Mercury Accumulation in Food Crops and Phytoremediation Potential of Wild Plants Thriving in Artisanal and Small-Scale Gold Mining Areas in Uganda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Preparation of Soil and Plant Sample for Analysis
2.4. Determination of pH, EC and OC of Soils
2.5. Determination of Total Mercury Concentration in Plant Samples
2.6. Determination of the Total Mercury Concentration in Soil Samples
2.7. Data Analysis
2.7.1. Assessment of Mercury Pollution of Soils
2.7.2. Statistical Data Analysis
3. Results
3.1. Physico-Chemical Characteristics of the Soils
3.2. Mercury Levels in Soils
3.3. Geoaccumulation Index (Igeo) for the Soils
3.4. Mercury Levels in Food Crops
3.5. Mercury Levels in Wild Plant Species
4. Discussion
4.1. Soil Physico-Chemical Characteristics
4.2. Mercury Accumulation in Food Crops and Wild Plants
4.3. Mercury Exposure Routes in ASGM Areas
4.4. Potential of Wild Plants in Phytoremediation of Mercury Contaminated Soils
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wanyana, M.W.; Agaba, F.E.; Sekimpi, D.K.; Mukasa, V.N.; Kamese, G.N.; Douglas, N.; Ssempebwa, J.C. Mercury Exposure Among Artisanal and Small-Scale Gold Miners in Four Regions in Uganda. J. Health Pollut. 2020, 10, 200613. [Google Scholar] [CrossRef] [PubMed]
- NAPE. Promoting Mercury-Free Technology in Small-Scale Gold Mining (SGMS) Sector in Uganda. 2018. Available online: https://nape.or.ug/publications/chemical-management/84-promoiting-mercury-free-technology-in-asgm-sactor-in-uganda/file (accessed on 22 June 2022).
- Esdaile, L.J.; Chalker, J.M. The mercury problem in artisanal and small-scale gold mining. Chem.–A Eur. J. 2018, 24, 6905–6916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krisnayanti, B.D. ASGM status in West Nusa Tenggara Province, Indonesia. J. Degrad. Min. Lands Manag. 2018, 5, 1077. [Google Scholar] [CrossRef] [Green Version]
- Pavilonis, B.; Grassman, J.; Johnson, G.; Diaz, Y.; Caravanos, J. Characterization and risk of exposure to elements from artisanal gold mining operations in the Bolivian Andes. Environ. Res. 2017, 154, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.J. Assessing releases of mercury from small-scale gold mining sites in Ghana. Extr. Ind. Soc. 2017, 4, 497–505. [Google Scholar] [CrossRef]
- Gibb, H.; O’Leary, K.G. Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: A comprehensive review. Environ. Health Perspect. 2014, 122, 667–672. [Google Scholar] [CrossRef]
- Harari, R.; Harari, F.; Gerhardsson, L.; Lundh, T.; Skerfving, S.; Stromberg, U.; Broberg, K. Exposure and toxic effects of elemental mercury in gold-mining activities in Ecuador. Toxicol. Lett. 2012, 213, 75–82. [Google Scholar] [CrossRef]
- Salazar-Camacho, C.; Salas-Moreno, M.; Marrugo-Madrid, S.; Marrugo-Negrete, J.; Diez, S. Dietary human exposure to mercury in two artisanal small-scale gold mining communities of northwestern Colombia. Environ. Int. 2017, 107, 47–54. [Google Scholar] [CrossRef]
- Riaz, A.; Khan, S.; Muhammad, S.; Liu, C.; Shah, M.T.; Tariq, M. Mercury contamination in selected foodstuffs and potential health risk assessment along the artisanal gold mining, Gilgit-Baltistan, Pakistan. Environ. Geochem. Health 2018, 40, 625–635. [Google Scholar] [CrossRef]
- Gyamfi, O.; Sørensen, P.B.; Darko, G.; Ansah, E.; Vorkamp, K.; Bak, J.L. Contamination, exposure and risk assessment of mercury in the soils of an artisanal gold mining community in Ghana. Chemosphere 2021, 267, 128910. [Google Scholar] [CrossRef]
- Coulter, M.A. Minamata convention on mercury. Int. Leg. Mater. 2016, 55, 582–616. [Google Scholar] [CrossRef]
- Qi, J.; Wang, Y.; Liang, S.; Li, Y.; Li, Y.; Feng, C.; Xu, L.; Wang, S.; Chen, L.; Wang, D.; et al. Primary Suppliers Driving Atmospheric Mercury Emissions through Global Supply Chains. One Earth 2019, 1, 254–266. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Mercury Emissions: The Global Context. 2020. Available online: https://www.epa.gov/international-cooperation/mercury-emissions-global-context (accessed on 19 June 2021).
