A Study of Real-Time and Satellite Data of Atmospheric Pollutants during Agricultural Crop Residue Burning at a Downwind Site in the Indo-Gangetic Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Location
2.2. Instrumentation and Analysis
2.2.1. Sampling and Measurement of Trace Gases (O3, NOx and CO)
2.2.2. Sampling and Analysis of Benzene, Toluene, Ethylbenzene and Xylenes (BTEX)
2.2.3. Field Emission Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (FESEM-EDX) Analysis
2.2.4. MODIS Active Fire Locations
2.2.5. Trajectory Analysis
3. Results and Discussion
3.1. Concentration of Pollutants (PM2.5, Trace Gases and VOCs)
3.2. Temporal Variations in the Concentration of Pollutants during the Pre-Harvest and Post-Harvest Period
3.3. Backward Trajectory Analysis and Mapping of Crop Residue Burning Activities
3.4. Fire Burning Activity during the Pre-Harvest and Post-Harvest Period
3.5. Morphology of Aerosol Particles by FESEM Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ravindra, K.; Goyal, A.; Mor, S. Influence of meteorological parameters and air pollutants on the airborne pollen of city Chandigarh, India. Sci. Total Environ. 2022, 818, 151829. [Google Scholar] [CrossRef]
- Singh, T.; Biswal, A.; Mor, S.; Ravindra, K.; Singh, V.; Mor, S. A high-resolution emission inventory of air pollutants from primary crop residue burning over Northern India based on VIIRS thermal anomalies. Environ. Pollut. 2020, 266, 115132. [Google Scholar] [CrossRef]
- Long, X.; Tie, X.; Cao, J.; Huang, R.; Feng, T.; Li, N.; Zhang, Q. Impact of crop field burning and mountains on heavy haze in the North China Plain: A case study. Atmos. Chem. Phys. 2016, 16, 9675–9691. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Han, Z.; Liu, R.; Zhu, B.; Li, J.; Zhang, R.A. Modelling study of the impact of crop residue burning on PM2.5 concentration in Beijing and Tianjin during a severe autumn haze event. Aerosol Air Qual. Res. 2018, 18, 1558–1572. [Google Scholar] [CrossRef]
- Kumari, S.; Verma, N.; Lakhani, A.; Kumari, K.M. Severe haze events in the Indo-Gangetic Plain during post-monsoon: Synergetic effect of synoptic meteorology and crop residue burning emission. Sci. Total Environ. 2021, 768, 145479. [Google Scholar] [CrossRef]
- Sinha, V.; Kumar, V.; Sarkar, C. Chemical composition of pre-monsoon air in the Indo-Gangetic Plain measured using a new air quality facility and PTR-MS: High surface ozone and strong influence of biomass burning. Atmos. Chem. Phys. 2014, 14, 5921–5941. [Google Scholar] [CrossRef] [Green Version]
- Saxena, P.; Sonwani, S.; Srivastava, A.; Jain, M.; Srivastava, A.; Bharti, A.; Bhardwaj, S. Impact of crop residue burning in Haryana on the air quality of Delhi, India. Heliyon 2021, 7, e06973. [Google Scholar] [CrossRef] [PubMed]
- Baghel, N.; Kumari, S.; Lakhani, A.; Satsangi, A.; Kumari, K.M. Evaluation of Air Quality at Taj City at Dayalbagh during the COVID-19 Period. Int. J. Environ. Sci. 2022, 11, 62–73. [Google Scholar] [CrossRef]
- Kumari, S.; Verma, N.; Lakhani, A.; Tiwari, S.; Kandikonda, M.K. Tropospheric ozone enhancement during post-harvest crop-residue fires at two downwind sites of the Indo-Gangetic Plain. Environ. Sci. Pollut. Res. 2018, 25, 18879–18893. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, K.; Singh, T.; Mor, S.; Singh, V.; Mandal, T.K.; Bhatti, M.S.; Beig, G. Real-time monitoring of air pollutants in seven cities of North India during crop residue burning and their relationship with meteorology and transboundary movement of air. Sci. Total Environ. 2019, 690, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Dambruoso, P.; de Gennaro, G.; Di Gilio, A.; Palmisani, J.; Tutino, M. The impact of infield biomass burning on PM levels and its chemical composition. Environ. Sci. Pollut. Res. 2013, 21, 13175–13185. [Google Scholar] [CrossRef]
- Saffari, A.; Daher, N.; Samara, C.; Voutsa, D.; Kouras, A.; Manoli, E.; Sioutas, C. Increased Biomass Burning Due to the Economic Crisis in Greece and Its Adverse Impact on Wintertime Air Quality in Thessaloniki. Environ. Sci. Technol. 2013, 47, 13313–13320. [Google Scholar] [CrossRef] [PubMed]
