Available online: https://www.aeaweb.org/conference/2016/retrieve.php?pdfid=361 (accessed on 5 June 2020).
- Bai, D.; Ye, L.; Yang, Z.; Wang, G. Impact of Climate Change on Agricultural Productivity: A Combination of Spatial Durbin Model and Entropy Approaches. Int. J. Clim. Chang. Str. Manag. 2022, 10, 1–22. [Google Scholar] [CrossRef]
- Donfouet, H.P.P.; Barczak, A.; Détang-Dessendre, C.; Maigné, E. Crop Production and Crop Diversity in France: A Spatial Analysis. Ecol. Econ. 2017, 134, 29–39. [Google Scholar] [CrossRef]
- Wang, G.; Wang, M.; Wang, J.; Yang, C.; Liu, Y. Characteristics and Influencing Factors of Grass-Feeding Livestock Breeding in China: An Economic Geographical Perspective. J. Geogr. Sci. 2016, 26, 501–512. [Google Scholar] [CrossRef]
- Wu, G.; Riaz, N.; Dong, R. China’s Agricultural Ecological Efficiency and Spatial Spillover Effect. Environ. Dev. Sustain. 2023, 25, 3073–3098. [Google Scholar] [CrossRef]
- Zhao, H.; Jia, X.; Yang, J.; Wu, Y.; Wu, X.; Du, L. Spatiotemporal Variations and Influencing Factors of Methane Emissions from Livestock in China: A Spatial Econometric Analysis. Sci. Total Environ. 2024, 931, 173010. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. A Guide to Environmental Research on Animals; National Academies: Washington, DC, USA, 1971. [Google Scholar]
- Klinedinst, P.L.; Wilhite, D.A.; Hahn, G.L.; Hubbard, K.G. The Potential Effects of Climate Change on Summer Season Dairy Cattle Milk Production and Reproduction. Clim. Change 1993, 23, 21–36. [Google Scholar] [CrossRef]
- West, J.W. Effects of Heat-Stress on Production in Dairy Cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef] [PubMed]
- Lacetera, N.; Bernabucci, U.; Ronchi, B.; Nardone, A. Physiological and Productive Consequences of Heat Stress. The Case of Dairy Ruminants. In Proceedings of the Symposium on interaction between Climate and Animal Production: EAAP Technical Series, Viterbo, Italy, 4 September 2003; Volume 7, pp. 45–60. [Google Scholar]
- Ravagnolo, O.; Misztal, I.; Hoogenboom, G. Genetic Component of Heat Stress in Dairy Cattle, Development of Heat Index Function. J. Dairy Sci. 2000, 83, 2120–2125. [Google Scholar] [CrossRef] [PubMed]
- Bohmanova, J.; Misztal, I.; Cole, J.B. Temperature-Humidity Indices as Indicators of Milk Production Losses Due to Heat Stress. J. Dairy Sci. 2007, 90, 1947–1956. [Google Scholar] [CrossRef]
- Mader, T.L.; Davis, M.S.; Brown-Brandl, T. Environmental Factors Influencing Heat Stress in Feedlot Cattle. J. Anim. Sci. 2006, 84, 712–719. [Google Scholar] [CrossRef]
- Gantner, V.; Mijić, P.; Jovanovac, S.; Raguž, N.; Bobić, T.; Kuterovac, K. Influence of Temperature-Humidity Index (THI) on Daily Production of Dairy Cows in Mediterranean Region in Croatia. In Animal Farming and Environmental Interactions in the Mediterranean Region; Wageningen Academic: Wageningen, The Netherlands, 2011; pp. 71–78. [Google Scholar]
- Igono, M.O.; Bjotvedt, G.; Sanford-Crane, H.T. Environmental Profile and Critical Temperature Effects on Milk Production of Holstein Cows in Desert Climate. Int. J. Biometeorol. 1992, 36, 77–87. [Google Scholar] [CrossRef]