- Appel, P.W.; Esbensen, K.H. Reducing global mercury pollution with simultaneous gold recovery from small-scale mining tailings. TOS Forum 2019, 2020, 3–9. [Google Scholar] [CrossRef]
- Kessler, R.C.; Aguilar-Gaxiola, S.; Alonso, J.; Benjet, C.; Bromet, E.J.; Cardoso, G.; Degenhardt, L.; de Girolamo, G.; Dinolova, R.V.; Ferry, F.; et al. Trauma and PTSD in the WHO World Mental Health Surveys. Eur. J. Psychotraumatology 2017, 8, 1353383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soe, P.S.; Kyaw, W.T.; Arizono, K.; Ishibashi, Y.; Agusa, T. Mercury Pollution from Artisanal and Small-Scale Gold Mining in Myanmar and Other Southeast Asian Countries. Int. J. Environ. Res. Public Health 2022, 19, 6290. [Google Scholar] [CrossRef] [PubMed]
- Ronchetti, R.; Zuurbier, M.; Jesenak, M.; Koppe, J.G.; Ahmed, U.F.; Ceccatelli, S.; Villa, M.P. Children’s health and mercury exposure. Acta Paediatr. 2006, 95, 36–44. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, A.; Arya, R.K. Removal of Mercury (II) from Aqueous Solution: A Review of Recent Work. Sep. Sci. Technol. 2015, 50, 1310–1320. [Google Scholar] [CrossRef]
- Mathieson, P.W. Mercury: God of Th2 cells? Clin. Exp. Immunol. 1995, 102, 229–230. [Google Scholar] [CrossRef]
- Rice, K.M.; Walker, E.M., Jr.; Wu, M.; Gillette, C.; Blough, E.R. Environmental mercury and its toxic effects. J. Prev. Med. Public Health 2014, 47, 74–83. [Google Scholar] [CrossRef]
- Liu, P.; Ptacek, C.J.; Blowes, D.W.; Finfrock, Y.Z.; Gordon, R.A. Stabilization of mercury in sediment by using biochars under reducing conditions. J. Hazard. Mater. 2017, 325, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-D.; Zheng, W. Human exposure and health effects of inorganic and elemental mercury. J. Prev. Med. Public Health 2012, 45, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Bose-O’Reilly, S.; Schierl, R.; Nowak, D.; Siebert, U.; William, J.F.; Owi, F.T.; Ir, Y.I. A preliminary study on health effects in villagers exposed to mercury in a small-scale artisanal gold mining area in Indonesia. Environ. Res. 2016, 149, 274–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solis, M.T.; Yuen, E.; Cortez, P.S.; Goebel, P.J. Family poisoned by mercury vapor inhalation. Am. J. Emerg. Med. 2000, 18, 599–602. [Google Scholar] [CrossRef]
- Shahid, M.; Khalid, S.; Bibi, I.; Bundschuh, J.; Niazi, N.K.; Dumat, C. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. Sci. Total Environ. 2020, 711, 134749. [Google Scholar] [CrossRef]
- Mahbub, K.R.; Krishnan, K.; Naidu, R.; Andrews, S.; Megharaj, M. Mercury toxicity to terrestrial biota. Ecol. Indic. 2017, 74, 451–462. [Google Scholar] [CrossRef]
- Jyothi, N.R.; Farook, N.A.M. Mercury toxicity in public health. Heavy Met. Toxic. Public Health 2020, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Wang, X.; Guo, G.; Yan, Z. Status and environmental management of soil mercury pollution in China: A review. J. Environ. Manag. 2021, 277, 111442. [Google Scholar] [CrossRef]
- Diaz, F.A.; Katz, L.E.; Lawler, D.F. Mercury pollution in Colombia: Challenges to reduce the use of mercury in artisanal and small-scale gold mining in the light of the Minamata Convention. Water Int. 2020, 45, 730–745. [Google Scholar] [CrossRef]
- Bloom, N.; Lasorsa, B.K. Changes in mercury speciation and the release of methyl mercury as a result of marine sediment dredging activities. Sci. Total Environ. 1999, 237, 379–385. [Google Scholar] [CrossRef]
