Assessing Reliability of Recycled Water in Wicking Beds for Sustainable Urban Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. Experimental Design and Treatments
2.3. Soil, Water and Plant Tissue Analysis
2.4. Yield, Fruit Quality, Plant Growth and Water Use Efficiency
2.5. Statistical Analysis
3. Results
3.1. Yield, Plant Growth and Water Use Efficiency
3.2. Salt Accumulation in Soil Layer
3.3. Soil Sodicity
3.4. Total Nitrogen and Other Nutrients
3.5. Tomato Plant Tissue
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pulighe, G.; Lupia, F. Multitemporal Geospatial Evaluation of Urban Agriculture and (Non)-Sustainable Food Self-Provisioning in Milan, Italy. Sustainability 2019, 11, 1846. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, J.; Bailkey, M. Farming Inside Cities: Entrepreneurial Urban Agriculture in the United States; Lincoln Institute of Land Policy Working Paper; Lincoln Institute: Madison, WA, USA, 2000. [Google Scholar]
- Deelstra, T.; Girardet, H. Urban Agriculture and Sustainable Cities. In Growing Cities, Growing Food: Urban Agriculture on the Policy Agenda; Food and Agriculture Development Centre (ZEL): Feldafing, Germany, 2000; pp. 43–65. [Google Scholar]
- Grewal, S.S.; Grewal, P.S. Can Cities Become Self-Reliant in Food? Cities 2012, 29, 1–11. [Google Scholar] [CrossRef]
- FAO (Food and Agricultural Organizations of the United Nations). Food, Agriculture and Cities. Challenges of Food and Nutrition Security, Agriculture and Ecosystem Management in an Urbanizing World; FAO: Rome, Italy, 2011; p. 48. [Google Scholar]
- Hara, Y.; McPhearson, T.; Sampei, Y.; McGrath, B. Assessing Urban Agriculture Potential: A Comparative Study of Osaka, Japan and New York City, United States. Sustain. Sci. 2018, 13, 937–952. [Google Scholar] [CrossRef]
- Corbould, C. Feeding the Cities: Is Urban Agriculture the Future of Food Security? Future Direction International, 1 November 2013; pp. 1–7. [Google Scholar]
- Mok, H.-F.; Williamson, V.G.; Grove, J.R.; Burry, K.; Barker, S.F.; Hamilton, A.J. Strawberry Fields Forever? Urban Agriculture in Developed Countries: A Review. Agron. Sustain. Dev. 2014, 34, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, C.; Hallaran, T.; Sogorka, G.; Weinkle, K. An Evaluation of Conventional and Subirrigated Planters for Urban Agriculture: Supporting Evidence. Renew. Agric. Food Syst. 2015, 30, 55–63. [Google Scholar] [CrossRef]
- Semananda, N.; Ward, J.; Myers, B. Evaluating the Efficiency of Wicking Bed Irrigation Systems for Small-Scale Urban Agriculture. Horticulturae 2016, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Semananda, N.P.K.; Ward, J.D.; Myers, B.R. Experimental Investigation of Wicking Bed Irrigation Using Shallow-Rooted Crops Grown under Glasshouse Conditions. Irrig. Sci. 2020, 38, 117–129. [Google Scholar] [CrossRef]
- Semananda, N.; Ward, J.; Myers, B. A Semi-Systematic Review of Capillary Irrigation: The Benefits, Limitations, and Opportunities. Horticulturae 2018, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Chalker-Scott, L. Impact of Mulches on Landscape Plants and the Environment—A Review. J. Environ. Hortic. 2007, 25, 239–249. [Google Scholar] [CrossRef]
- Straaten, P.V. International Centre for Research in Agroforestry; Department of Land Resource Science: Guelph, ON, Canada, 2002. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements, FAO Irrigation and Drainage Paper No. 56; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- User Guide: Diviner 2000; Sentek Pty Ltd.: Stepney, Australia, 2003.
- Standard Methods for the Examination of Water and Wastewater; American Public Health Association (ALPHA): Washington, DC, USA, 2012.
- National Environment Protection Measures; National Environmental Protection Council (NEPC): Canberra, Australia, 2013.
