Using Google Earth Engine to Assess the Current State of Thermokarst Terrain on Arga Island (the Lena Delta)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Processing
2.3. Mapped LC Classes
2.4. The Band Selection for Classification from Composite
2.5. Classification Method
2.6. Accuracy Assessment Technique
3. Results and Discussion
3.1. Classification Result
3.2. Accuracy Assessment
3.3. The Spatial Distribution of the LC Classes
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; et al. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Intergovernmental Panel On Climate Change (Ed.) Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barrett, A.P.; Stroeve, J.C.; Kindig, D.N.; Holland, M.M. The Emergence of Surface-Based Arctic Amplification. Cryosphere 2009, 3, 11–19. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic Amplification and Extreme Mid-Latitude Weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef]
- Jansen, E.; Christensen, J.H.; Dokken, T.; Nisancioglu, K.H.; Vinther, B.M.; Capron, E.; Guo, C.; Jensen, M.F.; Langen, P.L.; Pedersen, R.A.; et al. Past Perspectives on the Present Era of Abrupt Arctic Climate Change. Nat. Clim. Chang. 2020, 10, 714–721. [Google Scholar] [CrossRef]
- Rudy, A.C.A.; Lamoureux, S.F.; Treitz, P.; Short, N.; Brisco, B. Seasonal and Multi-Year Surface Displacements Measured by DInSAR in a High Arctic Permafrost Environment. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 51–61. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Wang, C.; Tang, Y.; Zhang, B.; Wu, F.; Wang, J.; Zhang, Z. Time-Series InSAR Monitoring of Permafrost Freeze-Thaw Seasonal Displacement over Qinghai–Tibetan Plateau Using Sentinel-1 Data. Remote Sens. 2019, 11, 1000. [Google Scholar] [CrossRef]
- Farquharson, L.M.; Romanovsky, V.E.; Cable, W.L.; Walker, D.A.; Kokelj, S.V.; Nicolsky, D. Climate Change Drives Widespread and Rapid Thermokarst Development in Very Cold Permafrost in the Canadian High Arctic. Geophys. Res. Lett. 2019, 46, 6681–6689. [Google Scholar] [CrossRef]
- Nielsen, D.M.; Pieper, P.; Barkhordarian, A.; Overduin, P.; Ilyina, T.; Brovkin, V.; Baehr, J.; Dobrynin, M. Increase in Arctic Coastal Erosion and Its Sensitivity to Warming in the Twenty-First Century. Nat. Clim. Chang. 2022, 12, 263–270. [Google Scholar] [CrossRef]
- Wittig, S.; Berchet, A.; Pison, I.; Saunois, M.; Thanwerdas, J.; Martinez, A.; Paris, J.-D.; Machida, T.; Sasakawa, M.; Worthy, D.E.J.; et al. Estimating Methane Emissions in the Arctic Nations Using Surface Observations from 2008 to 2019. EGUsphere 2023, 23, 6457–6485. [Google Scholar] [CrossRef]
- Whiteman, G.; Hope, C.; Wadhams, P. Vast Costs of Arctic Change. Nature 2013, 499, 401–403. [Google Scholar] [CrossRef]
- Arenson, L.U.; Jakob, M. Periglacial Geohazard Risks and Ground Temperature Increases. In Engineering Geology for Society and Territory—Volume 1; Lollino, G., Manconi, A., Clague, J., Shan, W., Chiarle, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 233–237. [Google Scholar]
- Jorgenson, M.T. 8.20 Thermokarst Terrains. In Treatise on Geomorphology; Shroder, J.F., Ed.; Academic Press: San Diego, CA, USA, 2013; pp. 313–324. [Google Scholar] [CrossRef]
- French, H.M. The Periglacial Environment, 4th ed.; Wiley, Blackwell: Hoboken, NJ, USA, 2017. [Google Scholar]
- Olefeldt, D.; Goswami, S.; Grosse, G.; Hayes, D.; Hugelius, G.; Kuhry, P.; McGuire, A.D.; Romanovsky, V.E.; Sannel, A.B.K.; Schuur, E.A.G.; et al. Circumpolar Distribution and Carbon Storage of Thermokarst Landscapes. Nat. Commun. 2016, 7, 13043. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Grosse, G. Remote Sensing of Landscape Change in Permafrost Regions. Permafr. Periglac. Process. 2016, 27, 324–338. [Google Scholar] [CrossRef]