- Randall, P.M.; Fimmen, R.; Lal, V.; Darlington, R. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part I—Bench-scale microcosm study to assess methylmercury production. Environ. Res. 2013, 125, 30–40. [Google Scholar] [CrossRef]
- Serrano, S.; Vlassopoulos, D.; Bessinger, B.; O’Day, P.A. Immobilization of Hg (II) by coprecipitation in sulfate-cement systems. Environ. Sci. Technol. 2012, 46, 6767–6775. [Google Scholar] [CrossRef] [PubMed]
- Gilmour, C.C.; Riedel, G.S.; Riedel, G.; Kwon, S.; Landis, R.; Brown, S.S.; Menzie, C.A.; Ghosh, U. Activated carbon mitigates mercury and methylmercury bioavailability in contaminated sediments. Environ. Sci. Technol. 2013, 47, 13001–13010. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Eyles, J.L.; Yupanqui, C.; Beckingham, B.; Riedel, G.; Gilmour, C.; Ghosh, U. Evaluation of biochars and activated carbons for in situ remediation of sediments impacted with organics, mercury, and methylmercury. Environ. Sci. Technol. 2013, 47, 13721–13729. [Google Scholar] [CrossRef]
- Schwartz, M.; Smits, K.; Smith, N.; Phelan, T. How lessons from an evolving comprehensive approach for water and sanitation can improve artisanal and small-scale mining environmental initiatives. J. Clean. Prod. 2021, 282, 124457. [Google Scholar] [CrossRef]
- Hinton, J.J.; Hinton, B.E.; Veiga, M.M. Women in artisanal and small-scale mining in Africa. In Women Miners in Developing Countries; Routledge: Oxfordshire, UK, 2017; pp. 209–226. [Google Scholar]
- UNCST. National Guidelines for Conduct of Research during Coronavirus Disease (COVID-19) Pandemic. 2020. Available online: www.uncst.go.ug (accessed on 15 May 2021).
- Okoye, A.U.; Chikere, C.B.; Okpokwasili, G.C. Isolation and characterization of hexadecane degrading bacteria from oil-polluted soil in Gio community, Niger Delta, Nigeria. Sci. Afr. 2020, 9, e00340. [Google Scholar] [CrossRef]
- Martin, G.J. Ethnobotany: A Methods Manual; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar] [CrossRef]
- The Plant List. The Plant List Published on the Internet. 2021. Available online: http://theplantlist.org (accessed on 10 March 2021).
- Okalebo, J.R.; Gathua, K.W.; Woomer, P.L. Laboratory Methods of Soil and Plant Analysis: A Working Manual, 2nd ed.; Sacred Africa: Nairobi, Kenya, 2002; Volume 21, pp. 25–26. [Google Scholar]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Santos Bermejo, J.C.; Beltrán, R.; Gómez Ariza, J.L. Spatial variations of heavy metals contamination in sediments from Odiel river (Southwest Spain). Environ. Int. 2003, 29, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Iqbal, J.; Shah, M.H. Geochemical speciation, anthropogenic contamination, risk assessment and source identification of selected metals in freshwater sediments—A case study from Mangla Lake, Pakistan. Environ. Nanotechnol. Monit. Manag. 2015, 4, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, M. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J. Geol. Geophys. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Vannini, A.; Grattacaso, M.; Canali, G.; Nannoni, F.; Di Lella, L.A.; Protano, G.; Biagiotti, S.; Loppi, S. Potentially Toxic Elements (PTEs) in Soils and Bulbs of Elephant Garlic (Allium ampeloprasum L.) Grown in Valdichiana, a Traditional Cultivation Area of Tuscany, Italy. Appl. Sci. 2021, 11, 7023. [Google Scholar] [CrossRef]
- Ali, M.M.; Ali, M.L.; Islam, M.S.; Rahman, M.Z. Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2016, 5, 27–35. [Google Scholar] [CrossRef] [Green Version]
- R-Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; ISBN 3-900051-07-0. Available online: http://www.R-project.org/ (accessed on 12 May 2020).
