The Contribution of Ornamental Plants to Urban Ecosystem Services
Abstract
:1. Introduction
2. Methodology and Literature Research
3. Ecosystem Services
3.1. Provisioning of Material and Energy Needs
Food Production in an Urban Area
3.2. Regulation and Maintenance of the Environment for Humans
3.2.1. Water Rain Management and Mitigation
3.2.2. Temperature Regulation
3.2.3. Nutrient Recycling
3.2.4. Pollution
3.2.5. Biodiversity
3.3. Non-Material Characteristics of Ecosystems That Affect Physical and Mental States of People
Healing Garden
4. Conclusions
- The importance of the urban ecosystem services of green areas at a local level, involving stakeholders, politicians, and citizens urban;
- Detailed analysis of the contribution that ornamental species can offer, in consideration of the very broad genetic bases on which they can be counted;
- Identification of easy to use parameters that are able to define the performances of the different species to help in the choices of the most suitable genotypes.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UN (United Nations). World Urbanization Prospects: The 2018 Revision; United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2018; pp. 1–126. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Urban Areas Climate Change 2014—Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report; Cambridge University Press: Cambridge, UK, 2014; pp. 535–612. [Google Scholar] [CrossRef]
- WHO (World Health Organization); UN-Habitat. Global Report on urban Health: Equitable Healthier Cities for Sustainable Development; World Health Organization: Geneva, Switzerland, 2016; pp. 1–239. Available online: https://apps.who.int/iris/handle/10665/204715 (accessed on 4 October 2022).
- Millennium Ecosystem Assessment, M.A. Ecosystems and Human Well-Being: A Framework for Assessment; Report of the Conceptual Framework Working Group of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2003; p. 266. Available online: http://pdf.wri.org/ecosystems_human_wellbeing.pdf (accessed on 13 September 2022).
- Haines-Young, R.; Potschin-Young, M. Revision of the common international classification for ecosystem services (CICES V5. 1): A policy brief. One Ecosyst. 2018, 3, e27108. [Google Scholar] [CrossRef]
- Elmqvist, T.; Setälä, H.; Handel, S.N.; Van Der Ploeg, S.; Aronson, J.; Blignaut, J.N.; Gomez-Baggethun, E.; Nowak, D.J.; Kronenberg, J.; De Groot, R. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 2015, 14, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Nawrath, M.; Elsey, H.; Dallimer, M. Why cultural ecosystem services matter most: Exploring the pathways linking greenspaces and mental health in a low-income country. Sci. Total Environ. 2022, 806, 150551. [Google Scholar] [CrossRef] [PubMed]
- Schwela, D. Air pollution and health in urban areas. Rev. Environ. Health 2000, 15, 13–42. [Google Scholar] [CrossRef]
- Li, C.; Du, D.; Gan, Y.; Ji, S.; Wang, L.; Chang, M.; Liu, J. Foliar dust as a reliable environmental monitor of heavy metal pollution in comparison to plant leaves and soil in urban areas. Chemosphere 2022, 287, 132341. [Google Scholar] [CrossRef]
- Capotorti, G.; Ortí, M.M.A.; Copiz, R.; Fusaro, L.; Mollo, B.; Salvatori, E.; Zavattero, L. Biodiversity and ecosystem services in urban green infrastructure planning: A case study from the metropolitan area of Rome (Italy). Urban For. Urban Green. 2019, 37, 87–96. [Google Scholar] [CrossRef]
- Ciftcioglu, G.C.; Ebedi, S.; Abak, K. Evaluation of the relationship between ornamental plants–based ecosystem services and human wellbeing: A case study from Lefke Region of North Cyprus. Ecol. Indic. 2019, 102, 278–288. [Google Scholar] [CrossRef]
- Wang, H.F.; Qureshi, S.; Knapp, S.; Friedman, C.R.; Hubacek, K. A basic assessment of residential plant diversity and its ecosystem services and disservices in Beijing, China. Appl. Geogr. 2015, 64, 121–131. [Google Scholar] [CrossRef]
- Hernández, M.; Morales, A.; Saurí, D. Ornamental plants and the production of nature (s) in the Spanish real estate boom and bust: The case of Alicante. Urban Geogr. 2014, 35, 71–85. [Google Scholar] [CrossRef]
- Kendal, D.; Williams, N.S.; Williams, K.J. A cultivated environment: Exploring the global distribution of plants in gardens, parks and streetscapes. Urban Ecosyst. 2012, 15, 637–652. [Google Scholar] [CrossRef]
- Rocha, C.S.; Rocha, D.C.; Kochi, L.Y.; Carneiro, D.N.M.; Dos Reis, M.V.; Gomes, M.P. Phytoremediation by ornamental plants: A beautiful and ecological alternative. Environ. Sci. Pollut. Res. 2022, 29, 3336–3354. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.; Kendal, D.; Moore, J.L. Humans and ornamental plants: A mutualism? Ecopsychology 2016, 8, 257–263. [Google Scholar] [CrossRef]
- Benvenuti, S.; Mazzoncini, M. The biodiversity of edible flowers: Discovering new tastes and new health benefits. Front. Plant Sci. 2021, 11, 569499. [Google Scholar] [CrossRef]
- Fetouh, M.I. Edible Landscaping in Urban Horticulture. In Urban Horticulture. Sustainable Development and Biodiversity; Nandwani, D., Ed.; Springer: Cham, Switzerland, 2018; Volume 18, pp. 141–173. [Google Scholar] [CrossRef]
- Savé, R. What is stress and how to deal with it in ornamental plants? Acta Hortic. 2009, 813, 241–254. [Google Scholar] [CrossRef]
- Toscano, S.; Ferrante, A.; Romano, D. Response of Mediterranean ornamental plants to drought stress. Horticulturae 2019, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Gopal, D.; Nagendra, H. Vegetation in Bangalore’s slums: Boosting livelihoods, well-being and social capital. Sustainability 2014, 6, 2459–2473. [Google Scholar] [CrossRef] [Green Version]
- Maller, C.; Townsend, M.; St Leger, L.; Henderson-Wilson, C.; Pryor, A.; Prosser, L.; Moore, M. Healthy parks, healthy people: The health benefits of contact with nature in a park context. Georg. Wright Forum 2009, 26, 51–83. [Google Scholar]
- Baiyewu, R.A.; Amusa, N.A.; Olayiwola, O. Survey on the use of ornamental plants for environmental management in southwestern Nigeria. RJABS 2005, 1, 237–240. Available online: http://www.aensiweb.net/AENSIWEB/rjabs/rjabs/237-240.pdf (accessed on 20 September 2022).
- Hall, C.R.; Hodges, A.W. Economic, environmental and well-being benefits of lifestyle horticulture. Chron. Horticult. 2011, 51, 5–8. [Google Scholar]
- Summers, J.K.; Smith, L.M.; Case, J.L.; Linthurst, R.A. A review of the elements of human well-being with an emphasis on the contribution of ecosystem services. AMBIO 2012, 41, 327–340. [Google Scholar] [CrossRef] [Green Version]
- Ciftcioglu, G.C. Assessment of the relationship between ecosystem services and human wellbeing in the social-ecological landscapes of Lefke Region in North Cyprus. Landsc. Ecol. 2017, 32, 897–913. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, S.; Yung, E.H.; Chan, E.H.; Luan, B.; Chen, Y. On the urban compactness to ecosystem services in a rapidly urbanising metropolitan area: Highlighting scale effects and spatial non–stationary. Environ. Impact Assess. Rev. 2023, 98, 106975. [Google Scholar] [CrossRef]
- Evans, D.L.; Falagán, N.; Hardman, C.A.; Kourmpetli, S.; Liu, L.; Mead, B.R.; Davies, J.A.C. Ecosystem service delivery by urban agriculture and green infrastructure–a systematic review. Ecosyst. Serv. 2022, 54, 101405. [Google Scholar] [CrossRef]