- APAL. APAL Agricultural Laboratory. Available online: https://www.apal.com.au/Home.aspx (accessed on 18 December 2015).
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality: National Water Quality Management Strategy; Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ): Canberra, Australia, 2000; p. 264.
- Saha, U.K.; Papadopoulos, A.P.; Hao, X.; Khosla, S. Irrigation Strategies for Greenhouse Tomato Production on Rockwool. HortScience 2008, 43, 484–493. [Google Scholar] [CrossRef] [Green Version]
- Howell, T.A. Enhancing Water Use Efficiency in Irrigated Agriculture. Agron. J. 2001, 93, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Hosseini Bai, S.; Blumfield, T.J.; Reverchon, F. The Impact of Mulch Type on Soil Organic Carbon and Nitrogen Pools in a Sloping Site. Biol. Fertil. Soils 2014, 50, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Tejedor, M.; Jiménez, C.C.; Díaz, F. Use of Volcanic Mulch to Rehabilitate Saline-Sodic Soils. Soil Sci. Soc. Am. J. 2003, 67, 1856–1861. [Google Scholar] [CrossRef]
- Stevens, D.; Unkovich, M.; Kelly, J.; Ying, G. Impacts on Soil, Groundwater and Surface Water from Continued Irrigation of Food and Turf Crops with Water Reclaimed from Sewage; CSIRO Land and Water: Perth, Australia, 2004. [Google Scholar]
- Shrivastava, P.; Kumar, R. Soil Salinity: A Serious Environmental Issue and Plant Growth Promoting Bacteria as One of the Tools for Its Alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Blanco, F.F.; Folegatti, M.V. Salt Accumulation and Distribution in a Greenhouse Soil as Affected by Salinity of Irrigation Water and Leaching Management. Rev. Bras. Eng. Agrícola Ambient. 2002, 6, 414–419. [Google Scholar] [CrossRef] [Green Version]
- Mansouri, H.; Mostafazadeh-Fard, B.; Neekabadi, A. The Effects of Different Levels of Irrigation Water Salinity and Leaching on the Amount and Distribution Pattern of Soil Salinity and Ions in an Arid Region. WIT Trans. Ecol. Environ. 2014, 185, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Matysiak, B.; Bielenin, M. Effect of Nutrient Solution Composition on Growth, Flowering, Nutrient Status and Cold Hardiness of Rhododendron Yakushimanum Grown on Ebb-and-Flow Benches. Eur. J. Hortic. Sci. 2005, 70, 35–42. [Google Scholar]
- Rouphael, Y.; Colla, G. The Influence of Drip Irrigation or Subirrigation on Zucchini Squash Grown in Closed-Loop Substrate Culture with High and Low Nutrient Solution Concentrations. HortScience 2009, 44, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Thompson, T.L.; Roberts, T.; Lazarovitch, N. Managing Soil Surface Salinity with Subsurface Drip Irrigation. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 40–42. [Google Scholar]
- Campos, C.A.B.; Fernandes, P.D.; Gheyi, H.R.; Blanco, F.F.; Gonçalves, C.B.; Ferreira Campos, S.A. Yield and Fruit Quality of Industrial Tomato under Saline Irrigation. Sci. Agric. 2006, 63, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Sastry, E.V.D.; Singh, V. Effect of Salinity on Tomato (Lycopersicon esculentum Mill.) during Seed Germination Stage. Physiol. Mol. Biol. Plants 2012, 18, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Shalhevet, J.; Bernstein, L. Effects of Verticality Heterogeneous Soil Salinity on Plant Growth and Water Uptake. Soil Sci. 1968, 106, 85–93. [Google Scholar] [CrossRef]