- FAO/WHO; Codex Alimentarius Commission. Food Additives and Contaminants. In Joint FAO/WHO Food Standards Programme; ALINORM 01/12A, 1-289; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Slessarev, E.W.; Lin, Y.; Bingham, N.L.; Johnson, J.E.; Dai, Y.; Schimel, J.P.; Chadwick, O.A. Water balance creates a threshold in soil pH at the global scale. Nature 2016, 540, 567–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queensland Government. “Soil pH”. 2013. Available online: www.qld.gov.auw (accessed on 10 July 2022).
- Jing, Y.D.; He, Z.L.; Yang, X.E. Effects of pH, organic acids, and competitive cations on mercury desorption in soils. Chemosphere 2007, 69, 1662–1669. [Google Scholar] [CrossRef] [PubMed]
- Soares, L.C.; Egreja Filho, F.B.; Linhares, L.A.; Windmoller, C.C.; Yoshida, M.I. Accumulation and oxidation of elemental mercury in tropical soils. Chemosphere 2015, 134, 181–191. [Google Scholar] [CrossRef]
- Steinnes, E.; Krog, H. Mercury, arsenic and selenium fall-out from an industrial complex studied by means of lichen transplants. Oikos 1977, 28, 160–164. [Google Scholar] [CrossRef]
- Schlüter, K. The Fate of Mercury in Soil (A Review of Current Knowledge); Office for Official Publications of the European Communities: Luxembourg City, Luxembourg, 1993. [Google Scholar]
- Gworek, B.; Dmuchowski, W.; Baczewska-Dąbrowska, A.H. Mercury in the terrestrial environment: A review. Environ. Sci. Eur. 2020, 32, 128. [Google Scholar] [CrossRef]
- Lodenius, M. Use of plants for biomonitoring of airborne mercury in contaminated areas. Environ. Res. 2013, 125, 113–123. [Google Scholar] [CrossRef]
- Arnold, J.; Gustin, M.S.; Weisberg, P.J. Evidence for Nonstomatal Uptake of Hg by Aspen and Translocation of Hg from Foliage to Tree Rings in Austrian Pine. Environ. Sci. Technol. 2018, 52, 1174–1182. [Google Scholar] [CrossRef]
- Peckham, M.A.; Gustin, M.S.; Weisberg, P.J.; Weiss-Penzias, P. Results of a controlled field experiment to assess the use of tree tissue concentrations as bioindicators of air Hg. Biogeochemistry 2019, 142, 265–279. [Google Scholar] [CrossRef]
- Greger, M.; Wang, Y.; Neuschütz, C. Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species. Environ. Pollut. 2005, 134, 201–208. [Google Scholar] [CrossRef]
- Stamenkovic, J.; Gustin, M.S. Nonstomatal versus Stomatal Uptake of Atmospheric Mercury. Environ. Sci. Technol. 2009, 43, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Juillerat, J.I.; Ross, D.S.; Bank, M.S. Mercury in litterfall and upper soil horizons in forested ecosystems in Vermont, USA. Environ. Toxicol. Chem. 2012, 31, 1720–1729. [Google Scholar] [CrossRef] [PubMed]
- Obrist, D.; Johnson, D.W.; Edmonds, R.L. Effects of vegetation type on mercury concentrations and pools in two adjacent coniferous and deciduous forests. J. Plant Nutr. Soil Sci. 2012, 175, 68–77. [Google Scholar] [CrossRef]
