End-Point Predictors of Water Quality in Tropical Rivers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Predictability of the MMIs as End-Point Indicators
4.2. Insect Relationships to Physiochemical Parameters
4.3. Use in Predicting Land-Use Impacts in Tropical River Systems
5. Conclusions: Monitoring Water Quality in Tropical Environments
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karr, J. Seven Foundations of Biological Monitoring and Assessment. Biol. Ambient. 2006, 20, 7–18. [Google Scholar]
- Keiser, D.; Shapiro, J. Consequences of the Clean Water Act and the demand for water quality. Q. J. Econ. 2019, 134, 349–396. [Google Scholar] [CrossRef]
- Karr, J. Assessment of biotic integrity using fish communities. Fisheries 1981, 6, 21–27. [Google Scholar] [CrossRef]
- Feio, M.; Hughes, R.; Callisto, M.; Nichols, S.; Odume, O.; Quintella, B.; Kuemmerlen, M.; Aguiar, F.; Almeida, S.; Alonso-EguiaLis, P.; et al. The biological assessment and rehabilitation of the world’s rivers: An overview. Water 2021, 3, 371. [Google Scholar]
- Harmsworth, G.; Young, R.; Walker, D.; Clapcott, J.; James, T. Linkages between cultural and scientific indicators of river and stream health. N. Z. J. Mar. Freshw. Res. 2011, 45, 423–436. [Google Scholar] [CrossRef]
- Kannan, N.; Anandhi, A.; Jeong, J. Estimation of stream health using flow-based indices. Hydrology 2018, 5, 20. [Google Scholar] [CrossRef]
- Noori, R.; Berndtsson, R.; Hosseinzadeh, M.; Adamowski, J.; Abyaneh, M. A critical review on the application of the national sanitation foundation water quality index. Environ. Pollut. 2013, 244, 575–587. [Google Scholar] [CrossRef]
- Karr, J.; Chu, E. Restoring Life in Running Waters: Better Biological Monitoring; Island Press: Washington, DC, USA, 1999. [Google Scholar]
- Sutadian, A.; Muttil, D.; Yilmaz, N.; Perera, B. Development of river water quality index a review. Environ. Monit. Assess. 2016, 188, 58. [Google Scholar] [CrossRef]
- Schoolmaster, D.; Grace, J.; Schweiger, E. A general theory of multimetric indices and their properties. Methods Ecol. Evol. 2012, 3, 773–781. [Google Scholar] [CrossRef]
- Miller, K.; Mitchell, B.; McGill, B. Constructing multimetric indices and testing ability of landscape metrics to assess condition of freshwater wetlands in the Northeastern US. Ecol. Indic. 2016, 66, 143–152. [Google Scholar] [CrossRef]
- Kannan, N. Stream Health Estimation for the Plum Creek Watershed. Hydrology 2021, 8, 13. [Google Scholar] [CrossRef]
- Rosgen, D. Applied River Morphology; Printed Media Companies: Minneapolis, MN, USA, 1996; 352p. [Google Scholar]
- Rosgen, D. A Practical Method of Computing Streambank Erosion Rate. In Proceedings of the 7th Federal Interagency Sedimentation Conference, Reno, NV, USA, 25–29 March 2001; Volume 2, pp. 9–15. [Google Scholar]
- Kitchell, A.; Schueler, T. Manual 10: Unified Stream Assessment: A User’s Manual; Urban Subwatershed Restoration Manual Series; Center for Watershed Protection: Ellicott City, MD, USA, 2005. [Google Scholar]
- Brown, R.; McClellan, N.; Deininger, R.; Tozer, G. A water quality index-do we dare? Water Sew. Work. 1970, 117, 339–343. [Google Scholar]
- Bharti, N.; Katyal, D. Water quality indices used for surface water vulnerability assessment. Int. J. Environ. Sci. 2011, 2, 154e173. [Google Scholar]
