Eutrophic Status Assessment Based on Very High-Resolution Satellite Imagery in the Coastline Environment of Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Remote Sensing Data
2.2.1. WordView-3
2.2.2. Sentinel-2
2.2.3. Landsat-8
2.3. Processing of Satellite Data
2.4. Land-Use Land-Cover Classification
2.5. Water Quality Parameters Assessment
2.6. Evaluation and Accuracy Assessment
2.6.1. Accuracy Assessment of Land-Cover Classification
2.6.2. Accuracy Assessment of Water Quality Parameters
2.7. Adding Another Trophic Index
3. Results
3.1. Analysis and Assessment of the Land-Cover Classification
3.2. Accuracy Assessment of the Employed Models
3.3. Analysis of the Trophic Status
Index Value | Trophic Status | Explanation |
---|---|---|
<30 | Ultraoligotrophic | The nutrients quantity is negligible. The water is almost pure, has plenty of dissolve oxygen concentration. |
30–40 | Oligotrophic | The nutrients quantity in water body is low. The water is good for aquatic life |
40–50 | Mesotrophic | The nutrients concentration is moderate. The clarity of the water is in medium state. |
50–60 | Light Eutrophic | The nutrients concentration is high. Declining in water purity. Only fish can live in warm water. Water body need proper treatment. |
60–70 | Medium Eutrophic | The nutrients concentration is high. Algal blooms development is started. Problematic for aquatic environment. |
70–80 | Heavy Eutrophic | The nutrients concentration is high. Harmful algal blooms occurred |
>80 | Hyper Eutrophic | The nutrients concentration is very high. Algal clamping is developed. Most of the aquatic life including fish cannot survive |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, W.; Qin, Y.; Zheng, B.; Zhang, L. Heavy metal pollution in Tianjin Bohai Bay, China. J. Environ. Sci. 2008, 20, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Soo, B.; Ho, J.; Kim, J.; Ho, S.; Han, M. Intraspecific bloom succession in the harmful dinoflagellate Cochlodinium polykrikoides (Dinophyceae) extended the blooming period in Korean coastal waters in 2009. Harmful Algae 2018, 71, 78–88. [Google Scholar] [CrossRef]
- Song, N.; Wang, N.; Lu, Y.; Zhang, J. Temporal and spatial characteristics of harmful algal blooms in the Bohai Sea during 1952–2014. Cont. Shelf Res. 2016, 122, 77–84. [Google Scholar] [CrossRef]
- Lee, S.; Miller-rushing, A.J. Degradation, urbanization, and restoration: A review of the challenges and future of conservation on the Korean Peninsula. Biol. Conserv. 2014, 176, 262–276. [Google Scholar] [CrossRef]
- Aleynik, D.; Dale, A.C.; Porter, M.; Davidson, K. A high-resolution hydrodynamic model system suitable for novel harmful algal bloom modelling in areas of complex coastline and topography. Harmful Algae 2016, 53, 102–117. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Jin, H.; Du, Y.; Young, E. Mixotrophic dinoflagellate red tides in Korean waters: Distribution and ecophysiology. Harmful Algae 2013, 30, S28–S40. [Google Scholar] [CrossRef]
- Lee, C.; Park, T.; Park, Y.; Lim, W. Monitoring and trends in harmful algal blooms and red tides in Korean coastal waters, with emphasis on Cochlodinium polykrikoides. Harmful Algae 2013, 30, S3–S14. [Google Scholar] [CrossRef]
- Davidson, K.; Gowen, R.J.; Harrison, P.J.; Fleming, L.E.; Hoagland, P.; Moschonas, G. Anthropogenic nutrients and harmful algae in coastal waters. J. Environ. Manag. 2014, 146, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Saputra, A.N.; Danoedoro, P.; Kamal, M. Application of Landsat 8 OLI Image and Empirical Model for Water Trophic Status Identification of Riam Kanan Reservoir, Banjar, South Kalimantan. IOP Conf. Ser. Earth Environ. Sci. 2017, 98, 012020. [Google Scholar] [CrossRef]