- Laacouri, A.; Nater, E.A.; Kolka, R.K. Distribution and Uptake Dynamics of Mercury in Leaves of Common Deciduous Tree Species in Minnesota, U.S.A. Environ. Sci. Technol. 2013, 47, 10462–10470. [Google Scholar] [CrossRef] [Green Version]
- Ordak, M.; Wesolowski, M.; Radecka, I.; Muszynska, E.; Bujalska-Zazdrozny, M. Seasonal Variations of Mercury Levels in Selected Medicinal Plants Originating from Poland. Biol. Trace Elem. Res. 2016, 173, 514–524. [Google Scholar] [CrossRef] [Green Version]
- Gustin, M.S.; Ericksen, J.A.; Schorran, D.E.; Johnson, D.W.; Lindberg, S.E.; Coleman, J.S. Application of Controlled Mesocosms for Understanding Mercury Air−Soil−Plant Exchange. Environ. Sci. Technol. 2004, 38, 6044–6050. [Google Scholar] [CrossRef]
- Frescholtz, T.F.; Gustin, M.S.; Schorran, D.E.; Fernandez, C.J. Assessing the source of mercury in foliar tissue of quaking aspen. Environ. Toxicol. Chem. 2003, 22, 2119. [Google Scholar] [CrossRef]
- Assad, M.; Parelle, J.; Cazaux, D.; Gimbert, F.; Chalot, M.; Tatin-Froux, F. Mercury uptake into poplar leaves. Chemosphere 2016, 146, 1–7. [Google Scholar] [CrossRef]
- Dombaiová, R. Mercury and methylmercury in plants from differently contaminated sites in Slovakia. Plant Soil Environ. 2005, 51, 456–463. [Google Scholar] [CrossRef] [Green Version]
- Fay, L.; Gustin, M. Assessing the Influence of Different Atmospheric and Soil Mercury Concentrations on Foliar Mercury Concentrations in a Controlled Environment. Water Air Soil Pollut. 2007, 181, 373–384. [Google Scholar] [CrossRef]
- Niu, Z.; Zhang, X.; Wang, S.; Zeng, M.; Wang, Z.; Zhang, Y.; Ci, Z. Field controlled experiments on the physiological responses of maize (Zea mays L.) leaves to low-level air and soil mercury exposures. Environ. Sci. Pollut. Res. 2014, 21, 1541–1547. [Google Scholar] [CrossRef] [Green Version]
- Millhollen, A.G.; Gustin, M.S.; Obrist, D. Foliar Mercury Accumulation and Exchange for Three Tree Species. Environ. Sci. Technol. 2006, 40, 6001–6006. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Sommar, J.; Lin, C.-J.; Wang, X.; Li, K.; Liu, Y.; Zhang, H.; Lu, Z.; Wu, C.; Feng, X. Stable Isotope Evidence Shows Re-emission of Elemental Mercury Vapor Occurring after Reductive Loss from Foliage. Environ. Sci. Technol. 2019, 53, 651–660. [Google Scholar] [CrossRef]
- Sun, L.; Lu, B.; Yuan, D.; Hao, W.; Zheng, Y. Variations in the isotopic composition of stable mercury isotopes in typical mangrove plants of the Jiulong estuary, SE China. Environ. Sci. Pollut. Res. 2017, 24, 1459–1468. [Google Scholar] [CrossRef] [PubMed]
- Olson, C.L.; Jiskra, M.; Sonke, J.E.; Obrist, D. Mercury in tundra vegetation of Alaska: Spatial and temporal dynamics and stable isotope patterns. Sci. Total Environ. 2019, 660, 1502–1512. [Google Scholar] [CrossRef]
- Zhou, J.; Obrist, D.; Dastoor, A.; Jiskra, M.; Ryjkov, A. Vegetation uptake of mercury and impacts on global cycling. Nat. Rev. Earth Environ. 2021, 2, 269–284. [Google Scholar] [CrossRef]