- Trofaier, A.M.; Westermann, S.; Bartsch, A. Progress in Space-Borne Studies of Permafrost for Climate Science: Towards a Multi-ECV Approach. Remote Sens. Environ. 2017, 203, 55–70. [Google Scholar] [CrossRef]
- Duncan, B.N.; Ott, L.E.; Abshire, J.B.; Brucker, L.; Carroll, M.L.; Carton, J.; Comiso, J.C.; Dinnat, E.P.; Forbes, B.C.; Gonsamo, A.; et al. Space-Based Observations for Understanding Changes in the Arctic-Boreal Zone. Rev. Geophys. 2020, 58, e2019RG000652. [Google Scholar] [CrossRef]
- Philipp, M.; Dietz, A.; Buchelt, S.; Kuenzer, C. Trends in Satellite Earth Observation for Permafrost Related Analyses—A Review. Remote Sens. 2021, 13, 1217. [Google Scholar] [CrossRef]
- Czudek, T.; Demek, J. Thermokarst in Siberia and Its Influence on the Development of Lowland Relief. Quat. Res. 1970, 1, 103–120. [Google Scholar] [CrossRef]
- French, H.M. Active Thermokarst Processes, Eastern Banks Island, Western Canadian Arctic. Can. J. Earth Sci. 1974, 11, 785–794. [Google Scholar] [CrossRef]
- Murton, J.B. Global Warming and Thermokarst. In Permafrost Soils; Margesin, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 185–203. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Shur, Y.L.; Pullman, E.R. Abrupt Increase in Permafrost Degradation in Arctic Alaska. Geophys. Res. Lett. 2006, 33, L02503. [Google Scholar] [CrossRef]
- Grosse, G.; Harden, J.; Turetsky, M.; McGuire, A.D.; Camill, P.; Tarnocai, C.; Frolking, S.; Schuur, E.A.G.; Jorgenson, T.; Marchenko, S.; et al. Vulnerability of High-Latitude Soil Organic Carbon in North America to Disturbance. J. Geophys. Res. Biogeosci. 2011, 116, G00K06. [Google Scholar] [CrossRef]
- Kokelj, S.V.; Jorgenson, M.T. Advances in Thermokarst Research. Permafr. Periglac. Process. 2013, 24, 108–119. [Google Scholar] [CrossRef]
- Liljedahl, A.K.; Boike, J.; Daanen, R.P.; Fedorov, A.N.; Frost, G.V.; Grosse, G.; Hinzman, L.D.; Iijma, Y.; Jorgenson, J.C.; Matveyeva, N.; et al. Pan-Arctic Ice-Wedge Degradation in Warming Permafrost and Its Influence on Tundra Hydrology. Nat. Geosci. 2016, 9, 312–318. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Mack, M.C. Ecological Response to Permafrost Thaw and Consequences for Local and Global Ecosystem Services. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 279–301. [Google Scholar] [CrossRef]
- Bartsch, A.; Strozzi, T.; Nitze, I. Permafrost Monitoring from Space. Surv. Geophys. 2023, 44, 1579–1613. [Google Scholar] [CrossRef]
- Beamish, A.; Raynolds, M.K.; Epstein, H.; Frost, G.V.; Macander, M.J.; Bergstedt, H.; Bartsch, A.; Kruse, S.; Miles, V.; Tanis, C.M.; et al. Recent Trends and Remaining Challenges for Optical Remote Sensing of Arctic Tundra Vegetation: A Review and Outlook. Remote Sens. Environ. 2020, 246, 111872. [Google Scholar] [CrossRef]
- Dubovik, O.; Schuster, G.L.; Xu, F.; Hu, Y.; Bösch, H.; Landgraf, J.; Li, Z. Grand Challenges in Satellite Remote Sensing. Front. Remote Sens. 2021, 2, 619818. [Google Scholar] [CrossRef]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Nedd, R.; Light, K.; Owens, M.; James, N.; Johnson, E.; Anandhi, A. A Synthesis of Land Use/Land Cover Studies: Definitions, Classification Systems, Meta-Studies, Challenges and Knowledge Gaps on a Global Landscape. Land 2021, 10, 994. [Google Scholar] [CrossRef]