- Patra, P.P.; Dubey, S.K.; Trivedi, R.K.; Sahu, S.K.; Rout, S.K. Estimation of chlorophyll-a concentration and trophic states in Nalban Lake of East Kolkata Wetland, India from Landsat 8 OLI data. Spat. Inf. Res. 2017, 25, 75–87. [Google Scholar] [CrossRef]
- Carlson, R.E. A trophic state index for lakes. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Guan, J.; Ma, Y.; Yu, S.; Guo, H.; Bao, L. Aquatic environmental quality variation in Lake Dianchi Watershed. Procedia Environ. Sci. 2010, 2, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Anttila, S.; Fleming-lehtinen, V.; Attila, J.; Alasalmi, H.; Hällfors, H.; Kervinen, M.; Koponen, S. A novel earth observation based ecological indicator for cyanobacterial blooms. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 145–155. [Google Scholar] [CrossRef]
- Gittings, J.A.; Raitsos, D.E.; Racault, M.; Brewin, R.J.W.; Pradhan, Y.; Sathyendranath, S.; Platt, T. Seasonal phytoplankton blooms in the Gulf of Aden revealed by remote sensing. Remote Sens. Environ. 2017, 189, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Bertani, I.; Steger, C.E.; Obenour, D.R.; Fahnenstiel, G.L.; Bridgeman, T.B.; Johengen, T.H.; Sayers, M.J.; Shuchman, R.A.; Scavia, D. Tracking cyanobacteria blooms: Do different monitoring approaches tell the same story? Sci. Total Environ. 2017, 575, 294–308. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Pyo, J.; Sung, Y.; Cha, Y.; Lee, H.; Kang, T.; Hwa, K. Evaluating physico-chemical influences on cyanobacterial blooms using hyperspectral images in inland water, Korea. Water Res. 2017, 126, 319–328. [Google Scholar] [CrossRef]
- Ottaviani, M.; Foster, R.; Gilerson, A.; Ibrahim, A.; Carrizo, C.; El-Habashi, A.; Cairns, B.; Chowdhary, J.; Hostetler, C.; Hair, J.; et al. Airborne and shipborne polarimetric measurements over open ocean and coastal waters: Intercomparisons and implications for spaceborne observations. Remote Sens. Environ. 2018, 206, 375–390. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.C.; Son, S.; Kim, Y.H.; Khim, J.S.; Nam, J.; Chang, W.K.; Lee, J.H.; Lee, C.H.; Ryu, J. Remote sensing and water quality indicators in the Korean West coast: Spatio-temporal structures of MODIS-derived chlorophyll-a and total suspended solids. Mar. Pollut. Bull. 2017, 121, 425–434. [Google Scholar] [CrossRef]
- Giardino, C.; Pepe, M.; Brivio, P.A.; Ghezzi, P.; Zilioli, E. Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery. Sci. Total Environ. 2001, 268, 19–29. [Google Scholar] [CrossRef]
- Nas, B.; Ekercin, S.; Karabörk, H.; Berktay, A.; Mulla, D.J. An application of landsat-5TM image data for water quality mapping in Lake Beysehir, Turkey. Water Air Soil Pollut. 2010, 212, 183–197. [Google Scholar] [CrossRef]
- Senay, G.; Shafique, N. The selection of narrow wavebands for optimizing water quality monitoring on the Great Miami River, Ohio using hyperspectral remote sensor data. J. Spat. Hydrol. 2001, 1, 1–22. [Google Scholar]
- Hong, S.H.; Yim, U.H.; Shim, W.J.; Li, D.H.; Oh, J.R. Nationwide monitoring of polychlorinated biphenyls and organochlorine pesticides in sediments from coastal environment of Korea. Chemosphere 2006, 64, 1479–1488. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.W.; Kim, S.G.; Choi, M.; Lee, I.S.; Kim, S.S.; Choi, H.G. Monitoring of trace metals in coastal sediments around Korean Peninsula. Mar. Pollut. Bull. 2016, 102, 230–239. [Google Scholar] [CrossRef]