- Ericksen, J.A.; Gustin, M.S. Foliar exchange of mercury as a function of soil and air mercury concentrations. Sci. Total Environ. 2004, 324, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Feng, X.; Larssen, T.; Qiu, G.; Vogt, R.D. In Inland China, Rice, Rather than Fish, Is the Major Pathway for Methylmercury Exposure. Environ. Health Perspect. 2010, 118, 1183–1188. [Google Scholar] [CrossRef] [Green Version]
- Rajaee, M.; Obiri, S.; Green, A.; Long, R.; Cobbina, S.J.; Nartey, V.; Buck, D.; Antwi, E.; Basu, N. Integrated Assessment of Artisanal and Small-Scale Gold Mining in Ghana—Part 2: Natural Sciences Review. Int. J. Environ. Res. Public Health 2015, 12, 8971–9011. [Google Scholar] [CrossRef] [Green Version]
- Codex Alimentarius. FAO/WHO Codex General Standard for Contaminants and Toxins in Food and Feed. Codex Stan. 2013, pp. 1–48. Available online: https://www.google.co.jp/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwicx5qxy739AhVVrlYBHR4IBk4QFnoECAoQAQ&url=https%3A%2F%2Fwww.fao.org%2Ffao-who-codexalimentarius%2Fsh-proxy%2Fen%2F%3Flnk%3D1%26url%3Dhttps%25253A%25252F%25252Fworkspace.fao.org%25252Fsites%25252Fcodex%25252FStandards%25252FCXS%252B193-1995%25252FCXS_193e.pdf&usg=AOvVaw3T4KjPqJsHVlAzuHiXIP-e (accessed on 10 July 2022).
- Hindersah, R.; Risamasu, R.; Kalay, A.M.; Dewi, T.; Makatita, I. Mercury contamination in soil, tailing and plants on agricultural fields near closed gold mine in Buru Island, Maluku. J. Degrad. Min. Lands Manag. 2018, 5, 1027. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, M.; Lihawa, F.; Saleh, Y.; Desei, F.; Banteng, B. Study of mercury concentration in plants in Traditional Buladu Gold Mining. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Sari, M.M.; Inoue, T.; Matsumoto, Y.; Yokota, K.; Isrun, I. Assessing a Mercury Affected Area from Small-scale Gold Mining in Poboya, Central Sulawesi, Indonesia. Environ. Ecol. Res. 2016, 4, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Basri; Sakakibara, M.; Sera, K. Mercury in Soil and Forage Plants from Artisanal and Small-Scale Gold Mining in the Bombana Area, Indonesia. Toxics 2020, 8, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guédron, S.; Grangeon, S.; Jouravel, G.; Charlet, L.; Sarret, G. Atmospheric mercury incorporation in soils of an area impacted by a chlor-alkali plant (Grenoble, France): Contribution of canopy uptake. Sci. Total Environ. 2013, 445–446, 356–364. [Google Scholar] [CrossRef]
- Silva-Filho, E.V.; Machado, W.; Oliveira, R.R.; Sella, S.M.; Lacerda, L.D. Mercury deposition through litterfall in an Atlantic Forest at Ilha Grande, Southeast Brazil. Chemosphere 2006, 65, 2477–2484. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- de Vries, W.; Schütze, G.; Lofts, S.; Meili, M.; Römkens, P.; Farret, R.; De Temmerman, L.; Jakubowski, M. Critical limits for cadmium, lead and mercury related to ecotoxicological effects on soil organisms, aquatic organisms, plants, animals and humans. In Proceedings of the Expert Meeting on Critical Limits for Heavy Metals and Methods for Their Application, Berlin, Germany, 2–4 December 2002. [Google Scholar]