- Herman, M.; Nejadhashemi, A. A review of macroinvertebrate and fish-based stream health indices. Ecohydrol. Hydrobiol. 2015, 15, 53–67. [Google Scholar] [CrossRef]
- Abbasi, T.; Abbasi, S. Water quality indices based on bioassessment: The biotic indices. J. Water Health 2011, 9, 330–348. [Google Scholar] [CrossRef]
- Buss, D.; Carlisle, D.; Chon, T.; Culp, J.; Harding, J.; Keizer-Vlek, H.; Robinson, W.; Strachan, S.; Thirion, C.; Hughes, R. Stream biomonitoring using macroinvertebrates around the globe: A comparison of large-scale programs. Environ. Monit. Assess. 2015, 187, 4132. [Google Scholar] [PubMed]
- León, L. Índice de Calidad del Agua, Ica, Inf. # Sh-9101/01; Instituto Mexicano de Tecnología del Agua: Progreso, Mexico, 1991; 36p. [Google Scholar]
- Montoya, H.; Contreras, C.; García, Y. Estudio Integral De La Calidad Del Agua En El Estado De Jalisco; Comision Nacional del Agua, Gerencia Regional: Guadalajara, Mexico, 1997; 106p. [Google Scholar]
- Rubio, H.; Delgado, R.; Martínez, R.; Terán, R.; Rivero, J.; Burciaga, N. Indice de calidad de agua (ICA) en la presa la boquilla en Chihuahua, Mexico. J. Basic Sci. 2014, 1, 139–150. [Google Scholar]
- Resh, V.; Brown, A.; Covich, A.; Gurtz, M.; Li, H.; Minshall, G.; Reice, S.; Sheldon, A.; Wallace, J.; Wissmar, R. The role of disturbance in stream ecology. J. N. Am. Benthol. Soc. 1988, 7, 433–455. [Google Scholar] [CrossRef]
- Ramírez, A.; Pringle, C.; Douglas, M. Temporal and spatial patterns in stream physicochemistry and insect assemblages in tropical lowland streams. J. N. Am. Benthol. Soc. 2006, 25, 108–123. [Google Scholar] [CrossRef]
- Weliange, W.; Amarasinghe, U.; Vijverberg, J.; Leichtfried, M.; Fureder, L. A Comparative Analysis on the Effects of River Discharge on Trophic Interactions in Two Tropical Streams. Int. Rev. Hydrobiol. 2017, 102, 3–14. [Google Scholar] [CrossRef]
- Ruaro, R.; Gubiani, É. A scientometric assessment of 30 years of the Index of Biotic Integrity in aquatic ecosystems: Applications and main flaws. Ecol. Indic. 2013, 29, 105–110. [Google Scholar] [CrossRef]
- van Oosterhout, M.; van der Velde, G. An advanced index of biotic integrity for use in shallow lowland streams in Costa Rica: Fish assemblages as indicators of stream ecosystem health. Ecol. Indic. 2015, 48, 687–698. [Google Scholar] [CrossRef]
- Martins, I.; Macedo, D.; Hughes, R.; Callisto, M. Are multiple multimetric indices effective for assessing ecological condition in tropical basins? Ecol. Indic. 2020, 110, 105953. [Google Scholar] [CrossRef]
- Castillo, E.; Martínez, E.; Ruepert, C.; Savage, C.; Gilek, M.; Pinnock, M.; Solís, E. Water Quality and Macroinvertebrate Community Response Following Pesticide Applications in a Banana Plantation, Limón, Costa Rica. Sci. Total Environ. 2006, 367, 418–432. [Google Scholar] [CrossRef] [PubMed]
- Stan, K.; Sanchez-Azofeifa, A.; Calvo-Rodriguez, S.; Castro-Magnani, M.; Chen, J.; Ludwig, R.; Zou, L. Climate change scenarios and projected impacts for forest productivity in Guanacaste Province (Costa Rica): Lessons for tropical forest regions. Reg. Environ. Chang. 2020, 20, 14. [Google Scholar] [CrossRef]
- MINAE. Regulation for the Evaluation and Classification of the Quality of Surface Water Bodies; Executive Decree No. 33903; MINAE: San José, Costa Rica, 2007.
