Insights on the Impacts of Hydroclimatic Extremes and Anthropogenic Activities on Sediment Yield of a River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
3. Results
3.1. Spatio-Temporal Variability
3.2. Correlation
3.3. Relationship between Streamflow, Suspended Sediment Concentration (SSC), and Precipitation
3.4. Prediction of Sediment Yield
3.5. Sediment Yield and Its Relationship with Anthropogenic Activities and Natural Hazards
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Training (70%) | Testing (30%) | |
---|---|---|
24 h precipitation (mm) | 24.7 | 26.4 |
3-day precipitation (mm) | 60.9 | 59.4 |
5-day precipitation (mm) | 89.8 | 86.2 |
7-day precipitation (mm) | 120.5 | 113.3 |
SSC (ppm) | 16,474.3 | 14,630.6 |
Streamflow (m3/s) | 1078.1 | 984.8 |
SN | Name of Road | Length (Km) | Cutting (m3) | Filling (m3) | Surplus (m3) |
---|---|---|---|---|---|
1 | Mudikuwa-Jhaklak-Kurgha-Lunkhu | 6.7 | 81,637 | 12,236 | 69,401 |
2 | Waling-Huwas | 7.5 | 17,974 | 2503 | 15,471 |
3 | Rangkhola-Biruwa | 10 | 14,618 | 2839 | 11,779 |
4 | Badhkhola-Taksar-Dulegauda | 10 | 11,526 | 1399 | 10,127 |
5 | Putalikhet-Aruchaur | 6.6 | 12,319 | 2467 | 9852 |
6 | Naudanda-Karkineta | 10 | 15,003 | 3014 | 11,989 |
7 | Gumti-Chisapaani | 6.18 | 53,535 | 15,297 | 38,238 |
8 | Helu-Arjunchaupari | 8.2 | 23,505 | 729 | 22,776 |
References
- Walling, D. The changing sediment loads of the world’s rivers. Ann. Wars. Univ. Life Sci.-SGGW Land Reclam. 2008, 39, 3–20. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Strehmel, A.; Tian, P. Temporal variation of streamflow, sediment load and their relationship in the Yellow River basin, China. PLoS ONE 2014, 9, e91048. [Google Scholar] [CrossRef] [Green Version]
- Chang, Q.; Zhang, C.; Zhang, S.; Li, B. Streamflow and sediment declines in a loess hill and gully landform basin due to climate variability and anthropogenic activities. Water 2019, 11, 2352. [Google Scholar] [CrossRef] [Green Version]
- Gautam, M.R.; Acharya, K. Streamflow trends in Nepal. Hydrol. Sci. J. 2012, 57, 344–357. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.R.; McVicar, T.; Guo, J.; Tang, Y.; Yao, A. Isolating the impacts of climate change and land use change on decadal streamflow variation: Assessing three complementary approaches. J. Hydrol. 2013, 507, 63–74. [Google Scholar] [CrossRef]
- Ye, X.; Zhang, Q.; Liu, J.; Li, X.; Xu, C. Distinguishing the relative impacts of climate change and human activities on variation of streamflow in the Poyang Lake catchment, China. J. Hydrol. 2013, 494, 83–95. [Google Scholar] [CrossRef]
- Wulf, H.; Bookhagen, B.; Scherler, D. Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya. Hydrol. Earth Syst. Sci. 2012, 16, 2193–2217. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Fu, B.; Piao, S.; Lü, Y.; Ciais, P.; Feng, X.; Wang, Y. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Li, X.; Bao, Z.; Liu, Y.; Liu, C.; He, R.; Luo, J. Investigating causes of changes in runoff using hydrological simulation approach. Appl. Water Sci. 2017, 7, 2245–2253. [Google Scholar] [CrossRef] [Green Version]
- Talchabhadel, R.; Karki, R.; Thapa, B.R.; Maharjan, M.; Parajuli, B. Spatio-temporal variability of extreme precipitation in Nepal. Int. J. Climatol. 2018, 38, 4296–4313. [Google Scholar] [CrossRef]
- Shrestha, D.; Singh, P.; Nakamura, K. Spatiotemporal variation of rainfall over the central Himalayan region revealed by TRMM precipitation radar. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Pokharel, B.; Wang, S.-Y.S.; Meyer, J.; Marahatta, S.; Nepal, B.; Chikamoto, Y.; Gillies, R. The east–west division of changing precipitation in Nepal. Int. J. Climatol. 2020, 40, 3348–3359. [Google Scholar] [CrossRef]
- Wang, S.W.; Gebru, B.M.; Lamchin, M.; Kayastha, R.B.; Lee, W.-K. Land use and land cover change detection and prediction in the Kathmandu district of Nepal using remote sensing and GIS. Sustainability 2020, 12, 3925. [Google Scholar] [CrossRef]