- Al-Menaie, H.S.; Al-Ragam, O.; Al-Dosery, N.; Zalzaleh, M.; Mathew, M.; Suresh, N. Effect of Pot Size on Plant Growth and Multiplication of Water Lilies (Nymphaea spp.). Am. J. Agric. Environ. Sci. 2012, 12, 148–153. [Google Scholar]
- Gupta, J.; Dilta, B.S. Effect of Growing Substrates and Pot Sizes on Growth, Flowering and Pot Presentability of Primula Malacoides Franch. Int. J. Curr. Res. Acad. Rev. 2015, 3, 174–183. [Google Scholar]
- Poorter, H.; Bühler, J.; Van Dusschoten, D.; Climent, J.; Postma, J.A. Pot Size Matters: A Meta-Analysis of the Effects of Rooting Volume on Plant Growth. Funct. Plant Biol. 2012, 39, 839–850. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, M.R.; Fisher, K.J. Effect of Container Size and Peat Source on Growth and Yield of the Tomato. N. Z. J. Exp. Agric. 1975, 3, 157–160. [Google Scholar] [CrossRef]
- Abrol, D.P.; Gorka, A.K.; Ansari, M.J.; Al-Ghamdi, A.; Al-Kahtani, S. Impact of Insect Pollinators on Yield and Fruit Quality of Strawberry. Saudi J. Biol. Sci. 2019, 26, 524–530. [Google Scholar] [CrossRef]
- Bashir, M.A.; Alvi, A.M.; Khan, K.A.; Rehmani, M.I.A.; Ansari, M.J.; Atta, S.; Ghramh, H.A.; Batool, T.; Tariq, M. Role of Pollination in Yield and Physicochemical Properties of Tomatoes (Lycopersicon esculentum). Saudi J. Biol. Sci. 2018, 25, 1291–1297. [Google Scholar] [CrossRef]
- Nazer, I.K.; Kasrawi, M.A.; Al-Attal, Y.Z. Influence of Pollination Technique on Greenhouse Tomato Production. J. Agric. Mar. Sci. JAMS 2003, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Ayars, J.E.; Hoffman, G.J.; Corwin, D. Leaching and Rootzone Salinity Control. In Agricultural Salinity Assessment and Management; Wallender, W., Tanji, K., Eds.; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2012; pp. 371–403. [Google Scholar]
- Kijne, J.W. Water Productivity under Saline Conditions. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; Kijne, J., Barker, R., Molden, D., Eds.; CABI: Wallingford, UK, 2009; pp. 89–102. [Google Scholar] [CrossRef] [Green Version]
- Letey, J.; Hoffman, G.J.; Hopmans, J.W.; Grattan, S.R.; Suarez, D.; Corwin, D.L.; Oster, J.D.; Wu, L.; Amrhein, C. Evaluation of Soil Salinity Leaching Requirement Guidelines. Agric. Water Manag. 2011, 98, 502–506. [Google Scholar] [CrossRef] [Green Version]
- Blaylock, A. Soil Salinity, Salt Tolerance and Growth Potential of Horticultural and Landscape Plants; Co-operative Extension Service, University of Wyoming, Department of Plant, Soil and Insect Sciences, College of Agriculture: Laramie, WY, USA, 1994. [Google Scholar]
- Ezlit, Y.D.; Smith, R.J.; Raine, S.R. A Review of Salinity and Sodicity in Irrigation; Cooperative Research Centre for Irrigation Futures: Murarrie, Australia, 2010; p. 79. [Google Scholar]
- Laurenson, S.; Bolan, N.S.; Smith, E.; Mccarthy, M. Review: Use of Recycled Wastewater for Irrigating Grapevines. Aust. J. Grape Wine Res. 2012, 18, 1–10. [Google Scholar] [CrossRef]
- Qian, Y. Urban Landscape Irrigation with Recycled Wastewater. 2006. Available online: https://mountainscholar.org/bitstream/handle/10217/694/COMP204.pdf?sequence=1&isAllowed=y (accessed on 25 July 2021).