- Jovanelly, T.; Rodríguez-Montero, L.; Sánchez-Gutiérrez, R.; Mena-Rivera, L.; Thomas, D. Evaluating watershed health in Costa Rican national parks and protected areas. Sustain. Water Resour. Manag. 2020, 6, 76. [Google Scholar] [CrossRef]
- Shahady, T.; Boniface, H. Water quality management thorough community engagement in Costa Rica. J. Environ. Sci. Stud. 2018, 8, 488–502. [Google Scholar] [CrossRef]
- Capdevila, A.; Kokimova, A.; Ray, S.; Avellán, T.; Kim, J.; Kirschke, S. Success factors for citizen science projects in water quality monitoring. Sci. Total Environ. 2020, 728, 137843. [Google Scholar] [CrossRef]
- Kirschke, S.; Newig, J.; Völker, J.; Borchardt, D. Does problem complexity matter for environmental policy delivery? How public authorities address problems of water governance. J. Environ. Manag. 2017, 196, 1–7. [Google Scholar] [CrossRef]
- Conrad, C.; Hilchey, K. A review of citizen science and community-based environmental monitoring: Issues and opportunities. Environ. Monit. Assess. 2011, 176, 273–291. [Google Scholar] [CrossRef]
- Storey, R.; Wright-Stow, A.; Kin, E.; Davies-Colley, R.; Stott, R. Volunteer stream monitoring: Do the data quality and monitoring experience support increased community involvement in freshwater decision making? Ecol. Soc. 2016, 21, 32. [Google Scholar] [CrossRef]
- Barbour, M.; Gerritsen, J.; Snyder, B.; Stribling, J. Rapid Bioassessment for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, 2nd ed.; EPA 841-B-99-002; U.S. Environmental Protection Agency, Office of Water: Washington, DC, USA, 1999.
- Springer, M.; Ramírez, A.; Hanson, P. Macroinvertebrados de agua dulce de Costa Rica I: Introducción a los grupos de macroinvertebrados, métodos, biomonitoreo, Ephemeroptera, Odonata, Plecoptera, Trichoptera. Rev. Biol. Trop. 2010, 58 (Suppl. 4), 1–200. [Google Scholar]
- Fernández, H.; Domínguez, E. Guia para la Determinacion de los Artropodos Bentonicos Sudamericanos; Universidad Nacional De Tucuman, Facultad De Ciencias Naturales e Instituto Miguel Lillo: Tucumán, Argentina, 2001. [Google Scholar]
- Baird, R.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- EPA. Standard Operating Procedure Calibration of Field Instruments; Quality Assurance Unit, U.S. Environmental Protection Agengy: North Chelmsford, MA, USA, 2017.
- Novak, M.; Bode, R. Percent model affinity: A new measure of macroinvertebrate community composition. J. N. Am. Benthol. Soc. 1992, 11, 80–85. [Google Scholar] [CrossRef]
- Plafkin, J.; Barbour, T.; Porter, K.; Gross, S.; Hughes, R. Rapid Bioassessment Protocols for Use in Streams and Rivers: Benthic Macroinvertebrates and Fish; 444/4-89-001; United States Environmental Protection Agency EPA: Washington, DC, USA, 1989.