- Kim, J.; Park, J. Mathematical modeling of coastal marine environments using observational data for coastal management. Ocean Coast. Manag. 2015, 116, 396–403. [Google Scholar] [CrossRef]
- Suh, J.; Macpherson, A. The impact of geographical indication on the revitalisation of a regional economy: A case study of ‘Boseong’ green tea. Area 2007, 39, 518–527. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; Mcmahon, T.A. Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.M.; Hussain, S.; Cheema, M.J.M.; Lyul, J.J.P.J.A.S. Seasonal effect of agricultural pollutants on coastline environment: A case study of the southern estuarine water ecosystem of the boseong county Korea. Pak. J. Agri. Sci. 2022, 59, 117–124. [Google Scholar]
- Zilioli, E.; Brivio, P.A. The satellite derived optical information for the comparative assessment of lacustrine water quality. Sci. Total Environ. 1997, 196, 229–245. [Google Scholar] [CrossRef]
- Mamun, M.; An, K.G. Major nutrients and chlorophyll dynamics in Korean agricultural reservoirs along with an analysis of trophic state index deviation. J. Asia-Pac. Biodivers. 2017, 10, 183–191. [Google Scholar] [CrossRef]
- Korhonen, L.; Packalen, P.; Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens. Environ. 2017, 195, 259–274. [Google Scholar] [CrossRef]
- Jawak, S.D.; Luis, A.J.; Panditrao, S.N.; Khopkar, P.S.; Jadhav, P.S. Advancement in Land Cover Classification Using Very High Resolution Remotely Sensed 8-Band Worldview-2 Satellite Data. Int. J. Earth Sci. Eng. 2013, 6, 1742–1749. [Google Scholar]
- Ranaie, M.; Soffianian, A.; Pourmanafi, S.; Mirghaffari, N.; Tarkesh, M. Evaluating the statistical performance of less applied algorithms in classification of worldview-3 imagery data in an urbanized landscape. Adv. Space Res. 2018, 61, 1558–1572. [Google Scholar] [CrossRef]
- Sun, Y.; Tian, S.; Di, B. Extracting mineral alteration information using WorldView-3 data. Geosci. Front. 2017, 8, 1051–1062. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2014, 120, 37–57. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’ s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Turner, W.; Rondinini, C.; Pettorelli, N.; Mora, B.; Leidner, A.K.; Szantoi, Z.; Buchanan, G.; Dech, S.; Dwyer, J.; Herold, M.; et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 2015, 182, 173–176. [Google Scholar] [CrossRef] [Green Version]
- Barsi, J.A.; Lee, K.; Kvaran, G.; Markham, B.L.; Pedelty, J.A. The Spectral Response of the Landsat-8 Operational Land Imager. Remote Sens. 2014, 6, 10232–10251. [Google Scholar] [CrossRef] [Green Version]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free Access to Landsat Imagery. Science 2008, 320, 1011–1012. [Google Scholar] [CrossRef]
- Hadjimitsis, D.G.; Clayton, C.R.I.; Hope, V.S. An assessment of the effectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs. Int. J. Remote Sens. 2004, 25, 3651–3674. [Google Scholar] [CrossRef]
- Rujoiu-Mare, M.-R.; Mihai, B.-A. Mapping Land Cover Using Remote Sensing Data and GIS Techniques: A Case Study of Prahova Subcarpathians. Procedia Environ. Sci. 2016, 32, 244–255. [Google Scholar] [CrossRef] [Green Version]
- Haque, M.I.; Basak, R. Land cover change detection using GIS and remote sensing techniques: A spatio-temporal study on Tanguar Haor, Sunamganj, Bangladesh. Egypt. J. Remote Sens. Space Sci. 2017, 20, 251–263. [Google Scholar] [CrossRef]