- Koch, H.M.; Haller, A.; Weiss, T.; Käfferlein, H.-U.; Stork, J.; Brüning, T. Phthalate exposure during cold plastisol application—A human biomonitoring study. Toxicol. Lett. 2012, 213, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.Y.; Zheng, J.S.; Sharp, R.G. Phytoremediation in Engineered Wetlands: Mechanisms and Applications. Procedia Environ. Sci. 2010, 2, 1315–1325. [Google Scholar] [CrossRef] [Green Version]
- Davis, L. A Handbook of Constructed Wetlands: A Guide to Creating Wetlands for: Agricultural Wastewater, Domestic Wastewater, Coal Mine Drainage, Stormwater in the Mid-Atlantic Region; USDA-Natural Resources Conservation Service: Alexandria, LA, USA, 1995; Volume 1. [Google Scholar]
- Ahmad, S.S.; Reshi, Z.A.; Shah, M.A.; Rashid, I. Constructed Wetlands: Role in Phytoremediation of Heavy Metals. In Phytoremediation: Management of Environmental Contaminants; Ansari, A.A., Gill, S.S., Gill, R., Lanza, G.R., Newman, L., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 3, pp. 291–304. [Google Scholar]
- Mishra, S.; Tripathi, A.; Tripathi, D.K.; Chauhan, D.K. Role of sedges (Cyperaceae) in wetlands, environmental cleaning and as food material. In Plant-Environment Interaction; Wiley: Hoboken, NJ, USA, 2016; pp. 327–338. [Google Scholar]
Site | pH | OC (g/100 g) | EC (mS/cm) |
---|---|---|---|
Control | 6.60 ± 0.10 a | 2.53 ± 0.25 b | 82.17 ± 3.07 a |
Agata | 6.57 ± 0.05 a | 2.44 ± 0.65 b | 95.38 ± 10.57 a |
Bukana | 6.83 ± 0.15 a | 2.38 ± 0.11 b | 122.17 ± 26.93 a |
Buwolya | 6.63 ± 0.06 a | 1.19 ± 0.22 a | 87.70 ± 15.36 a |
Nabwalya | 6.27 ± 0.45 a | 1.88 ± 0.45 ab | 387.33 ± 43.66 c |
Nagudi | 6.70 ± 0.25 a | 2.09 ± 0.41 ab | 267.40 ± 39.98 b |
Nsango | 6.60 ± 0.30 a | 1.95 ± 0.24 ab | 109.34 ± 19.14 a |
Site | Average Total Hg Concentration (ppm) | Igeo | Pollution Status |
---|---|---|---|
Agata | 100.97 | 2.69 | Heavily contaminated |
Bukana | 43.42 | 1.16 | Moderately contaminated |
Buwolya | 115.58 | 3.08 | Heavily contaminated |
Nabwala | 96.62 | 2.58 | Heavily contaminated |
Nagudi | 61.19 | 1.63 | Moderately contaminated |
Nsango | 124.03 | 3.31 | Heavily contaminated |
Control | 0.06 | 0.0016 | Uncontaminated |
Species | Organ | Agata (ppm) | Bukana (ppm) | Nagudi (ppm) | Nsango (ppm) |
---|---|---|---|---|---|
Amaranthus dubius L. | Leaves | 51.00 ± 5.14 ab | 0.044 ± 0.007 a | 0.11 ± 0.06 a | |
Brassica oleracea | Leaves | 47.80 ± 4.65 ab | |||
Colocassia esculentum | Tuber | 133.18 ± 95.41 b | 41.98 ± 10.30 ab | 0.06 ± 0.065 a | 0.025 ± 0.01 a |
Colocassia esculentum | Leaves | 122.80 ± 7.45 b | 103.06 ± 14.85 c | 0.019 ± 0.003 a | |
Corchorus olitorius L. | Leaves | 37.00 ± 6.94 ab | |||
Ipomoea batatas | Leaves | 35.30 ± 11.25 ab | 0.54 ± 0.47 a | 54.27 ± 6.01 b | |