- Bhandari, S.B.; Shahi, P.B.; Shrestha, R.N. Overview of rural transportation infrastructures in Nepal. Eurasia J. Earth Sci. Civ. Eng. 2012, 1, 1–14. [Google Scholar]
- McAdoo, B.G.; Quak, M.; Gnyawali, K.R.; Adhikari, B.R.; Devkota, S.; Rajbhandari, P.L.; Sudmeier-Rieux, K. Roads and landslides in Nepal: How development affects environmental risk. Nat. Hazards Earth Syst. Sci. 2018, 18, 3203–3210. [Google Scholar] [CrossRef] [Green Version]
- Merz, J.; Dangol, P.M.; Dhakal, M.P.; Dongol, B.S.; Nakarmi, G.; Weingartner, R. Road construction impacts on stream suspended sediment loads in a nested catchment system in Nepal. Land Degrad. Dev. 2006, 17, 343–351. [Google Scholar] [CrossRef]
- Hasnain, S.I. Factors controlling suspended sediment transport in Himalayan glacier meltwaters. J. Hydrol. 1996, 181, 49–62. [Google Scholar] [CrossRef]
- Baniya, M.B.; Asaeda, T.; Shivaram, K.C.; Jayashanka, S.M.D.H. Hydraulic parameters for sediment transport and prediction of suspended sediment for Kali Gandaki river basin, Himalaya, Nepal. Water 2019, 11, 1229. [Google Scholar] [CrossRef] [Green Version]
- Finlayson, D.P.; Montgomery, D.R.; Hallet, B. Spatial coincidence of rapid inferred erosion with young metamorphic massifs in the Himalayas. Geology 2002, 30, 219. [Google Scholar] [CrossRef]
- Andermann, C.; Crave, A.; Gloaguen, R.; Davy, P.; Bonnet, S. Connecting source and transport: Suspended sediments in the Nepal Himalayas. Earth Planet. Sci. Lett. 2012, 351–352, 158–170. [Google Scholar] [CrossRef]
- Sohoulande Djebou, D.C. Integrated approach to assessing streamflow and precipitation alterations under environmental change: Application in the Niger River basin. J. Hydrol. Reg. Stud. 2015, 4, 571–582. [Google Scholar] [CrossRef] [Green Version]
- Manandhar, S.; Pandey, V.P.; Kazama, F. Hydro-climatic trends and people’s perceptions. Clim. Res. 2012, 54, 167–179. [Google Scholar] [CrossRef]
- Karki, R.; Ul Hasson, S.; Schickhoff, U.; Scholten, T.; Böhner, J. Rising precipitation extremes across Nepal. Climate 2017, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Karki, R.; Ul Hasson, S.; Gerlitz, L.; Talchabhadel, R.; Schickhoff, U.; Scholten, T.; Böhner, J. Rising mean and extreme near-surface air temperature across Nepal. Int. J. Climatol. 2020, 40, 2445–2463. [Google Scholar] [CrossRef] [Green Version]
- Suwal, N.; Kuriqi, A.; Huang, X.; Delgado, J.; Młyński, D.; Walega, A. Environmental flows assessment in Nepal: The case of Kali Gandaki river. Sustainability 2020, 12, 8766. [Google Scholar] [CrossRef]
- Uddin, K.; Abdul Matin, M.; Maharjan, S. Assessment of land cover change and its impact on changes in soil erosion risk in Nepal. Sustainability 2018, 10, 4715. [Google Scholar] [CrossRef] [Green Version]
- Carosi, R.; Gemignanni, L.; Godin, L.; Iaccarino, S.; Larson, K.P.; Montomoli, C.; Rai, S.M. A geological journey through the deepest gorge on Earth: The Kali Gandaki valley section, central Nepal. J. Virtual Explor. 2014, 47, 7. [Google Scholar]
- Zängl, G.; Egger, J.; Wirth, V. Diurnal winds in the Himalayan Kali Gandaki Valley. Part II: Modeling. Mon. Weather Rev. 2001, 129, 1062–1080. [Google Scholar] [CrossRef]
- Upreti, B.N.; Shakya, A. Wind energy potential assessment in Nepal. Wind Energy Potential Assess. Nepal 2016, 1, 1–4. [Google Scholar]
- Timilsina, M.; Bhandary, N.P.; Dahal, R.K.; Yatabe, R. Large-scale landslide inventory mapping in lesser Himalaya of Nepal using geographic information system. In GIS Landslide; Springer: Japan, Tokyo, 2017; pp. 97–112. [Google Scholar]
- Adhikari, B.R.; Tian, B.; Chapagain, S.; Acharya, A.; Chen, F.; Gautam, S.; Gou, X. Landslide susceptibility mapping along the Sino-Nepal road corridors: A case study of Pokhara-Korala road corridor, Nepal. Geophys. Res. Abstr. EGU 2019, 21, 1. Available online: https://meetingorganizer.copernicus.org/EGU2019/EGU2019-3220.pdf (accessed on 15 Decemeber 2020).