- Han, K.M.; Lee, B.T.; Bae, M.S.; Lee, S.; Jung, C.H.; Kim, H.S. Crop Residue Burning Emissions and the Impact on Ambient Particulate Matters Over South Korea. Atmosphere 2022, 13, 559. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, Y.; Liu, H.; Wang, Y.; Allen, D.T.; Ooi, M.C.G.; Manomaiphiboon, K.; Latif, M.T.; Chan, A.; Li, L. Assessing the contribution of open crop straw burning to ground-level ozone and associated health impacts in China and the effectiveness of straw burning bans. Environ. Int. 2023, 171, 107710. [Google Scholar] [CrossRef]
- Gautam, R.; Hsu, N.C.; Eck, T.F.; Holben, B.N.; Janjai, S.; Jantarach, T.; Lau, W.K. Characterization of aerosols over the Indochina peninsula from satellite-surface observations during biomass burning pre-monsoon season. Atmos. Environ. 2013, 78, 51–59. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, S.D. Characteristics and formation mechanism of a heavy air pollution episode caused by biomass burning in Chengdu, Southwest China. Sci. Total Environ. 2014, 473, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Chandra, B.P.; Sinha, V. Contribution of post-harvest agricultural paddy residue fires in the NW Indo-Gangetic Plain to ambient carcinogenic benzenoids, toxic isocyanic acid and carbon monoxide. Environ. Int. 2016, 88, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, K.; Singh, T.; Pandey, V.; Mor, S. Air pollution trend in Chandigarh city situated in Indo-Gangetic Plains: Understanding seasonality and impact of mitigation strategies. Sci. Total Environ. 2020, 729, 138717. [Google Scholar] [CrossRef]
- Singh, R.P.; Kaskaoutis, D.G. Crop residue burning: A threat to South Asian air quality. Eos Trans. Am. Geophys. Union 2014, 95, 333–334. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Dumka, U.C. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, S.H.; Ghude, S.D.; Jena, C.; Karumuri, R.K.; Sinha, B.; Sinha, V.; Khare, M. How much does large-scale crop residue burning affect the air quality in Delhi? Environ. Sci. Technol. 2020, 54, 4790–4799. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, K.; Safai, P.D.; Devara, P.C.S.; Rao, S.V.B.; Jayasankar, C.K. Effects of agriculture crop residue burning on aerosol properties and long-range transport over northern India: A study using satellite data and model simulations. Atmos. Res. 2016, 178, 155–163. [Google Scholar] [CrossRef]
- Zhu, C.; Kawamura, K.; Kunwar, B. Effect of biomass burning over the western North Pacific Rim: Wintertime maxima of anhydrosugars in ambient aerosols from Okinawa. Atmos. Chem. Phys. 2015, 15, 1959–1973. [Google Scholar] [CrossRef]
- Lin, N.H.; Tsay, S.C.; Maring, H.B.; Yen, M.C.; Sheu, G.R.; Wang, S.H.; Liu, G.R. An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmos. Environ. 2013, 78, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Roden, C.A.; Bond, T.C.; Conway, S.; Pinel, A.B.O. Emission factors and real-time optical properties of particles emitted from traditional wood burning cookstoves. Environ. Sci. Technol. 2006, 40, 6750–6757. [Google Scholar] [CrossRef]
- Kumari, S.; Baghel, N.; Lakhani, A.; Kumari, K.M. BTEX and formaldehyde levels at a suburban site of Agra: Temporal variation, ozone formation potential and health risk assessment. Urban Clim. 2021, 40, 100997. [Google Scholar] [CrossRef]
- Hakimzadeh, M.; Soleimanian, E.; Mousavi, A.; Borgini, A.; De Marco, C.; Ruprecht, A.A.; Sioutas, C. The impact of biomass burning on the oxidative potential of PM2.5 in the metropolitan area of Milan. Atmos. Environ. 2020, 224, 117328. [Google Scholar] [CrossRef]
- Puthussery, J.V.; Dave, J.; Shukla, A.; Gaddamidi, S.; Singh, A.; Vats, P.; Salana, S.; Ganguly, D.; Rastogi, N.; Tripathi, S.N.; et al. Effect of Biomass Burning, Diwali Fireworks, and Polluted Fog Events on the Oxidative Potential of Fine Ambient Particulate Matter in Delhi, India. Environ. Sci. Technol. 2022, 56, 14605–14616. [Google Scholar] [CrossRef]
- Verma, N.; Lakhani, A.; Maharaj Kumari, K. Surface O3 and Its Precursors (NOx, CO, BTEX) at a Semi-arid Site in Indo-Gangetic Plain: Characterization and Variability. In Urban Air Quality Monitoring, Modelling and Human Exposure Assessment; Springer: Berlin/Heidelberg, Germany, 2021; pp. 119–135. Available online: https://link.springer.com/chapter/10.1007/978-981-15-5511-4_9 (accessed on 30 December 2022).