- Warrence, N.; Bauder, J.; Pearson, K. Basics of Salinity and Sodicity Effects on Soil Physical Properties; MSU Extension Water Quality Program: Bozeman, MT, USA, 2002. [Google Scholar]
- Ganjegunte, G.; Leinauer, B.; Schiavon, M.; Serena, M. Using Electro-Magnetic Induction to Determine Soil Salinity and Sodicity in Turf Root Zones. Agron. J. 2013, 105, 836–844. [Google Scholar] [CrossRef] [Green Version]
- Nahar, K.; Gretzmacher, R. Effect of Water Stress on Nutrient Uptake, Yield and Quality of Tomato (Lycopersicon esculentum Mill.) under Subtropical Conditions. Bodenkultur 2002, 53, 45–51. [Google Scholar]
- Pessarakli, M. Soil Salinity and Sodicity as Particular Plant/Crop Stress Factors. In Handbook of Plant and Crop Stress; Pessarakli, M., Ed.; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland, 1999; p. 189. [Google Scholar]
- Alrajhi, A.; Beecham, S.; Bolan, N.S.; Hassanli, A. Evaluation of Soil Chemical Properties Irrigated with Recycled Wastewater under Partial Root-Zone Drying Irrigation for Sustainable Tomato Production. Agric. Water Manag. 2015, 161, 127–135. [Google Scholar] [CrossRef]
Soil Properties | Water Properties | |||
---|---|---|---|---|
Soil texture | 90/5 | Element | FW | RW |
pH (H2O) | 7.57 | pH | 7.55 | 7.67 |
EC1:5 (dS/m) | 1.75 | EC (dS/m) | 0.38 | 1.42 |
Nitrate NO3 (mg/kg) | 6.20 | Cl (mg/L) | 68.75 | 330.00 |
Ammonium NO3 (mg/kg) | 1.23 | Total N (TKN + NOx) | 0.15 | 2.45 |
Ca (mg/kg) | 4659.53 | TC (mg/L) | 9.50 | 30.00 |
Mg (mg/kg) | 188.53 | Ca (mg/L) | 14.50 | 31.50 |
K (mg/kg) | 376.48 | Mg (mg/L) | 7.25 | 24.25 |
P (mg/kg) | 29.00 | K (mg/L) | 2.50 | 31.75 |
Na (mg/kg) | 143.08 | TP (mg/L) | 0.02 | 0.05 |
Ca:Mg | 15.00 | Na (mg/L) | 49.25 | 232.5 |
SAR | 2.62 | 7.56 |
Item No. | Treatment Label | Description |
---|---|---|
1 | T1WF2D | Wicking bed with fresh water, 2-day irrigation interval |
2 | T2WFM2D | Wicking bed with fresh water, 2-day irrigation interval, surface mulched |
3 | T3WR2D | Wicking bed with recycled water, 2-day irrigation interval |
4 | T4SF2D | Surface irrigation treatment with fresh water, same amount in treatment T1, 2-day irrigation interval |
5 | T5SF1.22D | Surface irrigation treatment with fresh water, 20% extra of treatment T1, 2-day irrigation interval |
6 | T6SR2D | Surface irrigation treatment with fresh water, same amount in treatment T3, 2-day irrigation interval |
7 | T7WF7D | Wicking bed with fresh water, 7-day irrigation interval |
8 | T8WR7D | Wicking bed with recycled water, 7-day irrigation interval |
9 | T9WFO2D | Sureface irrigation treatment with fresh water, outdoor, 2-day irrigation interval |
10 | T10SFO2D | Sureface irrigation treatment with fresh water, same amount in T9, outdoor, 2-day irrigation interval |
11 | T11WFB | Wicking bed with fresh water in large container |