- Mayer, D.G.; Davison, T.; McGowan, M.R.; Young, B.A.; Matschoss, A.L.; Hall, A.B.; Goodwin, P.J.; Jonsson, N.N.; Gaughan, J.B. Extent and Economic Effect of Heat Loads on Dairy Cattle Production in Australia. Aust. Vet. J. 1999, 77, 804–808. [Google Scholar] [CrossRef]
- Mader, T.L.; Johnson, L.J.; Gaughan, J.B. A Comprehensive Index for Assessing Environmental Stress in Animals. J. Anim. Sci. 2010, 88, 2153–2165. [Google Scholar] [CrossRef]
- Amundson, J.L.; Mader, T.L.; Rasby, R.J.; Hu, Q.S. Environmental Effects on Pregnancy Rate in Beef Cattle. J. Anim. Sci. 2006, 84, 3415–3420. [Google Scholar] [CrossRef]
- Hammami, H.; Bormann, J.; M’hamdi, N.; Montaldo, H.H.; Gengler, N. Evaluation of Heat Stress Effects on Production Traits and Somatic Cell Score of Holsteins in a Temperate Environment. J. Dairy Sci. 2013, 96, 1844–1855. [Google Scholar] [CrossRef] [PubMed]
- Schlenker, W.; Roberts, M.J. Nonlinear Temperature Effects Indicate Severe Damages to U.S. Crop Yields under Climate Change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [PubMed]
- Deschênes, O.; Greenstone, M. The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Reply. Am. Econ. Rev. 2012, 102, 3761–3773. [Google Scholar] [CrossRef]
- Miao, R.; Khanna, M.; Huang, H. Responsiveness of Crop Yield and Acreage to Prices and Climate. Am. J. Agric. Econ. 2016, 98, 191–211. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bravo-Ureta, B.E.; De Vries, A. Dairy Productivity and Climatic Conditions: Econometric Evidence from Southeastern United States. Aust. J. Agric. Econ. 2013, 57, 123–140. [Google Scholar] [CrossRef]
- Qi, L.; Bravo-Ureta, B.E.; Cabrera, V.E. From Cold to Hot: Climatic Effects and Productivity in Wisconsin Dairy Farms. J. Dairy Sci. 2015, 98, 8664–8677. [Google Scholar] [CrossRef]
- Perez-Mendez, J.A.; Roibas, D.; Wall, A. The Influence of Weather Conditions on Dairy Production. Agric. Econ. 2019, 50, 165–175. [Google Scholar] [CrossRef]
- Key, N.; Sneeringer, S. Potential Effects of Climate Change on the Productivity of U.S. Dairies. Am. J. Agric. Econ. 2014, 96, 1136–1156. [Google Scholar] [CrossRef]
- Schlenker, W.; Hanemann, W.M.; Fisher, A.C. Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach. Am. Econ. Rev. 2005, 95, 395–406. [Google Scholar] [CrossRef]
- Hsiang, S.M.; Narita, D. Adaptation to Cyclone Risk: Evidence from the Global Cross-Section. Clim. Change Econ. 2012, 3, 1250011. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, J.; Chen, M. Economic Impacts of Climate Change on Agriculture: The Importance of Additional Climatic Variables Other than Temperature and Precipitation. J. Environ. Econ. Manag. 2017, 83, 8–31. [Google Scholar] [CrossRef]
- Auffhammer, M.; Schlenker, W. Empirical Studies on Agricultural Impacts and Adaptation. Energy Econ. 2014, 46, 555–561. [Google Scholar] [CrossRef]
- Auffhammer, M.; Hsiang, S.M.; Schlenker, W.; Sobel, A. Using Weather Data and Climate Model Output in Economic Analyses of Climate Change. Rev. Environ. Econ. Policy 2013, 7, 181–198. [Google Scholar] [CrossRef]
- Davis, S.; Mader, T.L. Adjustments for Wind Speed and Solar Radiation to the Temperature-Humidity Index. Nebr. Beef Cattle Rep. 2003, 224, 49–51. Available online: https://digitalcommons.unl.edu/animalscinbcr/224 (accessed on 22 October 2022).