- Verma, N.; Satsangi, A.; Lakhani, A.; Kumari, K.M. Characteristics of surface ozone in Agra, a sub-urban site in Indo-Gangetic Plain. J. Earth Syst. Sci. 2018, 127, 42. [Google Scholar] [CrossRef] [Green Version]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Kaufman, Y. The MODIS fire products. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; Wiley: Hoboken, NJ, USA, 1998; p. 81. [Google Scholar]
- Saxena, P.; Nail, V. Air pollution: Causes, effects and controls. J. Crit. Rev. 2018, 7, 717–722. [Google Scholar]
- Celarier, E.A.; Brinksma, E.J.; Gleason, J.F.; Veefkind, J.P.; Cede, A.; Herman, J.R.; Levelt, P.F. Validation of Ozone Monitoring Instrument nitrogen dioxide columns. J. Geophys. Res. Atmos. 2008, 113, D15. [Google Scholar] [CrossRef] [Green Version]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; De Vries, J.; Otter, G.; Levelt, P.F. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Z.; Sun, Y.; Ji, D.; Wang, Y. Long-range transport and regional sources of PM2. 5 in Beijing based on long-term observations from 2005 to 2010. Atmos. Res. 2015, 157, 37–48. [Google Scholar] [CrossRef]
- Kanawade, V.P.; Srivastava, A.K.; Ram, K.; Asmi, E.; Vakkari, V.; Soni, V.K.; Sarangi, C. What caused severe air pollution episode of November 2016 in New Delhi? Atmos. Environ. 2020, 222, 117125. [Google Scholar] [CrossRef]
- Sarangi, T.; Naja, M.; Ojha, N.; Kumar, R.; Lal, S.; Venkataramani, S.; Chandola, H.C. First simultaneous measurements of ozone, CO, and NOx at a high-altitude regional representative site in the central Himalayas. J. Geophys. Res. Atmos. 2014, 119, 1592–1611. [Google Scholar] [CrossRef]
- Yarragunta, Y.; Srivastava, S.; Mitra, D.; Chandola, H.C. Influence of forest fire episodes on the distribution of gaseous air pollutants over Uttarakhand, India. GISci. Remote Sens. 2020, 57, 190–206. [Google Scholar] [CrossRef]
- Srivastava, S.; Senthil Kumar, A. Implications of intense biomass burning over Uttarakhand in April–May 2016. Nat. Hazards 2020, 101, 367–383. [Google Scholar] [CrossRef]
- Tang, J.H.; Chan, L.Y.; Chan, C.Y.; Li, Y.S.; Chang, C.C.; Liu, S.C.; Li, Y.D. Characteristics and diurnal variations of NMHCs at urban, suburban, and rural sites in the Pearl River Delta and a remote site in South China. Atmos. Environ. 2007, 41, 8620–8632. [Google Scholar] [CrossRef]
- Kumar, R.; Naja, M.; Satheesh, S.K.; Ojha, N.; Joshi, H.; Sarangi, T.; Venkataramani, S. Influences of the springtime northern Indian biomass burning over the central Himalayas. J. Geophys. Res. Atmos. 2011, 116, D19. [Google Scholar] [CrossRef]
- Ojha, N.; Naja, M.; Singh, K.P.; Sarangi, T.; Kumar, R.; Lal, S.; Chandola, H.C. Variabilities in ozone at a semi-urban site in the Indo-Gangetic Plain region: Association with the meteorology and regional processes. J. Geophys. Res. Atmos. 2012, 117, D20. [Google Scholar] [CrossRef]
- Bali, K.; Kumar, A.; Chourasiya, S. Emission estimates of trace gases (VOCs and NOx) and their reactivity during biomass burning period (2003–2017) over Northeast India. J. Atmos. Chem. 2021, 78, 17–34. [Google Scholar] [CrossRef]
- Koppmann, R.; Von Czapiewski, K.; Reid, J.S. A review of biomass burning emissions, part I: Gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds. Atmos. Chem. Phys. Discuss. 2005, 5, 10455–10516. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Sadavarte, P.; Rao, A.B.; Venkataraman, C. Trends in multi-pollutant emissions from a technology-linked inventory for India: II. Residential, agricultural and informal industry sectors. Atmos. Environ. 2014, 99, 341–352. [Google Scholar] [CrossRef]
- Venkataraman, C.; Habib, G.; Kadamba, D.; Shrivastava, M.; Leon, J.F.; Crouzille, B.; Streets, D.G. Emissions from open biomass burning in India: Integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data. Glob. Biogeochem. