Assessment of Air Pollution Levels during Sugarcane Stubble Burning Event in La Feria, South Texas, USA
Abstract
:1. Introduction
2. Study Design and Methods
2.1. Site Selection
2.2. Topography and Meteorological Conditions
2.3. Instrumentation
2.4. Statistical Data Analysis
3. Results
3.1. 1 h Concentration Analysis
3.2. Coefficient of Divergence Analysis
3.3. Spearman Correlation Coefficient Analysis
3.4. Effect of Stubble Burning on Air Quality
3.5. Relationship between PM2.5 and PM10
3.6. Absorption Angstrom Exponent
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PM1 | Particulate Matter of size less than 1 micron |
PM2.5 | Particulate Matter of size less than 2.5 microns |
PM10 | Particulate Matter of size less than 10 microns |
VOCs | Volatile organic compounds |
CO | Carbon monoxide |
NO2 | Nitrogen dioxide |
BC | Black carbon |
O3 | Ozone |
NH3 | Ammonia |
SO2 | Sulfur dioxide |
NOx | Oxides of nitrogen |
NO | Nitric oxide |
CO2 | Carbon dioxide |
EPA | Environmental Protection Agency |
STRV | Short Tons, Raw Value |
N2O | Nitrous oxide |
TCEQ | Texas Commission on Environmental Quality |
CAMS | Continuous ambient monitoring station |
COD | Coefficient of Divergence |
RGV | Rio Grande Valley |
FIRMS | Fire Information for Resource Management System |
NASA | The National Aeronautics and Space Administration |
USDA | The United States Department of Agriculture |
MODIS | Moderate Resolution Imaging Spectroradiometer |
VIIRS | Visible Infrared Imaging Radiometer Suite |
AAE | The Absorption Ångström exponent |
UVPM | Ultraviolet particulate matter |
LCS | Low-Cost Sensors |
References
- McCarty, J.L.; Korontzi, S.; Justice, C.O.; Loboda, T. The spatial and temporal distribution of crop residue burning in the contiguous United States. Sci. Total Environ. 2009, 407, 5701–5712. [Google Scholar] [CrossRef] [PubMed]
- Abdurrahman, M.I.; Chaki, S.; Saini, G. Stubble burning: Effects on health & environment, regulations and management practices. Environ. Adv. 2020, 2, 100011. [Google Scholar] [CrossRef]
- Kumar, P.; Joshi, L. Pollution Caused by Agricultural Waste Burning and Possible Alternate Uses of Crop Stubble: A Case Study of Punjab. In Knowledge Systems of Societies for Adaptation and Mitigation of Impacts of Climate Change. Environmental Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2013; pp. 367–385. [Google Scholar] [CrossRef]
- Kaushal, L.A. Field Crop Residue burning Induced Particulate Pollution in NW India—Policy Challenges & Way Forward. IOP Conf. Ser。 Earth Environ. Sci. 2022, 1009, 012006. [Google Scholar] [CrossRef]
- Yakupoğlu, T.; Dindaroğlu, T.; Rodrigo-Comino, J.; Cerdà, A. Stubble burning and wildfires in Turkey considering the Sustainable Development Goals of the United Nations. Eurasian J. Soil Sci. 2022, 11, 66–76. [Google Scholar] [CrossRef]
- Shi, T.; Liu, Y.; Zhang, L.; Hao, L.; Gao, Z. Burning in agricultural landscapes: An emerging natural and human issue in China. Landsc. Ecol. 2014, 29, 1785–1798. [Google Scholar] [CrossRef]
- Mendez, E.; Temby, O.; Wladyka, D.; Sepielak, K.; Raysoni, A.U. Fine Particulate Matter Concentrations during Independence Day Fireworks Display in the Lower Rio Grande Valley Region, South Texas, USA. Sci. World J. 2022, 2022, 8413574. [Google Scholar] [CrossRef]
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. J. Environ. Manag. 2022, 323, 116285. [Google Scholar] [CrossRef]
- Latest Findings on National Air Quality: 1997 Status and Trends. 1998. Available online: https://www.epa.gov/sites/default/files/2017-11/documents/trends_brochure_1997.pdf (accessed on 10 October 2022).