- Herbut, P.; Angrecka, S.; Walczak, J. Environmental Parameters to Assessing of Heat Stress in Dairy Cattle—A Review. Int. J. Biometeorol. 2018, 62, 2089–2097. [Google Scholar] [CrossRef] [PubMed]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic Losses from Heat Stress by US Livestock Industries. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef]
- Bernabucci, U.; Biffani, S.; Buggiotti, L.; Vitali, A.; Lacetera, N.; Nardone, A. The Effects of Heat Stress in Italian Holstein Dairy Cattle. J. Dairy Sci. 2014, 97, 471–486. [Google Scholar] [CrossRef] [PubMed]
- Shakoor, U.; Saboor, A.; Ali, I.; Mohsin, A.Q. Impact of Climate Change on Agriculture: Empirical Evidence from Arid Region. Pak. J. Agri. Sci 2011, 48, 327–333. [Google Scholar]
- Lee, J.; Nadolnyak, D.A.; Hartarska, V.M. Impact of Climate Change on Agricultural Production in Asian countries: Evidence from Panel Study. In Proceedings of the Southern Agricultural Economics Association 2012 Annual Meeting, Birmingham, AL, USA, 4–7 February 2012. [Google Scholar] [CrossRef]
- Lagat, P.; Nyangena, J. The Effects of Climate Variability on Livestock Production in Kenya. J. Agric. Policy 2018, 1, 58–79. [Google Scholar] [CrossRef]
- Mauldon, R.G. An Econometric Analysis of the Supply of Livestock Products and Demand for Feed Grains. Ph.D. Thesis, Department of Economics, Iowa State University,, Ames, IA, USA, 1962. [Google Scholar]
- Mosheim, R. A Quarterly Econometric Model for Short-Term Forecasting of the US Dairy Industry; Economic Research Service, United States Department of Agriculture: Washington, DC, USA, 2012. [Google Scholar]
- Lütkepohl, H.; Xu, F. The Role of the Log Transformation in Forecasting Economic Variables. Empir. Econ. 2012, 42, 619–638. [Google Scholar] [CrossRef]
- Bramati, M.C.; Croux, C. Robust Estimators for the Fixed Effects Panel Data Model. Econom. J. 2007, 10, 521–540. [Google Scholar] [CrossRef]
- Sarker, M.A.R.; Alam, K.; Gow, J. Assessing the Effects of Climate Change on Rice Yields: An Econometric Investigation Using Bangladeshi Panel Data. Econ. Anal. Policy 2014, 44, 405–416. [Google Scholar] [CrossRef]
- LeSage, J.P. An Introduction to Spatial Econometrics. Rev. D’économie Ind. 2008, 123, 19–44. [Google Scholar] [CrossRef]
- Cook, S.J.; Hays, J.C.; Franzese, R.J. Chapter 39: Model Specification and Spatial Interdependence. In The SAGE Handbook of Research Methods in Political Science and International Relations; Curini, L., Franzese, R., Eds.; SAGE: London, UK, 2020; pp. 730–747. [Google Scholar] [CrossRef]
- Belotti, F.; Hughes, G.; Piano Mortari, A. Xsmle: A Stata Command for Spatial Panel-Data Models Estimation. In Proceedings of the 2013 German Stata Users Group Meeting, Potsdam, Germany, 7 June 2013; Available online: https://www.stata.com/meeting/germany13/abstracts/materials/de13_mortari.pdf (accessed on 5 May 2022).
- Fischer, M.M.; Getis, A. Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-03646-0. [Google Scholar]
- Taha, R.; Dietrich, J.; Dehnhardt, A.; Hirschfeld, J. Scaling Effects in Spatial Multi-Criteria Decision Aggregation in Integrated River Basin Management. Water 2019, 11, 355. [Google Scholar] [CrossRef]