- Kokelj, S.V.; Gingras-Hill, T.; Daly, S.V.; Morse, P.D.; Wolfe, S.A.; Rudy, A.C.A.; van der Sluijs, J.; Weiss, N.; Brendan O’Neill, H.; Baltzer, J.L.; et al. The Northwest Territories Thermokarst Mapping Collective: A Northern-Driven Mapping Collaborative toward Understanding the Effects of Permafrost Thaw. Arct. Sci. 2023, 9, 886–918. [Google Scholar] [CrossRef]
- Liu, C.; Xu, X.; Feng, X.; Cheng, X.; Liu, C.; Huang, H. CALC-2020: A New Baseline Land Cover Map at 10 m Resolution for the Circumpolar Arctic. Earth Syst. Sci. Data 2023, 15, 133–153. [Google Scholar] [CrossRef]
- Desjardins, É.; Lai, S.; Houle, L.; Caron, A.; Thériault, V.; Tam, A.; Vézina, F.; Berteaux, D. Algorithms and Predictors for Land Cover Classification of Polar Deserts: A Case Study Highlighting Challenges and Recommendations for Future Applications. Remote Sens. 2023, 15, 3090. [Google Scholar] [CrossRef]
- Liu, C.; Huang, H.; Sun, F. A Pixel-Based Vegetation Greenness Trend Analysis over the Russian Tundra with All Available Landsat Data from 1984 to 2018. Remote Sens. 2021, 13, 4933. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Amani, M.; Brisco, B.; Afshar, M.; Mirmazloumi, S.M.; Mahdavi, S.; Mirzadeh, S.M.J.; Huang, W.; Granger, J. A Generalized Supervised Classification Scheme to Produce Provincial Wetland Inventory Maps: An Application of Google Earth Engine for Big Geo Data Processing. Big Earth Data 2019, 3, 378–394. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Li, X.; Peng, D.; Zhang, Y.; Gong, P. Progress and Trends in the Application of Google Earth and Google Earth Engine. Remote Sens. 2021, 13, 3778. [Google Scholar] [CrossRef]
- Yang, L.; Driscol, J.; Sarigai, S.; Wu, Q.; Chen, H.; Lippitt, C.D. Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review. Remote Sens. 2022, 14, 3253. [Google Scholar] [CrossRef]
- Kravtsova, V.I.; Mit’kinykh, N.S. Mouths of World Rivers in the Atlas of Space Images. Water Resour. 2011, 38, 1–17. [Google Scholar] [CrossRef]
- Degtyarev, V. Lena River Delta (Russia). In The Wetland Book: II: Distribution, Description, and Conservation; Finlayson, C.M., Milton, G.R., Prentice, R.C., Davidson, N.C., Eds.; Springer: Dordrecht, The Netherlands, 2018; pp. 1451–1456. [Google Scholar] [CrossRef]
- Grigoriev, M.N. Criomorphogenesis in the Lena Delta; Permafrost Institute Press: Yakutsk, Russia, 1993; p. 176. [Google Scholar]
- Schwamborn, G.; Rachold, V.; Grigoriev, M.N. Late Quaternary Sedimentation History of the Lena Delta. Quat. Int. 2002, 89, 119–134. [Google Scholar] [CrossRef]
- Bolshiyanov, D.; Makarov, A.; Savelieva, L. Lena River Delta Formation during the Holocene. Biogeosciences 2015, 12, 579–593. [Google Scholar] [CrossRef]
- Schwamborn, G.; Schirrmeister, L.; Mohammadi, A.; Meyer, H.; Kartoziia, A.; Maggioni, F.; Strauss, J. Fluvial and Permafrost History of the Lower Lena River, North-Eastern Siberia, over Late Quaternary Time. Sedimentology 2023, 70, 235–258. [Google Scholar] [CrossRef]
- Schirrmeister, L.; Grosse, G.; Schwamborn, G.; Andreev, A.A.; Meyer, H.; Kunitsky, V.V.; Kuznetsova, T.V.; Dorozhkina, M.V.; Pavlova, E.Y.; Bobrov, A.A.; et al. Late Quaternary History of the Accumulation Plain North of the Chekanovsky Ridge (Lena Delta, Russia): A Multidisciplinary Approach. Polar Geogr. 2003, 27, 277–319. [Google Scholar] [CrossRef]
- Wetterich, S.; Kuzmina, S.; Andreev, A.A.; Kienast, F.; Meyer, H.; Schirrmeister, L.; Kuznetsova, T.; Sierralta, M. Palaeoenvironmental Dynamics Inferred from Late Quaternary Permafrost Deposits on Kurungnakh Island, Lena Delta, Northeast Siberia, Russia. Quat. Sci. Rev. 2008, 27, 1523–1540. [Google Scholar] [CrossRef]
- Are, F.; Reimnitz, E. An Overview of the Lena River Delta Setting: Geology, Tectonics, Geomorphology, and Hydrology. J. Coast. Res. 2000, 16, 1083–1093. [Google Scholar]