- US EPA; OAR. Carbon Monoxide’s Impact on Indoor Air Quality. 2014. Available online: https://www.epa.gov/indoor-air-quality-iaq/carbon-monoxides-impact-indoor-air-quality (accessed on 10 October 2022).
- US EPA. Sulfur Dioxide Basics. Available online: https://www.epa.gov/so2-pollution/sulfur-dioxide-basics (accessed on 14 August 2020).
- Gerstenzang, J. Transportation and Global Warming. Biologicaldiversity.org. 2009. Available online: https://www.biologicaldiversity.org/programs/climate_law_institute/transportation_and_global_warming/ (accessed on 17 November 2022).
- Arunrat, N.; Pumijumnong, N.; Sereenonchai, S. Air-Pollutant Emissions from Agricultural Burning in Mae Chaem Basin, Chiang Mai Province, Thailand. Atmosphere 2018, 9, 145. [Google Scholar] [CrossRef]
- Satpathy, P.; Pradhan, C. Biogas as an alternative to stubble burning in India. Biomass Convers. Biorefinery 2020, 13, 31–42. [Google Scholar] [CrossRef]
- NAAS. Innovative Viable Solution to Rice Residue Burning in Rice-Wheat Cropping System through Concurrent Use of Super Straw Management System-Fitted Combines and Turbo Happy Seeder. Policy Brief No. 2; National Academy of Agricultural Sciences: New Delhi, India, 2017; p. 16. [Google Scholar]
- USDA. National Agricultural Statistics Service. Farms and Land in Farms. 2019 Summary. 2020. Available online: https://www.nass.usda.gov/Publications/Todays_Reports/reports/fnlo0220.pdf (accessed on 19 November 2022).
- USDA; National Agricultural Statistics Service. Crop Production 2021 Summary. 2022. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/k3569432s/sn00c1252/g158cj98r/cropan22.pdf (accessed on 20 November 2022).
- Vidalina Abadam. Economic Research Service U.S. Department of Agriculture. 2021. Available online: https://www.ers.usda.gov/topics/crops/sugar-sweeteners/background/ (accessed on 3 October 2022).
- ‘Why is the Sugarcane Industry Important to Louisiana?’, Louisiana State University Agricultural Center. Available online: https://www.lsuagcenter.com/~/media/system/3/6/f/2/36f2ecf632a7fcdd6c4b8d1186bddf28/pub2820sugarburn2.pdf (accessed on 10 November 2022).
- França, D.D.A.; Longo, K.M.; Neto, T.G.S.; Santos, J.C.; Freitas, S.R.; Rudorff, B.F.T.; Cortez, E.V.; Anselmo, E.; Carvalho, J.J.A. Pre-Harvest Sugarcane Burning: Determination of Emission Factors through Laboratory Measurements. Atmosphere 2012, 3, 164–180. [Google Scholar] [CrossRef]
- Vera, J.C.; Valeiro, A.; Posse, G.; Acreche, M.M. To burn or not to burn: The question of straw burning and nitrogen fertilization effect on nitrous oxide emissions in sugarcane. Sci. Total Environ. 2017, 587, 399–406. [Google Scholar] [CrossRef]
- Wiedenfeld, R.P. Field Crops Research Effects of irrigation and N fertilizer application on sugarcane yield and quality. Field Crops Res. 1995, 43, 101–108. [Google Scholar] [CrossRef]
- EPA; Climate Change Division. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2020—Main Text. 1990. Available online: https://www.epa.gov/ghgemissions/draft-inventory-us-greenhouse-gas-emissions (accessed on 17 October 2022).
- Texas Commission on Environmental Quality. Available online: https://www.tceq.texas.gov/?msclkid=f4d9d722d06511ec8a5d9d27baa14eae (accessed on 3 October 2022).