- Hilsenhoff, W. Use of Arthropods to Evaluate Water Quality of Streams; Technical Bulletin Number 100, Department of Natural Resources: Madison, WI, USA, 1977. [Google Scholar]
- Addinsoft. XLSTAT Statistical and Data Analysis Solution; Addinsoft: Long Island, NY, USA, 2019. [Google Scholar]
- Mahalanobis, P. On the generalized distance in statistics. Proc. Natl. Inst. Sci. India 1936, 2, 49–55. [Google Scholar]
- Sawyer, J.; Stewart, P.; Mullen, M.; Simon, T.; Bennett, H. Influence of habitat, water quality, and land use on macro-invertebrate and fish assemblages of a southeastern coastal plain watershed, USA. Aquat. Ecosyst. Health Manag. 2004, 7, 85–99. [Google Scholar] [CrossRef]
- Praus, P. Evaluation of biological wastewater treatment process using Mahalanobis distances in original and principal component space: A case study. Appl. Water Sci. 2018, 8, 167. [Google Scholar] [CrossRef]
- Farber, O.; Kadmon, R. Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecol. Model. 2003, 160, 115–130. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, H.; Li, F. Identifying spatial heterogeneity of groundwater and its response to anthropogenic activities. Environ. Sci. Pollut. Res. 2019, 26, 29435–29448. [Google Scholar] [CrossRef]
- Farres, M.; Platikanov, S.; Tsakovski, S.; Tauler, R. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J. Chemom. 2015, 29, 528–536. [Google Scholar] [CrossRef]
- Tabachnick, B.; Fidell, L. Using Multivariate Statistics, 5th ed.; Allyn & Bacon: Boston, MA, USA, 2007. [Google Scholar]
- Brooks, S.; Palmer, M.; Cardinal, B.; Swan, C.; Ribblett, S. Assessing stream ecosystem rehabilitation: Limitations of community structure data. Restor. Ecol. 2002, 10, 156–168. [Google Scholar] [CrossRef]
- Ghani, W.; Kutty, A.; Mahazar, M.; Al-Shami, S.; Hamid, S. Performance of Biotic Indices in Comparison to Chemical-Based Water Quality Index (WQI) in Evaluating the Water Quality of Urban River. Environ. Monit. Assess. 2018, 190, 297. [Google Scholar] [CrossRef]
- Herlihy, A.; Sifneos, J.; Hughes, R.; Peck, D.; Mitchell, R. The Relation of Lotic Fish and Benthic Macroinvertebrate Condition Indices to Environmental Factors Across the Conterminous USA. Ecol. Indic. 2020, 112, 105958. [Google Scholar] [CrossRef]
- Allen, J. The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Wolman, M. A cycle of sedimentation and erosion in urban river channels. Geogr. Ann. 1967, 49, 385–395. [Google Scholar] [CrossRef]
- Chin, A. Urban transformation of river landscapes in a global context. Geomorphology 2006, 79, 460–487. [Google Scholar] [CrossRef]
- Maklin, M.; Lewin, J. River stresses in anthropogenic times: Large-scale global patterns and extended environmental timelines. Prog. Phys. Geogr. 2019, 43, 3–23. [Google Scholar] [CrossRef]
- Cornejo, A.; Tonin, A.; Checa, B.; Tuñon, A.; Pérez, D.; Coronado, E.; González, S.; Ríos, T.; Macchi, P.; Correa-Araneda, F.; et al. Effects of multiple stressors associated with agriculture on stream macroinvertebrate communities in a tropical catchment. PLoS ONE 2019, 14, e0220528. [Google Scholar]
- Gutiérrez-Fonseca, P.; Ramírez, A. Mayfly Emergence Production and Body Length Response to Hydrology in a Tropical Lowland Stream. PeerJ 2020, 8, e9883. [Google Scholar] [CrossRef] [PubMed]
- Mena-Rivera, L.; Vásquez-Bolaños, O.; Gomez-Castro, C.; Rodríguez-Rodríguez, A.; Sánchez-Gutiérrez, R. Ecosystemic assessment of surface water quality in the Virilla River: Towards sanitation processes in Costa Rica. Water 2018, 10, 845. [Google Scholar] [CrossRef]
- Kohlmann, B.; Arroyo, A.; Springer, M.; Vásquez, D. Chapter: 13. Agrorural effects on the macroinvertebrate assemblage in a tropical river. In Biodiversity in Ecosystems—Linking Structure and Function; Blanco, J.A., Ed.; InTech: London, UK, 2015; pp. 317–351. [Google Scholar]
- Ramírez, A.; Pringle, C. Structure and Production of a Benthic Insect Assemblage in a Neotropical Stream. J. N. Am. Benthol. Soc. 1998, 17, 443–463. [Google Scholar] [CrossRef]
- Mena-Rivera, L.; Salgado-Silva, V.; Benavides-Benavides, C.; Coto-Campos, J.; Swinscoe, T. Spatial and season surface water quality assessment in a tropical urban catchment: Burio River. Costa Rica Water 2017, 9, 558–568. [Google Scholar]
- Feeley, H.; Davis, S.; Bruen, M.; Blacklocke, S.; Kelly-Quinn, M. The impact of a catastrophic storm event on benthic macroinvertebrate communities in upland headwater streams and potential implications for ecological diversity and assessment of ecological status. J. Limnol. 2012, 71, 299–308. [Google Scholar] [CrossRef]
- Zamora-Munõz, C.; Sainz-Cantero, C.; Sanchez-Ortega, A.; Alba-Tercedor, J. Are biological indices BMPW and ASPT and their significance regarding water quality seasonally dependent? Factors explaining their variations. Water Res. 1995, 29, 285–290. [Google Scholar] [CrossRef]
- Alexander, R.; Boyer, R.; Smith, R.; Schwarz, G.; Moore, R. The role of headwater streams in downstream water quality. J. Am. Water Resour. Assoc. 2007, 43, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Czerniawska-Kusza, I. Comparing modified biological monitoring working party score system and several biological indices based on macroinvertebrates for water-quality assessment. Limnologica 2005, 35, 169–176. [Google Scholar] [CrossRef]
- Deborde, D.; Hernandez, M.; Magbanua, F. Benthic Macroinvertebrate Community as an Indicator of Stream Health: The Effects of Land Use on Stream Benthic Macroinvertebrates. Sci. Diliman 2016, 28, 5–26. [Google Scholar]
- Dominguez-Granda, L.; Lock, K.; Goethals, P. Using multi-target clustering trees as a tool to predict biological water quality indices based on benthic macroinvertebrates and environmental parameters in the Chaguana watershed (Ecuador). Ecol. Infoma. 2011, 6, 303–308. [Google Scholar] [CrossRef]
- Ratia, H.; Vuori, K.; Oikari, A. Caddis larvae (Trichoptera, Hydropsychidae) indicate delaying recovery of a watercourse polluted by pulp and paper industry. Ecol. Indic. 2012, 15, 217–226. [Google Scholar] [CrossRef]
- Xu, M.; Wang, Z.; Duan, X.; Pan, B. Effects of pollution on macroinvertebrates and water quality bio-assessment. Hydrobiologia 2014, 729, 247–259. [Google Scholar] [CrossRef]
- Kohlmann, B.; Arroyo, A. Chapter 6. In Integrated Analytical Approaches for Pesticide Management; Maestroni, B., Cannavan, A., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 83–106. [Google Scholar]
- Sanchez-Arguello, R.; Cornejo, A.; Pearson, R.; Boyero, L. Spatial and temporal variation of stream communities in a human-affected tropical watershed. Int. J. Limnol. 2010, 46, 149–156. [Google Scholar] [CrossRef]
- Pineda-Pinead, J.; Rosas-Acevedo, J.; Sigarreta-Almira, J.; Hernandez-Gomez, J.; Reyes-Umana, M. Biotic indices to evaluate water quality: BMWP. Int. J. Environ. Ecol. Fam. Urban Stud. 2018, 8, 23–36. [Google Scholar]
- Connolly, N.; Pearson, R. The effect of fine sedimentation on tropical stream macroinvertebrate assemblages: A comparison using flow-through artificial stream channels and recirculating mesocosms. Hydrobiologia 2007, 592, 423–438. [Google Scholar] [CrossRef]
- Lorion, C.; Kennedy, B. Relationship between Deforestation, Riparian Forest Buffers and Benthic Macroinvertebrates in Neotropical Headwater Streams. Freshw. Biol. 2009, 54, 165–180. [Google Scholar] [CrossRef]
- O’Callaghan, P.; Kelly-Quinn, M. Performance of Selected Macroinvertebrate-Based Biotic Indices for Rivers Draining the Merendón Mountains Region of Honduras. Cuad. Investig. UNED 2013, 5, 45–54. [Google Scholar] [CrossRef]
- TCRN Staff. Water Law in Costa Rica, Crime or Sin of Omission. Costa Rica Times. 4 December 2020. Available online: https://thecostaricanews.com/water-law-in-costa-rica-crime-or-sin-of-omission/ (accessed on 20 April 2022).