- Renaudeau, D.; Collin, A.; Yahav, S.; De Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to Hot Climate and Strategies to Alleviate Heat Stress in Livestock Production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef]
- Pesaran, M.H. Testing Weak Cross-Sectional Dependence in Large Panels. Econom. Rev. 2015, 34, 1089–1117. [Google Scholar] [CrossRef]
- Pesaran, M.H. General Diagnostic Tests for Cross-Sectional Dependence in Panels. Empir. Econ. 2021, 60, 13–50. [Google Scholar] [CrossRef]
- Sheng, M.; Sharp, B. Influence of Urban Forms on Transit Behaviour in the Auckland Region: A Spatial Durbin Analysis. In Proceedings of the 54th Annual Conference of New Zealand Association of Economists, Wellington, New Zealand, 3–5 July 2013. [Google Scholar]
- LeSage, J.P.; Dominguez, M. The Importance of Modeling Spatial Spillovers in Public Choice Analysis. Public Choice 2012, 150, 525–545. [Google Scholar] [CrossRef]
- Liu, C.; Nie, G. Spatial Effects and Impact Factors of Food Nitrogen Footprint in China Based on Spatial Durbin Panel Model. Environ. Res. 2022, 204, 112046. [Google Scholar] [CrossRef]
- Du Preez, J.H.; Hattingh, P.J.; Giesecke, W.H.; Eisenberg, B.E. Heat Stress in Dairy Cattle and Other Livestock under Southern African Conditions. III. Monthly Temperature-Humidity Index·Mean Values and Their Significance in the Performance of Dairy Cattle. Onderstepoort J. Vet. Res. 1990, 57, 243–248. [Google Scholar]
- Correa-Calderon, A.; Armstrong, D.; Ray, D.; DeNise, S.; Enns, M.; Howison, C. Thermoregulatory Responses of Holstein and Brown Swiss Heat-Stressed Dairy Cows to Two Different Cooling Systems. Int. J. Biometeorol. 2004, 48, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Arrebola, F.A.; Abecia, J.A.; Forcada, F.; Garcia, A.; Martí, R.A.; Mesa, O. Effects of Annual Rainfall and Farm on Lamb Production after Treatment with Melatonin Implants in Merino Sheep: A 4-Year Study. N. Z. Vet. J. 2009, 57, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Abecia, J.A.; Garcia, A.; Castillo, L.; Palacios, C. The Effects of Weather on Milk Production in Dairy Sheep Vary by Month of Lambing and Lactation Phase. J. Anim. Behav. Biometeorol. 2017, 5, 56–63. [Google Scholar] [CrossRef]
- Blanc, É. The Impact of Climate Change on Crop Production in Sub-Saharan Africa. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2011. [Google Scholar]
- Popoola, O.P.; Dawodu, O.O.; Yusuf, O.O. Quadratic Regression and Factorial Analysis on the Effect of Climatic Elements on Global Food Production and Land Nutrients in Africa. Annals. Comput. Sci. Ser. 2018, 16, 60–65. [Google Scholar]
- Chai, T.; Kim, H.-C.; Lee, P.; Tong, D.; Pan, L.; Tang, Y.; Huang, J.; McQueen, J.; Tsidulko, M.; Stajner, I. Evaluation of the United States National Air Quality Forecast Capability Experimental Real-Time Predictions in 2010 Using Air Quality System Ozone and NO2 Measurements. Geosci. Model Dev. 2013, 6, 1831–1850. [Google Scholar] [CrossRef]