- Todd, J.; Hale, A.; Pan, Y.; Tew, T.L.; Dufrene, E.O.; Duet, M.; Verdun, D.; Landry, C.; Grisham, M.P.; Kimbeng, C.; et al. Registration of ‘Ho 11-573’ sugarcane. J. Plant Regist. 2021, 15, 463–470. [Google Scholar] [CrossRef]
- Raysoni, A.U.; Mendez, E.; Luna, A.; Collins, J. Characterization of Particulate Matter Species in an Area Impacted by Aggregate and Limestone Mining North of San Antonio, TX, USA. Sustainability 2022, 14, 4288. [Google Scholar] [CrossRef]
- NRT VIIRS 375 m Active Fire Product VNP14IMGT Distributed from NASA FIRMS. Available online: https://earthdata.nasa.gov/firms (accessed on 31 October 2022). [CrossRef]
- Fan, H.; Zhao, C.; Yang, Y.; Yang, X. Spatio-Temporal Variations of the PM2.5/PM10 Ratios and Its Application to Air Pollution Type Classification in China. Front. Environ. Sci. 2021, 9, 692440. [Google Scholar] [CrossRef]
- Tian, P.; Zhang, L.; Ma, J.; Tang, K.; Xu, L.; Wang, Y.; Cao, X.; Liang, J.; Ji, Y.; Jiang, J.H.; et al. Radiative absorption enhancement of dust mixed with anthropogenic pollution over East Asia. Atmos. Chem. Phys. 2018, 18, 7815–7825. [Google Scholar] [CrossRef]
- Fan, H.; Zhao, C.; Yang, Y. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018. Atmos. Environ. 2019, 220, 117066. [Google Scholar] [CrossRef]
- Liu, C.; Chung, C.E.; Yin, Y.; Schnaiter, M. The absorption Ångström exponent of black carbon: From numerical aspects. Atmos. Meas. Tech. 2018, 18, 6259–6273. [Google Scholar] [CrossRef]
- microAeth® MA Series MA200, MA300, MA350 Operating Manual. 2017. Available online: https://aethlabs.com (accessed on 18 November 2022).
- Saturno, J.; Holanda, B.A.; Pöhlker, C.; Ditas, F.; Wang, Q.; Moran-Zuloaga, D.; Brito, J.; Carbone, S.; Cheng, Y.; Chi, X.; et al. Black and brown carbon over central Amazonia: Long-term aerosol measurements at the ATTO site. Atmos. Chem. Phys. 2018, 18, 12817–12843. [Google Scholar] [CrossRef]
- Zhang, X.; Mao, M.; Yin, Y.; Tang, S. The absorption Ångstrom exponent of black carbon with brown coatings: Effects of aerosol microphysics and parameterization. Atmos. Chem. Phys. 2020, 20, 9701–9711. [Google Scholar] [CrossRef]
- Goel, V.; Hazarika, N.; Kumar, M.; Singh, V.; Thamban, N.M.; Tripathi, S.N. Variations in Black Carbon concentration and sources during COVID-19 lockdown in Delhi. Chemosphere 2021, 270, 129435. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, A.; Sowlat, M.H.; Lovett, C.; Rauber, M.; Szidat, S.; Boffi, R.; Borgini, A.; De Marco, C.; Ruprecht, A.A.; Sioutas, C. Source apportionment of black carbon (BC) from fossil fuel and biomass burning in metropolitan Milan, Italy. Atmos. Environ. 2019, 203, 252–261. [Google Scholar] [CrossRef]
- Dumka, U.; Kaskaoutis, D.; Tiwari, S.; Safai, P.; Attri, S.; Soni, V.; Singh, N.; Mihalopoulos, N. Assessment of biomass burning and fossil fuel contribution to black carbon concentrations in Delhi during winter. Atmos. Environ. 2018, 194, 93–109. [Google Scholar] [CrossRef]