- Ungaro, F.; Maienza, A.; Ugolini, F.; Lanini, G.M.; Baronti, S.; Calzolari, C. Assessment of joint soil ecosystem services supply in urban green spaces: A case study in Northern Italy. Urban For. Urban Green. 2022, 67, 127455. [Google Scholar] [CrossRef]
- McPhearson, T.; Cook, E.M.; Berbés-Blázquez, M.; Cheng, C.; Grimm, N.B.; Andersson, E.; Barbosa, O.; Chandler, D.G.; Chang, H.; Chester, M.V.; et al. A social-ecological-technological systems framework for urban ecosystem services. One Earth 2022, 5, 505–518. [Google Scholar] [CrossRef]
- Bulgari, R.; Petrini, A.; Cocetta, G.; Nicoletto, C.; Ertani, A.; Sambo, P.; Ferrante, A.; Nicola, S. The impact of COVID-19 on horticulture: Critical issues and opportunities derived from an unexpected occurrence. Horticulturae 2021, 7, 124. [Google Scholar] [CrossRef]
- Giro, A.; Ciappellano, S.; Ferrante, A. Vegetable production using a simplified hydroponics system inside City of Dead (Cairo). Adv. Hortic. Sci. 2016, 30, 23–29. [Google Scholar] [CrossRef]
- Appolloni, E.; Orsini, F.; Specht, K.; Thomaier, S.; Sanye-Mengual, E.; Pennisi, G.; Gianquinto, G. The global rise of urban rooftop agriculture: A review of worldwide cases. J. Clean. Prod. 2021, 296, 126556. [Google Scholar] [CrossRef]
- Demasi, S.; Caser, M.; Donno, D.; Enri, S.; Lonati, M.; Scariot, V. Exploring wild edible flowers as a source of bioactive compounds: New perspectives in horticulture. Folia Horticult. 2021, 33, 27–48. [Google Scholar] [CrossRef]
- Scariot, V.; Ferrante, A.; Romano, D. Edible flowers: Understanding the effect of genotype, preharvest, and postharvest on quality, safety, and consumption. Front. Plant Sci. 2022, 13, 1025196. [Google Scholar] [CrossRef]
- Falla, N.M.; Contu, S.; Demasi, S.; Caser, M.; Scariot, V. Environmental Impact of Edible flower production: A case study. Agronomy 2020, 10, 579. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Novellino, E.; Daliu, P.; Santini, A. Fruit-based juices: Focus on antioxidant properties—Study approach and update. Phytother. Res. 2019, 33, 1754–1769. [Google Scholar] [CrossRef] [PubMed]
- Romano, D.; La Fornara, G.; Toscano, S. The edible ornamental plants: A resource for urban Mediterranean horticulture. Acta Hortic. 2022, 1345, 57–64. [Google Scholar] [CrossRef]
- Davanzo, F.; Miaglia, S.; Perego, S.; Assisi, F.; Bissoli, M.; Borghini, R.; Cassetti, F.; Della Puppa, T.; Dimasi, V.; Falciola, C.; et al. Plant poisoning: Increasing relevance, a problem of public health and education. North-western Italy, Piedmont region. J. Pharm. Sci. Res. 2011, 3, 1338. [Google Scholar]
- Bowerbank, S.L.; Gallidabino, M.D.; Dean, J.R. Plant poisons in the garden: A human risk assessment. Separations 2022, 9, 308. [Google Scholar] [CrossRef]
- Janeček, V.; Rada, P.; Rom, J.; Horák, J. Rural agroforestry artifacts in a city: Determinants of spatiotemporally continuous fruit orchards in an urban area. Urban For. Urban Green. 2019, 41, 33–38. [Google Scholar] [CrossRef]
- Scholz, T.; Hof, A.; Schmitt, T. Cooling effects and regulating ecosystem services provided by urban trees—novel analysis approaches using urban tree cadastre data. Sustainability 2018, 10, 712. [Google Scholar] [CrossRef] [Green Version]
- Lopes, H.S.; Remoaldo, P.C.; Ribeiro, V.; Martín-Vide, J. Pathways for adapting tourism to climate change in an urban destination–Evidences based on thermal conditions for the Porto Metropolitan Area (Portugal). J. Environ. Manag. 2022, 315, 115161. [Google Scholar] [CrossRef]
- Dela Cruz, M.; Christensen, J.H.; Thomsen, J.D.; Müller, R. Can ornamental potted plants remove volatile organic compounds from indoor air?—A review. Environ. Sci. Pollut. Res. 2014, 21, 13909–13928. [Google Scholar] [CrossRef]