- Tashman, L.J. Out-of-Sample Tests of Forecasting Accuracy: An Analysis and Review. Int. J. Forecast. 2000, 16, 437–450. [Google Scholar] [CrossRef]
- Mur, J.; Angulo, A. Model Selection Strategies in a Spatial Setting: Some Additional Results. Reg. Sci. Urban Econ. 2009, 39, 200–213. [Google Scholar] [CrossRef]
- LeSage, J.P.; Pace, R.K. Interpreting Spatial Econometric Models. In Handbook of Regional Science; Fischer, M.M., Nijkamp, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 2201–2218. ISBN 978-3-662-60722-0. [Google Scholar]
- Fan, X.; Watters, R.D.; Nydam, D.V.; Virkler, P.D.; Wieland, M.; Reed, K.F. Multivariable Time Series Classification for Clinical Mastitis Detection and Prediction in Automated Milking Systems. J. Dairy Sci. 2023, 106, 3448–3464. [Google Scholar] [CrossRef]
- Parady, G.; Ory, D.; Walker, J. The Overreliance on Statistical Goodness-of-Fit and under-Reliance on Model Validation in Discrete Choice Models: A Review of Validation Practices in the Transportation Academic Literature. J. Choice Model. 2021, 38, 100257. [Google Scholar] [CrossRef]
- Westad, F.; Marini, F. Variable Selection and Redundancy in Multivariate Regression Models. Front. Anal. Sci. 2022, 2, 897605. [Google Scholar] [CrossRef]
- De Hoyos, R.E.; Sarafidis, V. Testing for Cross-Sectional Dependence in Panel-Data Models. Stata J. 2006, 6, 482–496. [Google Scholar] [CrossRef]
- Ren, T.; Long, Z.; Zhang, R.; Chen, Q. Moran’s I Test of Spatial Panel Data Model—Based on Bootstrap Method. Econ. Model. 2014, 41, 9–14. [Google Scholar] [CrossRef]
Variable | Obs. Count | Mean | Std. Dev. | Min. | 1.Quartile | 2.Quartile | 3.Quartile | Max. |
---|---|---|---|---|---|---|---|---|
Log Milk Production per Cow | 3504 | 4.1 | 0.2 | 3.4 | 3.9 | 4.1 | 4.2 | 4.4 |
Spring Precipitation | 3504 | 9.7 | 4.4 | 0.3 | 6.6 | 9.6 | 12.5 | 31.1 |
Spring PDSI | 3504 | 0.1 | 2.2 | −7.45 | −1.43 | 0.0 | 1.7 | 7.7 |
Spring Min THI | 3504 | 40.1 | 7.8 | 23.5 | 34.0 | 39.3 | 45.5 | 63.3 |
Spring Max THI | 3504 | 60.7 | 5.7 | 46.7 | 56.2 | 60.0 | 64.8 | 76.7 |
Summer Precipitation | 3504 | 10.3 | 4.9 | 0.1 | 6.9 | 10.7 | 13.4 | 28.8 |
Summer PDSI | 3504 | 0.1 | 2.4 | −8.68 | −1.53 | 0.2 | 1.9 | 9.1 |
Summer Min THI | 3504 | 59.3 | 6.3 | 44.6 | 54.6 | 59.2 | 64.1 | 73.9 |
Summer Max THI | 3504 | 74.7 | 4.2 | 64.8 | 71.2 | 74.5 | 77.7 | 89.1 |
Fall Precipitation | 3504 | 8.8 | 4.3 | 0.5 | 5.3 | 8.8 | 11.7 | 24.5 |
Fall PDSI | 3504 | 0.3 | 2.4 | −7.92 | −1.34 | 0.2 | 1.9 | 10.5 |
Fall Min THI | 3504 | 43.0 | 7.1 | 26.5 | 37.6 | 42.5 | 47.9 | 66.2 |
Fall Max THI | 3504 | 62.5 | 5.4 | 47.7 | 58.2 | 62.1 | 66.4 | 78.5 |
Winter Precipitation | 3504 | 8.2 | 5.0 | 0.5 | 3.7 | 8.1 | 11.4 | 27.6 |
Winter PDSI | 3504 | 0.2 | 2.0 | −6.57 | −1.09 | 0.2 | 1.5 | 6.8 |
Winter Min THI | 3504 | 23.8 | 9.9 | −3.47 | 16.9 | 23.8 | 30.3 | 53.1 |
Winter Max THI | 3504 | 46.5 | 8.5 | 22.5 | 40.5 | 46.0 | 53.2 | 69.3 |
Variable | Pooled OLS | Fixed Effects Model | ||
---|---|---|---|---|
Spring Precipitation | −0.0060 *** | −0.0012 | −0.0018 | −0.0011 |
Spring Precipitation 2 | 0.0001 ** | 0.0000 | 0.0001 ** | 0.0000 |
Spring PDSI | 0.0033 ** | −0.0014 | −0.0020 * | −0.0011 |