- Imaeva, L.P.; Gusev, G.S.; Imaev, V.S. Dynamics of the Relief and Sesmotectonic Activity of the Modern Structures in the Delta of the River Lena. Geotectonics 2019, 5, 62–77. [Google Scholar] [CrossRef]
- Dergach, P.A.; Eponeshnikova, L.Y.; Ponasenko, S.N.; Kartoziia, A.A.; Geissler, W.H.; Duchkov, A.A.; Shibaev, S.V.; Zobnin, G.Y. Building a tomographic velocity model for Samoylov Island area (Lena Delta) from local seismological data for the period of 2019–2021. Geodin. Tektonofiz. 2022, 13, 0627. [Google Scholar] [CrossRef]
- Zaplavnova, A.A.; Deev, E.V.; Potapov, V.V. Structure of the Upper Part of the Earth’s Crust in the Area of the Lena River Delta: The First Magnetotelluric Data. In Doklady Earth Sciences; Pleiades Publishing: Moscow, Russia, 2024; Volume 514, pp. 249–254. [Google Scholar] [CrossRef]
- Schwamborn, G.; Andreev, A.A.; Rachold, V.; Hubberten, H.-W.; Grigoriev, M.N.; Tumskoy, V.E.; Pavlova, E.Y.; Dorozhkina, M. Evolution of Lake Nikolay, Arga Island, Western Lena River Delta, during Late Pleistocene and Holocene Time. Polarforschung 2002, 70, 69–82. [Google Scholar]
- Andreev, A.; Tarasov, P.; Schwamborn, G.; Ilyashuk, B.; Ilyashuk, E.; Bobrov, A.; Klimanov, V.; Rachold, V.; Hubberten, H.-W. Holocene Paleoenvironmental Records from Nikolay Lake, Lena River Delta, Arctic Russia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 209, 197–217. [Google Scholar] [CrossRef]
- Schneider, J.; Grosse, G.; Wagner, D. Land Cover Classification of Tundra Environments in the Arctic Lena Delta Based on Landsat 7 ETM+ Data and Its Application for Upscaling of Methane Emissions. Remote Sens. Environ. 2009, 113, 380–391. [Google Scholar] [CrossRef]
- Boike, J.; Nitzbon, J.; Anders, K.; Grigoriev, M.; Bolshiyanov, D.; Langer, M.; Lange, S.; Bornemann, N.; Morgenstern, A.; Schreiber, P.; et al. A 16-Year Record (2002–2017) of Permafrost, Active-Layer, and Meteorological Conditions at the Samoylov Island Arctic Permafrost Research Site, Lena River Delta, Northern Siberia: An Opportunity to Validate Remote-Sensing Data and Land Surface, Snow, and Permafrost Models. Earth Syst. Sci. Data 2019, 11, 261–299. [Google Scholar] [CrossRef]
- Chalov, S.; Prokopeva, K.; Magritsky, D.; Grigoriev, V.; Fingert, E.; Habel, M.; Juhls, B.; Morgenstern, A.; Overduin, P.P.; Kasimov, N. Climate Change Impacts on Streamflow, Sediment Load and Carbon Fluxes in the Lena River Delta. Ecol. Indic. 2023, 157, 111252. [Google Scholar] [CrossRef]
- Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED (accessed on 5 May 2024).
- Rouse, J.W.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Remote Sens. Centre; TEXAS A&M Univ.: College Station, TX, USA, 1973. [Google Scholar]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Kauth, R.J.; Thomas, G.S. The Tasseled Cap—A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by Landsat. In Symposium on Machine, Processing of the Remotely Sensed Data, West Lafayette, IN, USA, 29 June–1 July 1976; The Institute of Electrical and Electronics Engineers, Inc.: Piscataway, NJ, USA, 1976; pp. 41–51. [Google Scholar]
- Shi, T.; Xu, H. Derivation of Tasseled Cap Transformation Coefficients for Sentinel-2 MSI At-Sensor Reflectance Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4038–4048. [Google Scholar] [CrossRef]
- Crist, E.P.; Cicone, R.C. Application of the Tasseled Cap Concept to Simulated Thematic Mapper Data. Photogramm. Eng. Remote Sens. 1984, 50, 343–352. [Google Scholar]
- IDB—Index DataBase. Available online: https://www.indexdatabase.de/ (accessed on 5 May 2024).