- Talchabhadel, R.; Karki, R.; Parajuli, B. Intercomparison of precipitation measured between automatic and manual precipitation gauge in Nepal. Measurement 2017, 106, 264–273. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); USDA ARS: Washington, WA, USA, 1997; pp. 1–384. Available online: https://www.ars.usda.gov/ARSUserFiles/64080530/RUSLE/AH_703.pdf (accessed on 15 March 2019).
- De Santos Loureiro, N.; De Azevedo Coutinho, M. A new procedure to estimate the RUSLE EI30 index, based on monthly rainfall data and applied to the Algarve region, Portugal. J. Hydrol. 2001, 250, 12–18. [Google Scholar] [CrossRef]
- Talchabhadel, R.; Nakagawa, H.; Kawaike, K.; Prajapati, R. Evaluating the rainfall erosivity (R-factor) from daily rainfall data: An application for assessing climate change impact on soil loss in Westrapti River basin, Nepal. Model. Earth Syst. Environ. 2020. [Google Scholar] [CrossRef]
- Pradhan, A.M.S.; Maharjan, B.; Silwal, S.; Sthapit, S. Preparation of Landslide Catalogue (1970–2019) of Nepal; Water Resources Research and Development Centre: Lalitpur, Nepal, 2020; pp. 1–2. Available online: http://wrrdc.gov.np/images/category/WRRDC-Research_Letter_Issue_2_November.pdf (accessed on 15 Decemeber 2020).
- Cressie, N. The origins of kriging. Math. Geol. 1990, 22, 239–252. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Mossa, J.; Mao, L.; Almulla, M. Comparison of different spatial interpolation methods for historical hydrographic data of the lowermost Mississippi river. Ann. GIS 2019, 25, 133–151. [Google Scholar] [CrossRef]
- Karki, R.; Talchabhadel, R.; Aalto, J.; Baidya, S.K. New climatic classification of Nepal. Theor. Appl. Climatol. 2016, 125, 799–808. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Beazley, R.E.; Lassoie, J.P. A Global Review of Road Development. In Himalayan Mobilities; Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–28. [Google Scholar] [CrossRef]
- Bell, R.; Fort, M.; Götz, J.; Bernsteiner, H.; Andermann, C.; Etzlstorfer, J.; Posch, E.; Gurung, N.; Gurung, S. Major geomorphic events and natural hazards during monsoonal precipitation 2018 in the Kali Gandaki Valley, Nepal Himalaya. Geomorphology 2021, 372, 107451. [Google Scholar] [CrossRef]
- Hashash, Y.M.A.; Tiwari, B.; Moss, R.E.S.; Asimaki, D.; Clahan, K.B.; Kieffer, D.S.; Dreger, D.S.; Macdonald, A.; Madugo, C.M.; Mason, H.B.; et al. Geotechnical Field Reconnaissance: Gorkha (Nepal) Earthquake of April 25 2015 and Related Shaking Sequence. Report No. GEER-040. Geotechnical Extreme Event Reconnaissance Association. 2015. Available online: https://digitalcommons.calpoly.edu/cenv_fac/311/ (accessed on 28 November 2020).
- Dahal, R.K.; Hasegawa, S. Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology 2008, 100, 429–443. [Google Scholar] [CrossRef]
- Upadhayay, H.R.; Smith, H.G.; Griepentrog, M.; Bodé, S.; Bajracharya, R.M.; Blake, W.; Cornelis, W.; Boeckx, P. Community managed forests dominate the catchment sediment cascade in the mid-hills of Nepal: A compound-specific stable isotope analysis. Sci. Total Environ. 2018, 637–638, 306–317. [Google Scholar] [CrossRef]
- Hajigholizadeh, M.; Melesse, A.; Fuentes, H. Erosion and sediment transport modelling in shallow waters: A review on approaches, models and applications. Int. J. Environ. Res. Public Health 2018, 15, 518. [Google Scholar] [CrossRef] [Green Version]
- Haritashya, U.K.; Singh, P.; Kumar, N.; Gupta, R.P. Suspended sediment from the Gangotri Glacier: Quantification, variability and associations with discharge and air temperature. J. Hydrol. 2006, 321, 116–130. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, R.; Singh, S.; Singh, A.; Bhardwaj, A.; Kumari, A.; Randhawa, S.S.; Saha, A. Dynamics of suspended sediment load with respect to summer discharge and temperatures in Shaune Garang glacierized catchment, Western Himalaya. Acta Geophys. 2018, 66, 1109–1120. [Google Scholar] [CrossRef]