Spring PDSI 2 | 0.0005 * | −0.0003 | 0.0002 | −0.0002 |
Spring Min THI | 0.0247 *** | −0.0041 | 0.0028 | −0.0036 |
Spring Min THI 2 | −0.0003 *** | −0.0001 | −0.0001 | 0.0000 |
Spring Max THI | −0.0581 *** | −0.011 | −0.0322 *** | −0.0091 |
Spring Max THI 2 | 0.0004 *** | −0.0001 | 0.0003 *** | −0.0001 |
Summer Precipitation | −0.0121 *** | −0.0011 | −0.0016 | −0.0014 |
Summer Precipitation 2 | 0.0004 *** | 0.0000 | 0.0000 | 0.0000 |
Summer PDSI | −0.0002 | −0.0012 | 0.0009 | −0.001 |
Summer PDSI 2 | 0.0001 | −0.0002 | 0.0005 *** | −0.0002 |
Summer Min THI | 0.0412 *** | −0.0068 | −0.0289 *** | −0.0084 |
Summer Min THI 2 | −0.0004 *** | −0.0001 | 0.0002 *** | −0.0001 |
Summer Max THI | −0.0017 | −0.0184 | 0.0476 *** | −0.017 |
Summer Max THI 2 | −0.0001 | −0.0001 | −0.0003 *** | −0.0001 |
Fall Precipitation | 0.0058 *** | −0.0014 | 0.0030 ** | −0.0013 |
Fall Precipitation 2 | −0.0002 *** | −0.0001 | −0.0001 ** | 0.0000 |
Fall PDSI | −0.0037 *** | −0.001 | −0.0014 | −0.0009 |
Fall PDSI 2 | −0.0003 * | −0.0002 | −0.0004 ** | −0.0002 |
Fall Min THI | 0.0163 *** | −0.0037 | −0.0167 *** | −0.0037 |
Fall Min THI 2 | −0.0001 ** | 0.0000 | 0.0002 *** | 0.0000 |
Fall Max THI | −0.0155 | −0.01 | 0.0403 *** | −0.0087 |
Fall Max THI 2 | 0.0001 | −0.0001 | −0.0003 *** | −0.0001 |
Winter Precipitation | −0.0025 *** | −0.0009 | −0.0004 | −0.0009 |
Winter Precipitation 2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Winter PDSI | 0.0005 | −0.0013 | 0.0016 | −0.001 |
Winter PDSI 2 | −0.0008 ** | −0.0003 | −0.0006 ** | −0.0002 |
Winter Min THI | −0.0030 *** | −0.0012 | −0.0039 *** | −0.0011 |
Winter Min THI 2 | 0.0001 *** | 0.0000 | 0.0001 *** | 0.0000 |
Winter Max THI | 0.0130 *** | −0.0035 | 0.0153 *** | −0.0033 |
Winter Max THI 2 | −0.0001 *** | 0.0000 | −0.0002 *** | 0.0000 |
T | 0.0152 *** | −0.0002 | 0.0157 *** | −0.0002 |
T 2 | −0.0001 *** | 0.0000 | −0.0001 *** | 0.0000 |
Constant | 4.3068 *** | −0.5264 | 2.6282 *** | −0.5308 |
R−squared | 0.9342 | 0.9587 |
Variable | SEM | SDM | ||||
---|---|---|---|---|---|---|
Main | Main | WX | ||||
Spring Precipitation | −0.0024 ** | −0.001 | −0.0021 * | −0.0011 | 0.0026 | −0.0017 |
Spring Precipitation 2 | 0.0001 *** | 0.0000 | 0.0001 ** | 0.0000 | −0.0001 | −0.0001 |
Spring PDSI | −0.0005 | −0.001 | −0.0002 | −0.001 | −0.001 | −0.0014 |
Spring PDSI 2 | −0.0001 | −0.0002 | −0.0002 | −0.0002 | 0.0006 ** | −0.0003 |
Spring Min THI | 0.0047 | −0.0039 | 0.0066 | −0.0044 | −0.0088 | −0.0062 |
Spring Min THI 2 | −0.0001 ** | 0.0000 | −0.0001 ** | −0.0001 | 0.0001 * | −0.0001 |
Spring Max THI | −0.0242 ** | −0.0094 | −0.0165 | −0.0103 | 0.0109 | −0.0154 |
Spring Max THI 2 | 0.0002 *** | −0.0001 | 0.0002 * | −0.0001 | −0.0001 | −0.0001 |
Summer Precipitation | −0.0022 * | −0.0012 | −0.0017 | −0.0012 | 0.0039 * | −0.002 |
Summer Precipitation 2 | 0.0001 * | 0.0000 | 0.0001 | 0.0000 | −0.0002 ** | −0.0001 |
Summer PDSI | 0.0005 | −0.0009 | 0.0004 | −0.0009 | 0.0000 | −0.0013 |
Summer PDSI 2 | 0.0003 ** | −0.0001 | 0.0004 ** | −0.0001 | −0.0002 | −0.0002 |
Summer Min THI | 0.0242 *** | −0.0084 | 0.0352 *** | −0.009 | −0.0812 *** | −0.0131 |
