Methodological Approach for Detecting Polypropylene Microplastics in Agricultural Soil in Southern Portugal
Abstract
1. Introduction
2. Material and Methods
2.1. Experimental Site
2.2. Soil Sampling
2.3. Testing Methods for Microplastic Determination in Soil Samples
2.3.1. Soil Organic Matter Removal
2.3.2. Microplastic Extraction by Density Separation
2.3.3. Polymer Identification Using ATR-FTIR Spectroscopy
2.3.4. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of the Tested Methods
3.2. Quantification of Microplastics and Polymer Identification in Agricultural Soil: A Case Study Using Method 2
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Huang, R.; Hu, L.; Zhang, C.; Xu, X.; Song, L.; Wang, Z.; Pan, X.; Christakos, G.; Wu, J. Microplastics distribution in different habitats of Ximen Island and the trapping effect of blue carbon habitats on microplastics. Mar. Pollut. Bull. 2022, 181, 113912. [Google Scholar] [CrossRef]
- Lee, H.; Kim, S.; Sin, A.; Kim, G.; Khan, S.; Nadagouda, M.N.; Sahle-Demessie, E.; Han, C. Pretreatment methods for monitoring microplastics in soil and freshwater sediment samples: A comprehensive review. Sci. Total Environ. 2023, 871, 161718. [Google Scholar] [CrossRef]
- Lalrinfela, P.; Vanlalsangi, R.; Lalrinzuali, K.; Babu, P.J.C. Microplastics: Their effects on the environment, human health, and plant ecosystems. Environ. Pollut. Manag. 2024, 1, 248–259. [Google Scholar] [CrossRef]
- Pedra, F.; Inácio, M.L.; Fareleira, P.; Oliveira, P.B.; Pereira, P.; Carranca, C. Long-term effects of plastic mulch in a sandy loam soil used to cultivate blueberry in Southern Portugal. Pollutants 2024, 4, 16–25. [Google Scholar] [CrossRef]
- Rayns, F.; Carranca, C.; Milicic, V.; Fonteyne, K.; Penalva, C.; Hernandez, A.; Pereira, R.; Accinelli, C.; Zlatar, K. Minipaper C: New Plastics in Agriculture. EIP-Agri Focus Group on the Plastic Footprint of Agriculture 2021. Available online: https://ec.europa.eu/eip/agriculture/sites/default/files/eip-agri_fg_plastic_footprint_minipaper_c_final.pdf (accessed on 14 August 2025).
- Qi, R.; Jones, D.; Li, Z.; Liu, Q.; Yan, C. Behavior of microplastics and plastic film residues in the soil environment: A critical review. Sci. Total Environ. 2019, 703, 134722. [Google Scholar] [CrossRef]
- Yu, F.; Yang, C.; Zhu, Z.; Bai, X.; Ma, T. Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment. Sci. Total Environ. 2019, 694, 133643. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Gui, X.; Xu, X.; Zhao, L.; Qiu, H.; Cao, X. Microplastics in the soil groundwater environment: Aging, migration, and co-transport of contaminants–a critical review. J. Hazard. Mater. 2021, 419, 126455. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xi, Y.; Shi, X.-Y.; Zhong, Y.-J.; Guo, C.-L.; Han, Y.-N.; Li, F.-M. Effect of plastic film mulching and film residues on phthalate esters concentrations in soil and plants, and its risk assessment. Environ. Pollut. 2021, 286, 117546. [Google Scholar] [CrossRef]
- Gao, H.; Yan, C.; Liu, Q.; Ding, W.; Chen, B.; Li, Z. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis. Sci. Total Environ. 2019, 651, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.; Hernandez, A.; James, B.; LeMoine, B.; Carranca, C.; Rayns, F.; Cornelis, G.; Erälinna, L.; Czech, L.; Picuno, P. Minipaper A: The Actual Uses of Plastics in Agriculture Across EU: An Overview and the Environmental Problems. EIP-Agri Focus Group on the Plastic Footprint of Agriculture. 2021. Available online: https://ec.europa.eu/eip/agriculture/sites/default/files/eip-agri_fg_plastic_footprint_minipaper_a_final.pdf (accessed on 14 August 2025).