Site | Elevation (M) | EPT | BMWP/CR | PMA | WQI | WQI/CR |
---|---|---|---|---|---|---|
RG-BS | 1555 | 5.2 ± 0.4 | 81.7 ± 4.6 | 46.0 ± 5.2 | 81.6 ± 1.7 | 5.2 ± 0.4 |
RG-RMV | 1450 | 5.5 ± 0.4 | 73.7 ± 5.3 | 51.1 ± 2.1 | 83.3 ± 1.6 | 6.0 ± 0.4 |
RG-RS | 1372 | 4.5 ± 0.5 | 68.1 ± 6.1 | 37.2 ± 3.6 | 84.7 ± 1.7 | 5.7 ± 0.4 |
RL-LL | 1220 | 3.1 ± 0.2 | 49.1 ± 3.5 | 44.1 ± 2.1 | 79.8 ± 2.0 | 6.2 ± 0.4 |
RG-QC | 903 | 5.6 ± 0.4 | 78.2 ± 4.6 | 56.5 ± 2.9 | 75.8 ± 1.7 | 6.4 ± 0.4 |
RG-LI | 872 | 6.3 ± 0.5 | 87.8 ± 6.3 | 60.4 ± 3.1 | 77.9 ± 1.3 | 6.1 ± 0.4 |
RG-RSL | 661 | 6.8 ± 0.4 | 93.2 ± 5.1 | 61.3 ± 3.3 | 77.9 ± 1.1 | 6.5 ± 0.4 |
RG-LR | 653 | 6.8 ± 0.5 | 95.4 ± 6.7 | 67.6 ± 2.8 | 74.8 ± 4.1 | 6.1 ± 0.4 |
RG-PVC | 644 | 7.1 ± 0.3 | 100.6 ± 4.8 | 67.2 ± 3.5 | 80.6 ± 1.6 | 5.8 ± 0.4 |
RA-BC | 568 | 4.4 ± 0.5 | 58.4 ± 6.4 | 43.0 ± 3.5 | 82.7 ± 1.3 | 5.5 ± 0.4 |
RL-LG | 336 | 5.9 ± 0.3 | 86.9 ± 7.4 | 54.7 ± 2.5 | 77.7 ± 1.1 | 6.3 ± 0.4 |
RG-PG | 306 | 6.8 ± 0.4 | 90.2 ± 5.0 | 58.2 ± 2.7 | 77.3 ± 1.1 | 6.9 ± 0.3 |
RA-CM | 280 | 4.6 ± 0.4 | 54.2 ± 5.1 | 50.1 ± 1.8 | 80.0 ± 1.2 | 5.7 ± 0.3 |
RL-LP | 113 | 6.2 ± 0.4 | 90.3 ± 7.2 | 51.4 ± 2.1 | 67.4 ± 3.5 | 5.8 ± 0.4 |
RG-001 | 101 | 5.3 ± 0.4 | 66.3 ± 5.5 | 46.5 ± 2.4 | 77.6 ± 1.6 | 5.8 ± 0.4 |
RA-CH | 33 | 4.2 ± 0.3 | 42.5 ± 4.4 | 46.6 ± 2.3 | 71.8 ± 2.5 | 6.1 ± 0.4 |
RG-SA | 23 | 5.6 ± 0.5 | 75.8 ± 6.2 | 51.1 ± 1.5 | 75.4 ± 1.3 | 6.2 ± 0.4 |
RL-LS | 15 | 5.1 ± 0.4 | 67.4 ± 6.9 | 43.0 ± 2.5 | 70.0 ± 1.7 | 6.8 ± 0.3 |
Family | WQI | TP | BMWP |
---|---|---|---|
Leptohyphidae | 2.09 ± 0.26 | 0.10 ± 0.59 | 1.33 ± 1.56 |
Perlidae | 0.88 ± 0.50 | 0.35 ± 0.48 | 1.73 ± 1.15 |
Baetidae | 0.71 ± 0.81 | 1.36 ± 0.86 | 0.02 ± 1.42 |
Leptophlebiidae | 0.43 ± 0.57 | 0.27 ± 0.70 | 0.17 ± 1.49 |