- Butt, A.; Shabbir, R.; Ahmad, S.S.; Aziz, N. Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Space Sci. 2015, 18, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Zheng, Z.; Li, Y.; Lv, G.; Wang, Q.; Lyu, H.; Huang, C.; Liu, G.; Du, C.; Mu, M.; et al. Remote observation of water clarity patterns in Three Gorges Reservoir and Dongting Lake of China and their probable linkage to the Three Gorges Dam based on Landsat 8 imagery. Sci. Total Environ. 2018, 625, 1554–1566. [Google Scholar] [CrossRef] [PubMed]
- Nazeer, M.; Nichol, J.E. Development and application of a remote sensing-based Chlorophyll-a concentration prediction model for complex coastal waters of Hong Kong. J. Hydrol. 2016, 532, 80–89. [Google Scholar] [CrossRef]
- Wu, C.; Wu, J.; Qi, J.; Zhang, L.; Huang, H.; Lou, L.; Chen, Y. Empirical estimation of total phosphorus concentration in the mainstream of the Qiantang River in China using Landsat TM data. Int. J. Remote Sens. 2010, 31, 2309–2324. [Google Scholar] [CrossRef]
- Torbick, N.; Hession, S.; Hagen, S.; Wiangwang, N.; Becker, B.; Qi, J. Mapping inland lake water quality across the Lower Peninsula of Michigan using Landsat TM imagery. Int. J. Remote Sens. 2013, 34, 7607–7624. [Google Scholar] [CrossRef]
- International Ocean-Colour Coordinating Group. IOCCG Report Number 05: Reports of the International Ocean-Colour Coordinating Group. In Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications; International Ocean Colour Coordinating Group (IOCCG): Dartmouth, NS, Canada, 2006; Volume 5, ISBN 9781896246567. [Google Scholar] [CrossRef]
- Kratzer, C.R.; Brezonik, P.L. A Carlson-Type Trophic State Index for Nitrogen in Florida Lakes. JAWRA J. Am. Water Resour. Assoc. 1981, 17, 713–715. [Google Scholar] [CrossRef]
- Iqbal, M.M.; Li, L.; Hussain, S.; Lee, J.L.; Mumtaz, F.; Elbeltagi, A.; Waqas, M.S.; Dilawar, A.J.W. Analysis of Seasonal Variations in Surface Water Quality over Wet and Dry Regions. Water 2022, 14, 1058. [Google Scholar] [CrossRef]
- Borkman, D.G.; Smayda, T.J. Coincident patterns of waste water suspended solids reduction, water transparency increase and chlorophyll decline in Narragansett Bay. Mar. Pollut. Bull. 2016, 107, 161–169. [Google Scholar] [CrossRef]
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1998, 100, 179–196. [Google Scholar] [CrossRef]
- Zhang, F.; Sun, X.; Zhou, Y.; Zhao, C.; Du, Z.; Liu, R.Y. Ecosystem health assessment in coastal waters by considering spatio-temporal variations with intense anthropogenic disturbance. Environ. Model. Softw. 2017, 96, 128–139. [Google Scholar] [CrossRef]
- Watanabe, F.S.Y.; Alcântara, E.; Rodrigues, T.W.P.; Imai, N.N.; Barbosa, C.C.F.; da Silva Rotta, L.H. Estimation of chlorophyll-a concentration and the trophic state of the barra bonita hydroelectric reservoir using OLI/landsat-8 images. Int. J. Environ. Res. Public Health 2015, 12, 10391–10417. [Google Scholar] [CrossRef]
- Kloiber, S.M.; Brezonik, P.L.; Olmanson, L.G.; Bauer, M.E. A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sens. Environ. 2002, 82, 38–47. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Shi, K.; Zhu, G.; Zhou, Y.; Zhang, Y.; Guo, Y. Monitoring spatiotemporal variations in nutrients in a large drinking water reservoir and their relationships with hydrological and meteorological conditions based on Landsat 8 imagery. Sci. Total Environ. 2017, 599–600, 1705–1717. [Google Scholar] [CrossRef] [PubMed]