- Alexander, R.A. A Note on Averaging Correlations. Bull. Psychon. Soc. 1990, 28, 335–336. [Google Scholar] [CrossRef]
- Corey, D.M.; Dunlap, W.P.; Burke, M.J. Averaging Correlations: Expected Values and Bias in Combined Pearson Rs and Fisher’s z Transformations. J. Gen. Psychol. 1998, 125, 245–262. [Google Scholar] [CrossRef]
- Zhou, L.; Luo, T.; Du, M.; Chen, Q.; Liu, Y.; Zhu, Y.; He, C.; Wang, S.; Yang, K. Machine Learning Comparison and Parameter Setting Methods for the Detection of Dump Sites for Construction and Demolition Waste Using the Google Earth Engine. Remote Sens. 2021, 13, 787. [Google Scholar] [CrossRef]
- Merchant, M.; Brisco, B.; Mahdianpari, M.; Bourgeau-Chavez, L.; Murnaghan, K.; DeVries, B.; Berg, A. Leveraging Google Earth Engine Cloud Computing for Large-Scale Arctic Wetland Mapping. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103589. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Stehman, S.V. Selecting and Interpreting Measures of Thematic Classification Accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Sasaki, Y. The Truth of the F-Measure. Teach Tutor Mater 2007, 1, 1–5. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Yurkevich, N.; Kartoziia, A.; Tsibizova, E. Permafrost Degradation Impact on Water Bodies in the Siberian Tundra (Samoylov and Kurungnakh Islands, Lena Delta) Using GIS Analysis of Remote Sensing Data and a Geochemical Approach. Water 2022, 14, 2322. [Google Scholar] [CrossRef]
Band | Pixel Size (m) | Central Wavelength (nm) | Description |
---|---|---|---|
B1 | 60 | 442.3 | Aerosols |
B2 | 10 | 492.1 | Blue |
B3 | 10 | 559 | Green |
B4 | 10 | 665 | Red |
B5 | 20 | 703.8 | Red Edge 1 |
B6 | 20 | 739.1 | Red Edge 2 |
B7 | 20 | 779.7 | Red Edge 3 |
B8 | 10 | 833 | NIR |
B8A | 20 | 864 | Red Edge 4 |
B9 | 60 | 943.2 | Water vapor |
B11 | 20 | 1610.4 | SWIR 1 |
B12 | 20 | 2185.7 | SWIR 2 |
Index | Formula |
---|---|
Normalized Difference Vegetation Index (NDVI) | (B8 − B4)/(B8 + B4) |
Normalized Difference Water Index (NDWI) | (B3 − B8)/(B3 + B8) |
Enhanced Vegetation Index (EVI) | 2.5 × (B8 − B4)/((B8 + 6.0 × B4 − 7.5 × B2) + 1.0) |
Tasselled Cap transformation—wetness (TCW) | 0.1509 × B2 + 0.1973 × B3 + 0.3279 × B4 + 0.3406 × B8 + 0.7112 × B11 + 0.4572 × B12 |
Tasselled Cap transformation—greenness (TCG) | −0.2848 × B2 − 0.2435 × B3 − 0.5436 × B4 + 0.7243 × B8 + 0.0840 × B11 − 0.1800 × B12 |
LC Classes | Precision | Recall | F1 Score |
---|---|---|---|
water bodies | 0.9998 | 1 | 0.9999 |
stable terrains | 0.9904 | 0.9121 | 0.9497 |
thermokarst-affected terrains | 0.9296 | 0.9871 | 0.9575 |
slopes | 0.9893 | 0.9919 | 0.9906 |
blowouts | 1 | 1 | 1 |
Mean: | 0.9818 | 0.9782 | 0.9795 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kartoziia, A. Using Google Earth Engine to Assess the Current State of Thermokarst Terrain on Arga Island (the Lena Delta). Earth 2024, 5, 228-243. https://doi.org/10.3390/earth5020012
Kartoziia A. Using Google Earth Engine to Assess the Current State of Thermokarst Terrain on Arga Island (the Lena Delta). Earth. 2024; 5(2):228-243. https://doi.org/10.3390/earth5020012
Chicago/Turabian StyleKartoziia, Andrei. 2024. "Using Google Earth Engine to Assess the Current State of Thermokarst Terrain on Arga Island (the Lena Delta)" Earth 5, no. 2: 228-243. https://doi.org/10.3390/earth5020012
APA StyleKartoziia, A. (2024). Using Google Earth Engine to Assess the Current State of Thermokarst Terrain on Arga Island (the Lena Delta). Earth, 5(2), 228-243. https://doi.org/10.3390/earth5020012