- Garg, S.; Chandra, B.P.; Sinha, V.; Sarda-Esteve, R.; Gros, V.; Sinha, B. Limitation of the Use of the Absorption Angstrom Exponent for Source Apportionment of Equivalent Black Carbon: A Case Study from the North West Indo-Gangetic Plain. Environ. Sci. Technol. 2015, 50, 814–824. [Google Scholar] [CrossRef]
- Li, C.; Windwer, E.; Fang, Z.; Nissenbaum, D.; Rudich, Y. Correcting micro-aethalometer absorption measurements for brown carbon aerosol. Sci. Total Environ. 2021, 777, 146143. [Google Scholar] [CrossRef]
- Helin, A.; Virkkula, A.; Backman, J.; Pirjola, L.; Sippula, O.; Aakko-Saksa, P.; Väätäinen, S.; Mylläri, F.; Järvinen, A.; Bloss, M.; et al. Variation of Absorption Ångström Exponent in Aerosols From Different Emission Sources. J. Geophys. Res. Atmos. 2021, 126, e2020JD034094. [Google Scholar] [CrossRef]
- DeWitt, H.L.; Gasore, J.; Rupakheti, M.; Potter, K.E.; Prinn, R.G.; Ndikubwimana, J.D.D.; Nkusi, J.; Safari, B. Seasonal and diurnal variability in O3, black carbon, and CO measured at the Rwanda Climate Observatory. Atmos. Chem. Phys. 2019, 19, 2063–2078. [Google Scholar] [CrossRef]
- Martinsson, J.; Azeem, H.A.; Sporre, M.K.; Bergström, R.; Ahlberg, E.; Öström, E.; Kristensson, A.; Swietlicki, E.; Stenström, K.E. Carbonaceous aerosol source apportionment using the Aethalometer model—Evaluation by radiocarbon and levoglucosan analysis at a rural background site in southern Sweden. Atmos. Chem. Phys. 2017, 17, 4265–4281. [Google Scholar] [CrossRef]
- Lack, D.A.; Cappa, C.D. Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon. Atmos. Chem. Phys. 2010, 10, 4207–4220. [Google Scholar] [CrossRef]
- Virkkula, A. Modeled source apportionment of black carbon particles coated with a light-scattering shell. Atmos. Meas. Tech. 2021, 14, 3707–3719. [Google Scholar] [CrossRef]
- Treadwell, M.; Lashmet, T.D. Texas Open Burning Rules and Regulations. 2016. Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table#1 (accessed on 22 October 2022).
- EPA; Office of the Assistant Administrator. Black Carbon Research and Future Strategies: Reducing Emissions, im-Proving Human Health, and Taking Action on Climate Change. Available online: http://www.epa.gov/research/sciencematters/august (accessed on 29 November 2022).
Site | N | Mean | StDev | Min | Max | |
---|---|---|---|---|---|---|
RWS (ms−1) | C80 | 932 | 3.48 | 2.31 | 0.04 | 12.29 |
C1046 | 956 | 3.14 | 1.62 | 0.9 | 8.002 | |
C323 | 956 | 2.94 | 2.29 | 0 | 11.31 | |
C1023 | 956 | 4.14 | 2.33 | 0 | 12.15 | |
C46 | 955 | 3.27 | 1.67 | 0.04 | 8.27 | |
T (°C) | C80 | 943 | 18.35 | 6.22 | 4.11 | 30.94 |
C1046 | 956 | 18.65 | 7.41 | 3.16 | 34.77 | |
C323 | 955 | 17.35 | 4.30 | 6.16 | 26.77 | |
C1023 | 947 | 17.79 | 8.18 | 2.88 | 33.77 | |
C46 | 956 | 18.69 | 7.33 | 3.22 | 34.33 | |
SR | C80 | 944 | 0.28 | 0.43 | 0 | 1.48 |
C1046 | 956 | 0.28 | 0.42 | 0 | 1.39 |