- Pellegrini, E.; Cioni, P.L.; Francini, A.; Lorenzini, G.; Nali, C.; Flamini, G. Volatiles emission patterns in poplar clones varying in response to ozone. J. Chem. Ecol. 2012, 38, 924–932. [Google Scholar] [CrossRef]
- Calderón-Contreras, R.; Quiroz-Rosas, L.E. Analysing scale, quality and diversity of green infrastructure and the provision of Urban Ecosystem Services: A case from Mexico City. Ecosyst. Serv. 2017, 23, 127–137. [Google Scholar] [CrossRef]
- Hunt, W.F.; Lord, B.; Loh, B.; Sia, A. Plant Selection for Bioretention Systems and Stormwater Treatment Practices; Springer Nature: Singapore, 2015; p. 59. [Google Scholar] [CrossRef]
- Takaijudin, H.; Ghani, A.; Zakaria, N.A. Challenges and developments of bioretention facilities in treating urban stormwater runoff; A review. Pollution 2016, 2, 489–508. [Google Scholar] [CrossRef]
- Bortolini, L.; Zanin, G. Reprint of: Hydrological behaviour of rain gardens and plant suitability: A study in the Veneto plain (north-eastern Italy) conditions. Urban For. Urban Green. 2019, 37, 74–86. [Google Scholar] [CrossRef]
- Funai, J.T.; Kupec, P. Evaluation of three soil blends to improve ornamental plant performance and maintain engineering metrics in bioremediating rain gardens. Water Air Soil Pollut. 2019, 230, 3. [Google Scholar] [CrossRef]
- Yuan, J.; Dunnett, N. Plant selection for rain gardens: Response to simulated cyclical flooding of 15 perennial species. Urban For. Urban Green. 2018, 35, 57–65. [Google Scholar] [CrossRef]
- Bolques, A.; Cherrier, J.; Abazinge, M.; Matungwa, G. Installation of a bioretention/rain garden to mitigate agricultural irrigation runoff from a container plant nursery. Proc. Fla. State Hort. Soc. 2010, 123, 326–329. [Google Scholar]
- Ma, X.; Shu, Y.; Shi, Y.; Bao, Z. Analysis of plant selection and landscaping design for rain garden: A case study of Gongkang Rainwater Garden in Shanghai. Acta Agric. Zhejiangensis 2018, 30, 1526–1533. [Google Scholar]
- Kapoor, M. Managing ambient air quality using ornamental plants-an alternative approach. Univers. J. Plant Sci. 2017, 5, 1–9. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.H.; Yang, J. Cooling effect of urban trees on the built environment of contiguous United States. Earth’s Future 2018, 6, 1066–1081. [Google Scholar] [CrossRef] [Green Version]
- Buta, E.; Cantor, M.; Singureanu, V.; Husti, A.; Hort, D.; Buta, M. Ornamental plants used for improvement of living, working and studying spaces microclimate. ProEnviron. Promediu 2013, 6, 562–565. [Google Scholar]
- Gratani, L.; Varone, L. Carbon sequestration by Quercus ilex L. and Quercus pubescens Willd. and their contribution to decreasing air temperature in Rome. Urban Ecosyst. 2006, 9, 27–37. [Google Scholar] [CrossRef]
- Richards, D.R.; Fung, T.K.; Belcher, R.N.; Edwards, P.J. Differential air temperature cooling performance of urban vegetation types in the tropics. Urban For. Urban Green. 2020, 50, 126651. [Google Scholar] [CrossRef]
- Toscano, S.; Scuderi, D.; Giuffrida, F.; Romano, D. Responses of Mediterranean ornamental shrubs to drought stress and recovery. Sci. Hortic. 2014, 178, 145–153. [Google Scholar] [CrossRef]
- Carey, R.O.; Hochmuth, G.J.; Martinez, C.J.; Boyer, T.H.; Nair, V.D.; Dukes, M.D.; Toor, G.S.; Shober, A.; Cisar, J.L.; Trenholm, L.E.; et al. A review of turfgrass fertilizer management practices: Implications for urban water quality. HortTechnology 2012, 22, 280–291. [Google Scholar] [CrossRef]