Ipomoea batatas | Tuber | 36.76 ± 6.01 ab | 50.33 ± 5.29 b | 0.10 ± 0.011 a | 0.027 ± 0.005 a |
Manihot esculentum | Leaves | 0.05 ± 0.01 a | 0.15 ± 0.13 a | 0.14 ± 0.01 a | |
Manihot esculentum | Tuber | 0.004 ± 0.00 a | 0.004 ± 0.004 a | 0.042 ± 0.01 a | |
Musa sapientum | Fruit | 0.021 ± 0.04 a | |||
Musa sapientum | Leaves | 0.017 ± 0.02 a | |||
Ocimum gratismum | Leaves | 28.76 ± 6.07 ab | |||
Oryza sativa | Grains | 0.078 ± 0.001 a | |||
Saccharum officinarum | Stem | 60.80 ± 6.70 b | |||
Zea mays | Grains | 0.004 ± 0.001 a | 46.10 ± 36.31 b | 0.014 ± 0.014 a | 0.012 ± 0.01 a |
Zea mays | Leaves | 29.20 ± 3.52 ab |
Species | Agata (ppm) | Bukana (ppm) | Naguddi (ppm) | Nabwala (ppm) |
---|---|---|---|---|
Conyza sumatrensis | 0.028 ± 0.006 a | |||
Cycnium tenuisectum | 25.93 ± 4.25 b | |||
Cynodon dactylon | 0.034 ± 0.007 a | |||
Cyperus articulatus | 73.43 ± 6.12 de | |||
Cyperus difforms | 65.27 ± 6.34 d | 23.63 ± 7.20 b | ||
Cyperus digitatus | 26.80 ± 7.65 b | |||
Cyperus dives | 0.12 ± 0.014 a | |||
Cyperus fuuminalis | 42.67 ± 6.44 c | |||
Cyperus rotundus | 78.50 ± 4.25 de | |||
Datura stromonium | 0.17 ± 0.006 c | |||
Fuirena umbellata | 101.67 ± 0.65 e | |||
Guizotia scabra | 868.33 ± 149.16 f | |||
Hyggrophila sp. | 71.93 ± 5.58 c | |||
Hyptis suaveolens | 0.027 ± 0.002 a | |||
Lantana camara | 43.63 ± 7.19 c | 0.071 ± 0.008 b | ||
Ricinus communis | 0.59 ± 0.016 d | |||
Sida rhombifolia | 22.07 ± 5.40 b | |||
Solanum macranthum | 65.20 ± 4.12 d | |||
Tilliodes corchorus | 0.037 ± 0.007 a | |||
Typha capensis | 91.70 ± 4.68 e | |||
Typha domingensis | 0.044 ± 0.013 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ssenku, J.E.; Naziriwo, B.; Kutesakwe, J.; Mustafa, A.S.; Kayeera, D.; Tebandeke, E. Mercury Accumulation in Food Crops and Phytoremediation Potential of Wild Plants Thriving in Artisanal and Small-Scale Gold Mining Areas in Uganda. Pollutants 2023, 3, 181-196. https://doi.org/10.3390/pollutants3020014
Ssenku JE, Naziriwo B, Kutesakwe J, Mustafa AS, Kayeera D, Tebandeke E. Mercury Accumulation in Food Crops and Phytoremediation Potential of Wild Plants Thriving in Artisanal and Small-Scale Gold Mining Areas in Uganda. Pollutants. 2023; 3(2):181-196. https://doi.org/10.3390/pollutants3020014
Chicago/Turabian StyleSsenku, Jamilu E., Betty Naziriwo, Jennifer Kutesakwe, Abubakar Sadik Mustafa, Derrick Kayeera, and Emmanuel Tebandeke. 2023. "Mercury Accumulation in Food Crops and Phytoremediation Potential of Wild Plants Thriving in Artisanal and Small-Scale Gold Mining Areas in Uganda" Pollutants 3, no. 2: 181-196. https://doi.org/10.3390/pollutants3020014
APA StyleSsenku, J. E., Naziriwo, B., Kutesakwe, J., Mustafa, A. S., Kayeera, D., & Tebandeke, E. (2023). Mercury Accumulation in Food Crops and Phytoremediation Potential of Wild Plants Thriving in Artisanal and Small-Scale Gold Mining Areas in Uganda. Pollutants, 3(2), 181-196. https://doi.org/10.3390/pollutants3020014