- Ferdous, Z.; Muktadir, A.K.M. A Review: Potentiality of Zooplankton as Bioindicator. Am. J. Appl. Sci. 2009, 6, 1815–1819. [Google Scholar] [CrossRef]
- Xiong, J.; Mei, X.; Liu, J. Comparative Studies on Community Structure, Biodiversity of Plankton and Zoobenthos in Four Lakes of Different Trophic States in China. Water 2003, 16, 361–372. [Google Scholar] [CrossRef]
- Dodds, W.K.; Jones, J.R.; Welch, E.B. Suggested classification of stream trophic state: Distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Res. 1998, 32, 1455–1462. [Google Scholar] [CrossRef]
- Murthy, G.P.; Shivalingaiah; Leelaja, B.; Hosmani, S.P. Trophic State Index in Conservation of Lake Ecosystems. In Proceedings of the Taal 2007 12th World Lake Conference Trophic, Jaipur, India, 28 October–2 November 2007; pp. 840–843. [Google Scholar]
- Xu, Y.; Cai, Q.; Han, X.; Shao, M.; Liu, R. Factors regulating trophic status in a large subtropical reservoir, China. Environ. Monit. Assess. 2010, 169, 237–248. [Google Scholar] [CrossRef]
- Park, Y.S.; Kwon, Y.S.; Hwang, S.J.; Park, S. Characterizing effects of landscape and morphometric factors on water quality of reservoirs using a self-organizing map. Environ. Model. Softw. 2014, 55, 214–221. [Google Scholar] [CrossRef]
Landsat-8 | Sentinel-2 | WorldView-3 (Multispectral) | |||
---|---|---|---|---|---|
Bands | Resolution (m) | Bands | Resolution (m) | Bands | Resolution (m) |
B-1 | 30 | B-1 | 60 | B-1 | 1.24 |
B-2 | 30 | B-2 | 10 | B-2 | 1.24 |
B-3 | 30 | B-3 | 10 | B-3 | 1.24 |
B-4 | 30 | B-4 | 10 | B-4 | 1.24 |
B-5 | 30 | B-5 | 20 | B-5 | 1.24 |
B-6 | 30 | B-6 | 20 | B-6 | 1.24 |
B-7 | 15 | B-7 | 20 | B-7 | 1.24 |
B-8 | 30 | B-8 | 10 | B-8 | 1.24 |
B-9 | 30 | B-8a | 20 | - | |
B-10 | 100 | B-9 | 60 | ||
B-11 | 100 | B-10 | 60 | ||
B-11 | 20 | ||||
- | - | B-12 | 20 | - | - |
Classes | Landsat-8 | Sentinel-2 | Worldview-3 | |||
---|---|---|---|---|---|---|
- | User Accuracy | Producer Accuracy | User Accuracy | Producer Accuracy | User Accuracy | Producer Accuracy |
Water | 66.67% | 90.91% | 80.00% | 92.31% | 100.00% | 100% |
Urban | 70% | 87.50% | 70% | 77.78% | 90% | 100% |
Mountainous Forest | 80% | 66.67% | 87% | 76.47% | 100% | 88.24% |
Crop | 80% | 61.54% | 90% | 81.82% | 90% | 100.00% |
Overall Accuracy | 74% | 82% | 96% | |||
Kappa Coefficient | 0.71 | 0.78 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, M.M.; Rashid, T.; Hussain, S.; Nadeem, M.U.; Waqas, M.S.; Amin, M.; Anjum, M.N. Eutrophic Status Assessment Based on Very High-Resolution Satellite Imagery in the Coastline Environment of Korea. Pollutants 2023, 3, 59-73. https://doi.org/10.3390/pollutants3010006
Iqbal MM, Rashid T, Hussain S, Nadeem MU, Waqas MS, Amin M, Anjum MN. Eutrophic Status Assessment Based on Very High-Resolution Satellite Imagery in the Coastline Environment of Korea. Pollutants. 2023; 3(1):59-73. https://doi.org/10.3390/pollutants3010006
Chicago/Turabian StyleIqbal, Muhammad Mazhar, Tehmena Rashid, Saddam Hussain, Muhammad Umer Nadeem, Muhammad Sohail Waqas, Muhammad Amin, and Muhammad Naveed Anjum. 2023. "Eutrophic Status Assessment Based on Very High-Resolution Satellite Imagery in the Coastline Environment of Korea" Pollutants 3, no. 1: 59-73. https://doi.org/10.3390/pollutants3010006
APA StyleIqbal, M. M., Rashid, T., Hussain, S., Nadeem, M. U., Waqas, M. S., Amin, M., & Anjum, M. N. (2023). Eutrophic Status Assessment Based on Very High-Resolution Satellite Imagery in the Coastline Environment of Korea. Pollutants, 3(1), 59-73. https://doi.org/10.3390/pollutants3010006