Site | C80 | C1046 | C323 | C1023 | C43 |
---|---|---|---|---|---|
PM1 | |||||
PM2.5 | x | x | x | ||
Resp PM | |||||
PM10 | |||||
Total PM | |||||
BC | |||||
O3 | x | x | |||
NO2 | |||||
RWS | x | x | x | x | x |
RWD | x | x | x | x | x |
T | x | x | x | x | x |
SR | x | x |
Parameter | Location | N | Mean | StDev | Min | Max |
---|---|---|---|---|---|---|
PM1 (µg m−3) | Site | 955 | 39.36 | 93.80 | 1.33 | 2152.5 |
PM 2.5 (µg m−3) | Site | 955 | 40.60 | 94.48 | 1.58 | 2161.75 |
C80 | 936 | 7.86 | 6.41 | 0 | 58 | |
C323 | 953 | 10.86 | 7.91 | 0 | 60.7 | |
C43 | 868 | 10.21 | 7.89 | 0 | 52 | |
Resp (µg m−3) | Site | 955 | 41.90 | 94.86 | 1.75 | 2161.83 |
PM10 (µg m−3) | Site | 955 | 47.85 | 99.47 | 2.58 | 2164.41 |
Total (µg m−3) | Site | 955 | 76.075 | 253.27 | 6 | 4690 |
BC (µg m−3) | Site | 818 | 0.64 | 1.27 | 0 | 18.74 |
O3 (ppb) | Site | 956 | 22.23 | 10.84 | 0 | 46.20 |
C43 | 944 | 31.62 | 12.92 | 2 | 68 | |
C1023 | 927 | 30.18 | 13.09 | 0 | 59 | |
NO2 (ppb) | Site | 955 | 4.46 | 4.27 | 0 | 94.00 |
CO (ppm) | Site | 913 | 0.37 | 0.55 | 0 | 3.14 |
T (°C) | Site | 955 | 17.61 | 11.16 | 3.40 | 44.07 |
Date | Time | Activity |
---|---|---|
24 February 2022 | 18:40 | cigar smoking |
26 February 2022 | 12:55 | BBQ |
26 February 2022 | 18:45 | BBQ |
27 February 2022 | 22:15 | BBQ |
3 March 2022 | 12:40 | BBQ |
4 March 2022 | 00:50 | cigar smoking |
5 March 2022 | 18:28 | BBQ |
10 March 2022 | 18:05 | cigar smoking |
10 March 2022 | 19:15 | BBQ |
10 March 2022 | 23:00 | cigar smoking |
17 March 2022 | 22:30 | cigar smoking |
18 March 2022 | 3:25 | cigar smoking |
22 March 2022 | Fire at Near farm |
Site | Parameter | CAMS | COD Value |
---|---|---|---|
SITE | PM2.5 | C80 | 0.651 |
C43 | 0.544 | ||
C323 | 0.647 | ||
O3 | C43 | 0.284 | |
C1023 | 0.307 | ||
TEMPERATURE | C80 | 0.245 | |
C323 | 0.228 | ||
C43 | 0.221 | ||
C1023 | 0.269 | ||
C1046 | 0.221 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinakana, S.D.; Robles, E.; Mendez, E.; Raysoni, A.U. Assessment of Air Pollution Levels during Sugarcane Stubble Burning Event in La Feria, South Texas, USA. Pollutants 2023, 3, 197-219. https://doi.org/10.3390/pollutants3020015
Pinakana SD, Robles E, Mendez E, Raysoni AU. Assessment of Air Pollution Levels during Sugarcane Stubble Burning Event in La Feria, South Texas, USA. Pollutants. 2023; 3(2):197-219. https://doi.org/10.3390/pollutants3020015
Chicago/Turabian StylePinakana, Sai Deepak, Edward Robles, Esmeralda Mendez, and Amit U. Raysoni. 2023. "Assessment of Air Pollution Levels during Sugarcane Stubble Burning Event in La Feria, South Texas, USA" Pollutants 3, no. 2: 197-219. https://doi.org/10.3390/pollutants3020015
APA StylePinakana, S. D., Robles, E., Mendez, E., & Raysoni, A. U. (2023). Assessment of Air Pollution Levels during Sugarcane Stubble Burning Event in La Feria, South Texas, USA. Pollutants, 3(2), 197-219. https://doi.org/10.3390/pollutants3020015