Summer Min THI 2 | −0.0002 *** | −0.0001 | −0.0003 *** | −0.0001 | 0.0007 *** | −0.0001 |
Summer Max THI | −0.0447 *** | −0.0158 | −0.0474 *** | −0.0165 | 0.1444 *** | −0.025 |
Summer Max THI 2 | 0.0003 *** | −0.0001 | 0.0003 *** | −0.0001 | −0.0010 *** | −0.0002 |
Fall Precipitation | 0.0001 | −0.0012 | −0.0004 | −0.0012 | 0.0036 * | −0.0018 |
Fall Precipitation 2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | −0.0001 ** | −0.0001 |
Fall PDSI | 0.0008 | −0.0008 | 0.0012 | −0.0008 | −0.0033 *** | −0.0012 |
Fall PDSI 2 | −0.0004 ** | −0.0001 | −0.0003 ** | −0.0001 | 0.0004 * | −0.0002 |
Fall Min THI | −0.0029 | −0.0041 | 0.0041 | −0.0046 | −0.0164 *** | −0.0062 |
Fall Min THI 2 | 0.0000 | 0.0000 | −0.0001 | −0.0001 | 0.0002 *** | −0.0001 |
Fall Max THI | 0.0124 | −0.0094 | 0.0065 | −0.0106 | 0.0228 | −0.0149 |
Fall Max THI 2 | −0.0001 | −0.0001 | −0.0001 | −0.0001 | −0.0002 | −0.0001 |
Winter Precipitation | −0.0015 | −0.001 | −0.0020 ** | −0.001 | 0.0015 | −0.0014 |
Winter Precipitation 2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | −0.0001 |
Winter PDSI | −0.0002 | −0.001 | −0.0005 | −0.001 | 0.0018 | −0.0014 |
Winter PDSI 2 | 0.0001 | −0.0002 | 0.0002 | −0.0002 | −0.0010 *** | −0.0003 |
Winter Min THI | −0.0009 | −0.0013 | 0.0013 | −0.0015 | −0.0039 * | −0.002 |
Winter Min THI 2 | 0.0001 ** | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 |
Winter Max THI | 0.0087 ** | −0.0037 | 0.0047 | −0.0043 | 0.0037 | −0.006 |
Winter Max THI 2 | −0.0001 *** | 0.0000 | −0.0001 | 0.0000 | 0.0000 | −0.0001 |
T | 0.0155 *** | −0.0003 | 0.0059 *** | −0.0003 | ||
T 2 | −0.0001 *** | 0.0000 | −0.0000 *** | 0.0000 | ||
λ | 0.6651 *** | −0.0142 | ||||
ρ | 0.6239 *** | −0.0148 | ||||
R−squared | 0.8932 | 0.8818 |
Variable | SDM | SEM | ||||||
---|---|---|---|---|---|---|---|---|
Direct Effect | Indirect Effect | Total Effect | ||||||
Spring Precipitation | −0.0018 * | −0.0011 | 0.0030 | −0.0032 | 0.0012 | −0.0034 | −0.0024 ** | −0.001 |
Spring Precipitation 2 | 0.0001 * | 0.0000 | −0.0001 | −0.0001 | 0.0000 | −0.0001 | 0.0001 *** | 0.0000 |
Spring PDSI | −0.0004 | −0.0009 | −0.0029 | −0.003 | −0.0033 | −0.0033 | −0.0005 | −0.001 |
Spring PDSI 2 | −0.0001 | −0.0002 | 0.0012 * | −0.0006 | 0.0010 | −0.0007 | −0.0001 | −0.0002 |
Spring Min THI | 0.0056 | −0.0039 | −0.0115 | −0.0111 | −0.0059 | −0.0109 | 0.0047 | −0.0039 |
Spring Min THI 2 | −0.0001 ** | 0.0000 | 0.0002 | −0.0001 | 0.0001 | −0.0001 | −0.0001 ** | 0.0000 |
Spring Max THI | −0.0164 * | −0.0094 | 0.0007 | −0.0284 | −0.0157 | −0.028 | −0.0242 ** | −0.0094 |
Spring Max THI 2 | 0.0002 ** | −0.0001 | 0.0000 | −0.0002 | 0.0001 | −0.0002 | 0.0002 *** | −0.0001 |
Summer Precipitation | −0.001 | −0.0012 | 0.0067 | −0.0042 | 0.0057 | −0.0046 | −0.0022 * | −0.0012 |
Summer Precipitation 2 | 0.0000 | 0.0000 | −0.0003 ** | −0.0001 | −0.0003 * | −0.0002 | 0.0001 * | 0.0000 |
Summer PDSI | 0.0003 | −0.0008 | 0.0008 | −0.0026 | 0.0011 | −0.0029 | 0.0005 | −0.0009 |
Summer PDSI 2 | 0.0004 ** | −0.0002 | 0.0001 | −0.0005 | 0.0005 | −0.0006 | 0.0003 ** | −0.0001 |