- Perrone, S.; Grossman, J.; Liebman, A.; Sooksa-nguan, T.; Gutknecht, J. Nitrogen fixation and productivity of winter annual legume cover crops in Upper Midwest organic cropping systems. Nutr. Cycl. Agroecosys. 2020, 117, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Francini, A.; Toscano, S.; Romano, D.; Ferrini, F.; Ferrante, A. Biological contribution of ornamental plants for improving slope stability along urban and suburban areas. Horticulturae 2021, 7, 310. [Google Scholar] [CrossRef]
- Khan, A.H.A.; Kiyani, A.; Mirza, C.R.; Butt, T.A.; Barros, R.; Ali, B.; Iqbal, M.; Yousaf, S. Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives. Environ. Res. 2021, 195, 110780. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, B.; Wang, L.A.; Urbanovich, O.; Nagorskaya, L.; Li, X.; Tang, L. A review on phytoremediation of mercury contaminated soils. J. Hazard. Mater. 2020, 400, 123138. [Google Scholar] [CrossRef]
- Bortoloti, G.A.; Baron, D. Phytoremediation of toxic heavy metals by brassica plants: A biochemical and physiological approach. Environ. Adv. 2022, 8, 100204. [Google Scholar] [CrossRef]
- Evans, C.S.; Asher, C.J.; Johnson, C.M. Isolation of dimethyl diselenide and other volatile selenium compounds from Astragalus racemosus (Pursh.). Aust. J. Biol. Sci. 1968, 21, 13–20. [Google Scholar] [CrossRef]
- Khandare, R.V.; Desai, S.B.; Bhujbal, S.S.; Watharkar, A.D.; Biradar, S.P.; Pawar, P.K.; Govindwar, S.P. Phytoremediation of fluoride with garden ornamentals Nerium oleander, Portulaca oleracea, and Pogonatherum crinitum. Environ. Sci. Pollut. Res. 2017, 24, 6833–6839. [Google Scholar] [CrossRef] [PubMed]
- Pierattini, E.C.; Francini, A.; Raffaelli, A.; Sebastiani, L. Surfactant and heavy metal interaction in poplar: A focus on SDS and Zn uptake. Tree Physiol. 2018, 38, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Sebastiani, L.; Francini, A.; Romeo, S.; Ariani, A.; Minnocci, A. Heavy metals stress on poplar: Molecular and anatomical modifications. In Approaches to Plant Stress and Their Management; Springer: New Delhi, India, 2014; pp. 267–279. [Google Scholar]
- Romeo, S.; Francini, A.; Sebastiani, L.; Morabito, D. High Zn concentration does not impair biomass, cutting radial growth, and photosynthetic activity traits in Populus alba L. J. Soils Sedim. 2017, 17, 1394–1402. [Google Scholar] [CrossRef]
- Agudelo-Castañeda, D.M.; Teixeira, E.C.; Schneider, I.L.; Lara, S.R.; Silva, L.F. Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1. 0 of urban environments: Carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 2017, 224, 158–170. [Google Scholar] [CrossRef]
- Azimi, S.; Rocher, V.; Muller, M.; Moilleron, R.; Thevenot, D.R. Sources, distribution and variability of hydrocarbons and metals in atmospheric deposition in an urban area (Paris, France). Sci. Total Environ. 2005, 337, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Miino, M.C. Lockdown for COVID-2019 in Milan: What are the effects on air quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef]
- Xiao, N.; Liu, R.; Jin, C.; Dai, Y. Efficiency of five ornamental plant species in the phytoremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecol. Eng. 2015, 75, 384–391. [Google Scholar] [CrossRef]
- McArdell, C.S.; Molnar, E.; Suter, M.J.F.; Giger, W. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley Watershed, Switzerland. Environ. Sci. Technol. 2003, 37, 5479–5486. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473, 619–641. [Google Scholar] [CrossRef]
- Pierattini, E.C.; Francini, A.; Raffaelli, A.; Sebastiani, L. Morpho-physiological response of Populus alba to erythromycin: A timeline of the health status of the plant. Sci. Total Environ. 2016, 569, 540–547. [Google Scholar] [CrossRef]