- Carranca, C.; Oliveira, P.; Duarte, E. Estratégias para redução da pegada dos plásticos de cobertura do solo na produção hortícola. Vida Rural 2021, 1866, 41–44. Available online: https://www.vidarural.pt/shout_edition/vida-rural-no-1866/ (accessed on 14 August 2025).
- Thompson, R.C.; Courtene-Jones, W.; Boucher, J.; Pahl, S.; Raubenheimer, K. Twenty years of microplastics pollution research-what have we learned? Science 2024, 386, 6720. [Google Scholar] [CrossRef] [PubMed]
- Domagała-Świątkiewicz, I.; Siwek, P. Effects of plastic mulches and high tunnel raspberry production systems on soil physicochemical quality indicators. Int. Agrophys. 2018, 32, 39–47. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef]
- Dainelli, M.; Pignattelli, S.; Bazihizina, N.; Falsini, S.; Papini, A.; Baccelli, I.; Mancuso, S.; Coppi, A.; Castellani, B.; Colzi, I.; et al. Can microplastics threaten plant productivity and fruit quality? Insights from Micro-Tom and Micro-PET/PVC. Sci. Total Environ. 2023, 895, 165119. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Q.; Jia, W.; Yan, C.; Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef]
- Fan, W.; Qiu, C.; Qu, Q.; Hu, X.; Mu, L.; Gao, Z.; Tang, X. Sources and identification of microplastics in soils. Soil Environ. Health 2023, 1, 100019. [Google Scholar] [CrossRef]
- Mondol, M.; Angon, P.B.; Roy, A. Effects of microplastics on soil physical, chemical and biological properties. Nat. Hazards 2025, 5, 14–20. [Google Scholar] [CrossRef]
- Seo, Y.; Chevali, V.; Lai, Y.; Zhou, Z.; Chen, G.; Burey, P.; Wang, S.; Song, P. Microplastics in soils: A comparative review on extraction, identification and quantification methods. J. Environ. Manag. 2025, 377, 124556. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, F.; Fischer, E.K. Various digestion protocols within microplastic sample processing—Evaluating the resistance of different synthetic polymers and the efficiency of biogenic organic matter destruction. Front. Environ. Sci. 2020, 8, 572424. [Google Scholar] [CrossRef]
- Campanale, C.; Savino, I.; Pojar, J.; Massarelli, C.; Uricchio, V.F. A practical overview of methodologies for sampling and analysis of microplastics in riverine environments. Sustainability 2020, 12, 6755. [Google Scholar] [CrossRef]
- Besseling, E.; Quik, J.T.K.; Sun, M.; Koelmans, A.A. Fate of nano- and microplast freshwater systems: A modeling study. Environ. Pollut. 2017, 220, 540–548. [Google Scholar] [CrossRef]
- Corradini, F.; Meza, P.; Eguiluz, R.; Casado, F.; Huerta-Lwanga, E.; Geissen, V. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci. Total Environ. 2019, 671, 411–420. [Google Scholar] [CrossRef]
- Grause, G.; Kuniyasu, Y.; Chien, M.-F.; Inoue, C. Separation of microplastic from soil by centrifugation and its application to agricultural soil. Chemosphere 2022, 288, 132654. [Google Scholar] [CrossRef]
- Li, P.; Lai, Y.; Zheng, R.-G.; Li, Q.-C.; Sheng, X.; Yu, S.; Hao, Z.; Cai, Y.-G.; Liu, J. Extraction of common small microplastics and nanoplastics embedded in environmental solid matrices by tetramethylammonium hydroxide digestion and dichloromethane dissolution for Py-GC-MS determination. Environ. Sci. Technol. 2023, 57, 12010–12018. [Google Scholar] [CrossRef]