Treatment | Marketable Yield (kg/plant) | Total Water (L/plant) | Crop Water Use (L/kg) | iWUE (g/L) |
---|---|---|---|---|
T1 WF2D | 1.43 bcd | 68.32 d | 48.0 b | 20.90 ab |
T2 WFM2D | 1.54 abc | 72.52 cd | 47.5 b | 21.20 a |
T3 WR2D | 1.04 de | 58.38 e | 56.5 ab | 17.80 abc |
T4 SF2D | 1.16 cde | 68.32 d | 59.6 ab | 17.00 bc |
T5 SF1.22D | 1.42 bcd | 81.98 b | 58.0 ab | 17.40 abc |
T6 SR2D | 0.92 e | 58.58 e | 66.2 a | 15.60 c |
T7 WF7D | 1.05 de | 53.70 e | 51.7 ab | 19.50 abc |
T8 WR7D | 0.78 e | 43.34 f | 63.9 ab | 18.10 abc |
T9 WFO2D | 1.77 ab | 86.22 b | 48.8 b | 20.50 ab |
T10 SFO2D | 1.63 ab | 86.26 b | 53.0 ab | 19.00 abc |
T11 WFB | 1.96 a | 103.36 a | 54.4 ab | 19.00 abc |
Treatment | Water Quality | Mean | Depth (mm) | |||
---|---|---|---|---|---|---|
0–75 | 75–150 | 150–225 | 225–300 | |||
T1WF2D | FW | 1.84 ± 0.33 a | 2.20 ± 0.10 | 1.93 ± 0.06 | 1.83 ± 0.21 | 1.40 ± 0.20 |
T3WR2D | RW | 2.11 ± 0.36 b | 2.63 ± 0.12 | 2.10 ± 0.00 | 2.07 ± 0.06 | 1.63 ± 0.06 |
T4SF2D | FW | 1.42 ± 0.50 c | 0.64 ± 0.16 | 1.53 ± 0.25 | 1.67 ± 0.15 | 1.83 ± 0.06 |
T6SR2D | RW | 1.77 ± 0.53 a | 0.94 ± 0.16 | 1.83 ± 0.06 | 2.13 ± 0.12 | 2.17 ± 0.06 |
T7WF7D | FW | 1.79 ± 0.26 a | 1.93 ± 0.12 | 1.90 ± 0.10 | 1.93± 0.06 | 1.40 ± 0.17 |
T8WR7D | RW | 2.03 ± 0.28 b | 2.30 ± 0.30 | 2.03 ± 0.06 | 2.13 ± 0.06 | 1.67 ± 0.15 |
Treatment | Water Quality | Mean | Depth (mm) | |||
---|---|---|---|---|---|---|
0–75 | 75–150 | 150–225 | 225–300 | |||
T1W 2D | FW | 0.70 ± 0.18 a | 0.95 ± 0.16 | 0.66 ± 0.04 | 0.62 ± 0.10 | 0.58 ± 0.06 |
T3W 2D | RW | 1.52 ± 0.24 b | 1.58 ± 0.13 | 1.24 ± 0.19 | 1.54 ± 0.16 | 1.73 ± 0.20 |
T4S 2D | FW | 0.47 ± 0.13 c | 0.37 ± 0.17 | 0.39 ± 0.08 | 0.53 ± 0.06 | 0.60 ± 0.07 |
T6S 2D | RW | 1.46 ± 0.14 b | 1.40 ± 0.03 | 1.35 ± 0.15 | 1.54 ± 0.14 | 1.53 ± 0.14 |
T7W 7D | FW | 0.63 ± 0.13 a | 0.73 ± 0.23 | 0.64 ± 0.04 | 0.60 ± 0.05 | 0.57 ± 0.10 |
T8W 7D | RW | 1.20 ± 0.23 d | 1.11 ± 0.13 | 0.96 ± 0.12 | 1.28 ± 0.13 | 1.47 ± 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semananda, N.P.K.; Ward, J.D.; Myers, B.R. Assessing Reliability of Recycled Water in Wicking Beds for Sustainable Urban Agriculture. Earth 2021, 2, 468-484. https://doi.org/10.3390/earth2030028
Semananda NPK, Ward JD, Myers BR. Assessing Reliability of Recycled Water in Wicking Beds for Sustainable Urban Agriculture. Earth. 2021; 2(3):468-484. https://doi.org/10.3390/earth2030028
Chicago/Turabian StyleSemananda, Niranjani P. K., James D. Ward, and Baden R. Myers. 2021. "Assessing Reliability of Recycled Water in Wicking Beds for Sustainable Urban Agriculture" Earth 2, no. 3: 468-484. https://doi.org/10.3390/earth2030028
APA StyleSemananda, N. P. K., Ward, J. D., & Myers, B. R. (2021). Assessing Reliability of Recycled Water in Wicking Beds for Sustainable Urban Agriculture. Earth, 2(3), 468-484. https://doi.org/10.3390/earth2030028