Hydropsychidae | 0.34 ± 0.56 | 1.99 ± 0.71 | 1.01 ± 1.79 |
Elmidae | 0.19 ± 0.43 | 0.01 ± 0.74 | 0.42 ± 1.08 |
RGBS | RG RMV | RG-RS | RL-LL | RG-QC | RG-LI | RG-RSL | RG-LR | RG-PVC | RA-BC | RL-LG | RG-PG | RA-CM | RL-LP | RG-001 | RA-CH | RG-SA | RL-LS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RG-BS | 0 | 0.11 | 0.33 | 1.89 | 0.02 | 0.06 | 0.23 | 0.33 | 0.63 | 0.96 | 0.05 | 0.13 | 1.34 | 0.13 | 0.42 | 2.73 | 0.06 | 0.05 |
RG-RMV | 0.04 | 0 | 0.06 | 1.08 | 0.04 | 0.35 | 0.67 | 0.84 | 1.28 | 0.41 | 0.31 | 0.49 | 0.67 | 0.49 | 0.09 | 1.73 | 0.08 | 0.31 |
RG-RS | 0.13 | 0.03 | 0 | 0.64 | 0.18 | 0.69 | 1.12 | 1.31 | 1.88 | 0.17 | 0.01 | 0.87 | 0.34 | 0.88 | 0.01 | 1.16 | 0.11 | 0.63 |
RL-LL | 0.05 | 0.18 | 0.34 | 0 | 1.51 | 2.65 | 3.45 | 3.81 | 4.71 | 0.16 | 2.53 | 3.01 | 0.05 | 3.01 | 0.53 | 0.08 | 1.26 | 2.53 |
RG-QC | 0.47 | 0.79 | 1.11 | 0.22 | 0 | 0.16 | 0.39 | 0.52 | 0.88 | 0.69 | 021 | 0.25 | 1.02 | 0.26 | 0.25 | 2.25 | 0.01 | 0.13 |
RG-LI | 0.19 | 0.41 | 0.63 | 0.05 | 0.07 | 0 | 0.05 | 0.11 | 0.25 | 1.59 | 0.01 | 0.01 | 1.99 | 0.01 | 0.82 | 3.63 | 0.26 | 0.74 |
RG-RSL | 0.19 | 0.41 | 0.64 | 0.05 | 0.06 | 0.00 | 0 | 0.01 | 0.10 | 2.14 | 0.07 | 0.02 | 2.67 | 0.02 | 1.28 | 4.56 | 0.54 | 1.18 |
RG-LR | 0.63 | 0.99 | 1.34 | 0.33 | 0.01 | 0.13 | 0.13 | 0 | 0.05 | 2.53 | 0.13 | 0.05 | 3.02 | 0.05 | 1.51 | 4.97 | 0.69 | 1.39 |
RG-PVC | 0.01 | 0.10 | 0.23 | 0.01 | 0.33 | 0.10 | 0.11 | 0.46 | 0 | 3.15 | 0.33 | 0.19 | 3.89 | 0.19 | 2.89 | 5.99 | 1.09 | 1.96 |
RA-BC | 0.02 | 0.01 | 0.06 | 0.12 | 0.68 | 0.32 | 0.32 | 0.85 | 0.06 | 0 | 1.43 | 1.79 | 0.03 | 1.80 | 0.11 | 0.45 | 1.22 | 0.14 |
RL-LG | 0.21 | 0.44 | 0.68 | 0.06 | 0.45 | 0.00 | 0.00 | 0.11 | 0.12 | 0.35 | 0 | 0.02 | 1.89 | 0.02 | 0.75 | 3.49 | 0.21 | 0.67 |