- Bajracharya, A.R.; Bajracharya, S.R.; Shrestha, A.B.; Maharjan, S.B. Climate change impact assessment on the hydrological regime of the Kaligandaki Basin, Nepal. Sci. Total Environ. 2018, 625, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, M.A.; Khatibi, R.; Singh, V.P.; Kahya, E.; Ruskeepää, H.; Saggi, M.K.; Sivakumar, B.; Kim, S.; Salmasi, F.; Hasanpour Kashani, M.; et al. Continuous monitoring of suspended sediment concentrations using image analytics and deriving inherent correlations by machine learning. Sci. Rep. 2020, 10, 8589. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, K.R.; Sitaula, B.K.; Bajracharya, R.M.; Børresen, T. Runoff and soil loss responses to rainfall, land use, terracing and management practices in the Middle Mountains of Nepal. Acta Agric. Scand. Sect. B Plant Soil Sci. 2009, 59, 197–207. [Google Scholar] [CrossRef]
- ICIMOD. Land Cover of Nepal 2010; ICIMOD: Kathmandu, Nepal, 2013. [Google Scholar]
- Uddin, K.; Shrestha, H.L.; Murthy, M.S.R.; Bajracharya, B.; Shrestha, B.; Gilani, H.; Pradhan, S.; Dangol, B. Development of 2010 national land cover database for the Nepal. J. Environ. Manag. 2015, 148, 82–90. [Google Scholar] [CrossRef]
ID | Indicator Name | Definitions | Units |
---|---|---|---|
RX1day | Max 1-day precipitation amount | Yearly maximum 1-day precipitation | mm |
Rx3day | Max 3-day precipitation amount | Yearly maximum consecutive 3-day precipitation | mm |
RX5day | Max 5-day precipitation amount | Yearly maximum consecutive 5-day precipitation | mm |
Rx7day | Max 7-day precipitation amount | Yearly maximum consecutive 7-day precipitation | mm |
R10 | Number of slightly heavy precipitation days | Annual count of days when PRCP ≥ 10 mm | days |
R20 | Number of heavy precipitation days | Annual count of days when PRCP ≥ 20 mm | days |
R50 | Number of very heavy precipitation days | Annual count of days when PRCP ≥ 50 mm | days |
R100 | Number of extremely heavy precipitation days | Annual count of days when PRCP ≥ 100 mm | days |
PRCPTOT | Annual total wet-day precipitation | Annual total precipitation in wet days (PRCP ≥ 0.2 mm) | mm |
RX1day/PRCPTOT | Ratio of RX1day with PRCPTOT | % | |
Rx3day/PRCPTOT | Ratio of RX3day with PRCPTOT | % | |
RX5day/PRCPTOT | Ratio of RX5day with PRCPTOT | % | |
Rx7day/PRCPTOT | Ratio of RX7day with PRCPTOT | % | |
PRCP: Daily precipitation |
SSC = 0.0015 × MDD2.15 | ||
---|---|---|
Daily | Training (70%) | Testing (30%) |
R2 | 0.42 | 0.42 |
PBIAS | −20.8 | −20.2 |
NSE | 0.37 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talchabhadel, R.; Panthi, J.; Sharma, S.; Ghimire, G.R.; Baniya, R.; Dahal, P.; Baniya, M.B.; K.C., S.; Jha, B.; Kaini, S.; et al. Insights on the Impacts of Hydroclimatic Extremes and Anthropogenic Activities on Sediment Yield of a River Basin. Earth 2021, 2, 32-50. https://doi.org/10.3390/earth2010003
Talchabhadel R, Panthi J, Sharma S, Ghimire GR, Baniya R, Dahal P, Baniya MB, K.C. S, Jha B, Kaini S, et al. Insights on the Impacts of Hydroclimatic Extremes and Anthropogenic Activities on Sediment Yield of a River Basin. Earth. 2021; 2(1):32-50. https://doi.org/10.3390/earth2010003
Chicago/Turabian StyleTalchabhadel, Rocky, Jeeban Panthi, Sanjib Sharma, Ganesh R. Ghimire, Rupesh Baniya, Piyush Dahal, Mahendra B. Baniya, Shivaram K.C., Biswo Jha, Surendra Kaini, and et al. 2021. "Insights on the Impacts of Hydroclimatic Extremes and Anthropogenic Activities on Sediment Yield of a River Basin" Earth 2, no. 1: 32-50. https://doi.org/10.3390/earth2010003
APA StyleTalchabhadel, R., Panthi, J., Sharma, S., Ghimire, G. R., Baniya, R., Dahal, P., Baniya, M. B., K.C., S., Jha, B., Kaini, S., Dahal, K., Gnyawali, K. R., Parajuli, B., & Kumar, S. (2021). Insights on the Impacts of Hydroclimatic Extremes and Anthropogenic Activities on Sediment Yield of a River Basin. Earth, 2(1), 32-50. https://doi.org/10.3390/earth2010003