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Spotswood, E.N.; Beller, E.E.; Grossinger, R.; Grenier, J.L.; Heller, N.E.; Aronson, M.F.J. The biological deserts fallacy: Cities in their landscapes contribute more than we think to regional biodiversity. BioScience 2021, 71, 148–160. [Google Scholar] [CrossRef] [PubMed]
- Hausmann, S.L.; Petermann, J.S.; Rolff, J. Wild bees as pollinators of city trees. Insect Conserv. Divers. 2016, 9, 97–107. [Google Scholar] [CrossRef]
- Wenzel, A.; Grass, I.; Belavadi, V.V.; Tscharntke, T. How urbanization is driving pollinator diversity and pollination—A systematic review. Biol. Conserv. 2020, 241, 108321. [Google Scholar] [CrossRef]
- Noe, S.M.; Penuelas, J.; Niinemets, Ü. Monoterpene emissions from ornamental trees in urban areas: A case study of Barcelona, Spain. Plant Biol. 2008, 10, 163–169. [Google Scholar] [CrossRef]
- Qian, S.; Qi, M.; Huang, L.; Zhao, L.; Lin, D.; Yang, Y. Biotic homogenization of China’s urban greening: A meta-analysis on woody species. Urban For. Urban Green. 2016, 18, 25–33. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Peñuelas, J. Gardening and urban landscaping: Significant players in global change. Trends Plant Sci. 2008, 13, 60–65. [Google Scholar] [CrossRef]
- Graves, R.A.; Pearson, S.M.; Turner, M.G. Species richness alone does not predict cultural ecosystem service value. Proc. Natl. Acad. Sci. USA 2017, 114, 3774–3779. [Google Scholar] [CrossRef] [Green Version]
- Khoshbakht, K.; Hammer, K. Threatened and rare ornamental plants. J. Agric. Rural Dev. Trop. Subtrop. 2007, 108, 19–39. Available online: https://www.jarts.info/index.php/jarts/article/view/106/97 (accessed on 13 September 2022).
- Farinati, S.; Betto, A.; Palumbo, F.; Scariolo, F.; Vannozzi, A.; Barcaccia, G. The new green challenge in urban planning: The right genetics in the right place. Horticulturae 2022, 8, 761. [Google Scholar] [CrossRef]
- Blundo Canto, G.M. Exploring the Links Between Agricultural Biodiversity, Ecosystem Services and Human Well-Being: Evidence from the Yucatan, Mexico. Ph.D. Thesis, Università Degli Studi Roma, Roma, Italy, 2014. Available online: https://hdl.handle.net/2307/4487 (accessed on 20 September 2022).
- Husti, A.M.; Conţiu, I.; Radu, M.; Neacşu, I.; Cantor, M. Psychological benefits of ornamental plants used in office environments. Bull. UASVM Hortic. 2015, 72, 101–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dijkstra, K.; Pieterse, M.E.; Pruyn, A. Stress-reducing effects of indoor plants in the built healthcare environment: The mediating role of perceived attractiveness. Prev. Med. 2008, 47, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, J.D.; Sønderstrup-Andersen, H.K.; Müller, R. People–plant relationships in an office workplace: Perceived benefits for the workplace and employees. HortScience 2011, 46, 744–752. [Google Scholar] [CrossRef]
- La Rosa, D.; Spyra, M.; Inostroza, L. Indicators of Cultural Ecosystem Services for urban planning: A review. Ecol. Indic. 2016, 61, 74–89. [Google Scholar] [CrossRef]
- Helliwell, R. Putting a value on visual amenity. Arboric. J. 2014, 36, 129–139. [Google Scholar] [CrossRef]
- Lindemann-Matthies, P.; Bose, E. Species richness, structural diversity and species composition in meadows created by visitors of a botanical garden in Switzerland. Landsc. Urban Plan. 2007, 79, 298–307. [Google Scholar] [CrossRef]
- Qin, J.; Sun, C.; Zhou, X.; Leng, H.; Lian, Z. The effect of indoor plants on human comfort. Indoor Built Environ. 2014, 23, 709–723. [Google Scholar] [CrossRef]
- WHO. Urban Green Spaces and Health; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2016; pp. 1–80.