RG-PG | 0.26 | 0.50 | 0.76 | 0.08 | 0.03 | 0.00 | 0.00 | 0.08 | 0.15 | 0.40 | 0.00 | 0 | 2.30 | 0.00 | 1.02 | 4.04 | 0.37 | 0.93 |
RA-CM | 0.04 | 0.16 | 0.31 | 0.00 | 0.24 | 0.06 | 0.06 | 0.36 | 0.01 | 0.10 | 1.36 | 0.10 | 0 | 2.31 | 0.26 | 0.24 | 0.82 | 0.31 |
RL-LP | 2.79 | 3.52 | 1.52 | 2.12 | 0.97 | 1.54 | 1.54 | 0.77 | 2.44 | 3.25 | 1.47 | 1.36 | 2.19 | 0 | 1.02 | 4.05 | 0.37 | 0.93 |
RG-001 | 0.22 | 0.46 | 0.70 | 0.07 | 0.05 | 0.01 | 0.01 | 0.10 | 0.13 | 0.36 | 0.00 | 0.01 | 0.08 | 1.44 | 0 | 1.00 | 0.16 | 0.01 |
RA-CH | 1.33 | 1.85 | 2.31 | 0.88 | 0.22 | 0.52 | 0.52 | 0.13 | 1.09 | 1.65 | 0.04 | 0.42 | 0.92 | 0.27 | 0.46 | 0 | 1.96 | 1.10 |
RG-SA | 0.52 | 0.86 | 1.19 | 0.26 | 0.00 | 0.08 | 0.08 | 0.01 | 0.37 | 6.19 | 0.07 | 0.05 | 2.40 | 0.89 | 0.06 | 0.19 | 0 | 0.125 |
RL-LS | 1.85 | 2.45 | 2.97 | 1.31 | 0.45 | 0.86 | 0.86 | 0.32 | 1.60 | 2.22 | 0.81 | 0.73 | 1.36 | 0.10 | 0.78 | 0.04 | 0.40 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahady, T.; Montero-Ramírez, J.J. End-Point Predictors of Water Quality in Tropical Rivers. Pollutants 2023, 3, 461-476. https://doi.org/10.3390/pollutants3040032
Shahady T, Montero-Ramírez JJ. End-Point Predictors of Water Quality in Tropical Rivers. Pollutants. 2023; 3(4):461-476. https://doi.org/10.3390/pollutants3040032
Chicago/Turabian StyleShahady, Thomas, and José Joaquín Montero-Ramírez. 2023. "End-Point Predictors of Water Quality in Tropical Rivers" Pollutants 3, no. 4: 461-476. https://doi.org/10.3390/pollutants3040032
APA StyleShahady, T., & Montero-Ramírez, J. J. (2023). End-Point Predictors of Water Quality in Tropical Rivers. Pollutants, 3(4), 461-476. https://doi.org/10.3390/pollutants3040032