Summer Min THI | 0.0210 ** | −0.0085 | −0.1449 *** | −0.0238 | −0.1239 *** | −0.0254 | 0.0242 *** | −0.0084 |
Summer Min THI 2 | −0.0002 *** | −0.0001 | 0.0012 *** | −0.0002 | 0.0010 *** | −0.0002 | −0.0002 *** | −0.0001 |
Summer Max THI | −0.0213 | −0.0159 | 0.2808 *** | −0.0485 | 0.2594 *** | −0.0543 | −0.0447 *** | −0.0158 |
Summer Max THI 2 | 0.0001 | −0.0001 | −0.0019 *** | −0.0003 | −0.0018 *** | −0.0004 | 0.0003 *** | −0.0001 |
Fall Precipitation | 0.0004 | −0.0012 | 0.0080 ** | −0.0036 | 0.0084 ** | −0.0038 | 0.0001 | −0.0012 |
Fall Precipitation 2 | 0.0000 | 0.0000 | −0.0003 ** | −0.0001 | −0.0003 ** | −0.0001 | 0.0000 | 0.0000 |
Fall PDSI | 0.0006 | −0.0008 | −0.0063 ** | −0.0025 | −0.0056 ** | −0.0027 | 0.0008 | −0.0008 |
Fall PDSI 2 | −0.0003 ** | −0.0001 | 0.0003 | −0.0004 | 0.0000 | −0.0005 | −0.0004 ** | −0.0001 |
Fall Min THI | 0.0007 | −0.0044 | −0.0336 *** | −0.0106 | −0.0328 *** | −0.0103 | −0.0029 | −0.0041 |
Fall Min THI 2 | 0.0000 | −0.0001 | 0.0004 *** | −0.0001 | 0.0004 *** | −0.0001 | 0.0000 | 0.0000 |
Fall Max THI | 0.0128 | −0.0098 | 0.0658 ** | −0.0258 | 0.0785 *** | −0.0251 | 0.0124 | −0.0094 |
Fall Max THI 2 | −0.0001 | −0.0001 | −0.0005 *** | −0.0002 | −0.0007 *** | −0.0002 | −0.0001 | −0.0001 |
Winter Precipitation | −0.0020 ** | −0.001 | 0.0005 | −0.0027 | −0.0015 | −0.0028 | −0.0015 | −0.001 |
Winter Precipitation 2 | 0.0000 | 0.0000 | 0.0001 | −0.0001 | 0.0001 | −0.0001 | 0.0000 | 0.0000 |
Winter PDSI | −0.0001 | −0.001 | 0.0038 | −0.0029 | 0.0037 | −0.0032 | −0.0002 | −0.001 |
Winter PDSI 2 | 0.0000 | −0.0002 | −0.0020 *** | −0.0007 | −0.0019 *** | −0.0007 | 0.0001 | −0.0002 |
Winter Min THI | 0.0006 | −0.0014 | −0.0076 ** | −0.0034 | −0.0070 ** | −0.0033 | −0.0009 | −0.0013 |
Winter Min THI 2 | 0.0000 | 0.0000 | 0.0001 * | −0.0001 | 0.0002 ** | −0.0001 | 0.0001 ** | 0.0000 |
Winter Max THI | 0.0062 | −0.0038 | 0.0163 * | −0.0098 | 0.0225 ** | −0.0094 | 0.0087 ** | −0.0037 |
Winter Max THI 2 | −0.0001 ** | 0.0000 | −0.0002 | −0.0001 | −0.0003 ** | −0.0001 | −0.0001 *** | 0.0000 |
T | 0.0067 *** | −0.0002 | 0.0089 *** | −0.0003 | 0.0156 *** | −0.0003 | 0.0155 *** | −0.0003 |
T 2 | −0.0000 *** | 0.0000 | −0.0001 *** | 0.0000 | −0.0001 *** | 0.0000 | −0.0001 *** | 0.0000 |
Model | In-Sample RMSE | Out-of-Sample RMSE |
---|---|---|
(1950–2014) | (2015–2022) | |
Pooled OLS model | 0.051 | 0.060 |
Fixed effects model | 0.068 | 0.067 |
SEM | 0.039 | 0.048 |
SDM | 0.037 | 0.051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Ma, J. A Spatial Econometric Analysis of Weather Effects on Milk Production. Earth 2024, 5, 477-490. https://doi.org/10.3390/earth5030026
Fan X, Ma J. A Spatial Econometric Analysis of Weather Effects on Milk Production. Earth. 2024; 5(3):477-490. https://doi.org/10.3390/earth5030026
Chicago/Turabian StyleFan, Xinxin, and Jiechao Ma. 2024. "A Spatial Econometric Analysis of Weather Effects on Milk Production" Earth 5, no. 3: 477-490. https://doi.org/10.3390/earth5030026
APA StyleFan, X., & Ma, J. (2024). A Spatial Econometric Analysis of Weather Effects on Milk Production. Earth, 5(3), 477-490. https://doi.org/10.3390/earth5030026