- Dmitrienkoa, S.G.; Apyaria, V.V.; Tolmachevaa, V.V.; Gorbunovaa, M.V.; Furletova, A.A.; Zolotov, Y.A. Methods for the extraction of organic compounds from solid samples: 1. Solvent extraction. Review of Reviews. J. Anal. Chem. 2024, 79, 999–1010. [Google Scholar] [CrossRef]
- Oluniyi, O.; Fadare, L.M.; Lascelles, N.; Myers, J.T.; Kaiser, K.; Xu, W.; Conkle, J.L. Binary solvent extraction of microplastics from a complex environmental matrix. Limnol. Oceanogr. Methods 2023, 21, 414–420. [Google Scholar] [CrossRef]
- Veerasingam, S.; Ranjani, M.; Venkatachalapathy, R.; Bagaev, A.; Mukhanov, V.; Litvinyuk, P. Contributions of Fourier transform infrared spectroscopy in microplastic pollution research: A review. Crit. Rev. Environ. Sci. Technol. 2020, 51, 2681–2743. [Google Scholar] [CrossRef]
- Couceiro, D.C. Definição de uma Metodologia para Extração e Quantificação de Microplásticos em Areia de Praia; Dissertação de Mestrado em Gestão Ambiental, Instituto Politécnico de Coimbra: Coimbra, Portugal, 2018; p. 37. [Google Scholar]
- Frias, J.; Pagter, E.; Nash, R.; O’Connor, I.; Carretero, O.; Filgueiras, A.; Viñas, L.; Gago, J.; Antunes, J.; Bessa, F.; et al. Standardised protocol for monitoring microplastics in sediments. JPI-Ocean. BASEMAN Proj. 2018, 1–23. Available online: https://www.researchgate.net/publication/326552185_Standardised_protocol_for_monitoring_microplastics_in_sediments (accessed on 14 August 2025).
Method | Reagents | Concentration | Temperature (°C) | Contact Period (h) | Steps |
---|---|---|---|---|---|
Method 1 | H2O2 | 30% (w/v) | 25 | 24–96 |
|
Method 2 | H2O2 | 30% (w/v) | 50 | 24–96 |
|
Method 3 | Dichloromethane + Hexane | 100%/each reagent | 25 | 24 |
|
Organic Matter Digestion | Density Separation | Polymer | |||||
---|---|---|---|---|---|---|---|
Sampling Date | Reagent | Temperature (°C) | Digestion Period (h) | Reagent | Total Particles/100 g Dry Soil | Total MP/100 g Dry Soil | Identification |
June 2023 | 30% H2O2 | 50 | 48 | 40% sodium tungstate | 20 ± 17 (ns) | 0 | 0 |
August 2024 | 30% H2O2 | 50 | 48 | 40% sodium tungstate | 36 ± 19 (ns) | 34 ± 18 | 34 PP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, P.; Antunes, J.; Pedra, F.; Ventura, R.; Carranca, C. Methodological Approach for Detecting Polypropylene Microplastics in Agricultural Soil in Southern Portugal. Pollutants 2025, 5, 30. https://doi.org/10.3390/pollutants5030030
Almeida P, Antunes J, Pedra F, Ventura R, Carranca C. Methodological Approach for Detecting Polypropylene Microplastics in Agricultural Soil in Southern Portugal. Pollutants. 2025; 5(3):30. https://doi.org/10.3390/pollutants5030030
Chicago/Turabian StyleAlmeida, Pedro, Joana Antunes, Filipe Pedra, Rita Ventura, and Corina Carranca. 2025. "Methodological Approach for Detecting Polypropylene Microplastics in Agricultural Soil in Southern Portugal" Pollutants 5, no. 3: 30. https://doi.org/10.3390/pollutants5030030
APA StyleAlmeida, P., Antunes, J., Pedra, F., Ventura, R., & Carranca, C. (2025). Methodological Approach for Detecting Polypropylene Microplastics in Agricultural Soil in Southern Portugal. Pollutants, 5(3), 30. https://doi.org/10.3390/pollutants5030030