- Ulrich, R.S. View through a window may influence recovery from surgery. Science 1984, 224, 420–421. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, R.S. Health benefits of gardens in hospitals. In Paper for Conference, Plants for People. In Proceedings of the International Exhibition Floriade, Haarlemmermeer, The Netherlands, 6–20 October 2002. [Google Scholar]
- Sadler, B. Design to compete in managed healthcare. Facil. Des. Manag. 2001, 20, 38–41. [Google Scholar]
- Coile, R.C. Paperless Hospital: Healthcare in a Digital Age; Health Administration Press: Chicago, IL, USA, 2002; p. 320. [Google Scholar]
- Paraskevopoulou, A.T.; Kamperi, E. Design of hospital healing gardens linked to pre-or post-occupancy research findings. Front. Archit. Res. 2018, 7, 395–414. [Google Scholar] [CrossRef]
- Lu, S.; Wu, F.; Wang, Z.; Cui, Y.; Chen, C.; Wei, Y. Evaluation system and application of plants in healing landscape for the elderly. Urban For. Urban Green. 2021, 58, 126969. [Google Scholar] [CrossRef]
- Amingad, V.; Lakshmipathy, M. Ornamental plants and their role in human psychology. In Proceedings of the 2nd International Conference on Agricultural & Horticultural Sciences, Hyderabad, India, 27–29 October 2014. [Google Scholar]
Cultivation Systems and Plant Species in Urban Areas | |
---|---|
Soil | All ornamental and vegetable species, including annual, shrubs, and trees. |
Soilless systems | In areas without soil availability, the growing systems can be carried out in substrates, floating systems, aeroponics, and nutrient film techniques (NFT). |
Rooftop | Ornamental and vegetable plants can be grown on the top of buildings. |
Indoor | Indoor cultivation can be performed when there are no soil or roofs available. Indoor cultivation has the advantage of producing directly in the urban area and in contact with consumers. |
Environmental Evaluation | |
Location | Adequate solar radiation and water availability. |
Soil | Adequate organic matter (1.5–3%), pH (5.5–7.5), electric conductivity (<2.5), homogenous topsoil layer. |
Management | Mineral nutrition should be carefully determined on the basis of soil availability and species requirements. Fertilizers should be slowly released and the supply should be performed by following the plant uptake dynamics. |
Pollution | In case of soil pollution, such as heavy metals, cultivation can be carried out in hydroponic systems with nutrient solutions or substrates. |
Ornamental species | |
Annual | Edible flower species that can be grown in soil in urban areas with low traffic or in private gardens or balconies. |
Shrubs and trees | These species have long permanence in the urban area; therefore, appropriate distribution and density must be considered. It is important to use varieties that have tolerance to diseases or pests. |
Agronomic tools | |
Irrigation | The water supply should be scheduled considering the plant growth and soil water retention. |
Tillage tools | The soil can be prepared manually or with a small working machine. |
Protection | Avoid chemical compounds, including pesticides and fungicides. In case of severe biotic stress conditions, biostimulants and biological control agents should be used. |
Harvesting | In fruit plants, it is important to guarantee harvesting in the best ripening stage, avoiding overripening that can affect the quality of the production. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francini, A.; Romano, D.; Toscano, S.; Ferrante, A. The Contribution of Ornamental Plants to Urban Ecosystem Services. Earth 2022, 3, 1258-1274. https://doi.org/10.3390/earth3040071
Francini A, Romano D, Toscano S, Ferrante A. The Contribution of Ornamental Plants to Urban Ecosystem Services. Earth. 2022; 3(4):1258-1274. https://doi.org/10.3390/earth3040071
Chicago/Turabian StyleFrancini, Alessandra, Daniela Romano, Stefania Toscano, and Antonio Ferrante. 2022. "The Contribution of Ornamental Plants to Urban Ecosystem Services" Earth 3, no. 4: 1258-1274. https://doi.org/10.3390/earth3040071
APA StyleFrancini, A., Romano, D., Toscano, S., & Ferrante, A. (2022). The Contribution of Ornamental Plants to Urban Ecosystem Services. Earth, 3(4), 1258-1274. https://doi.org/10.3390/earth3040071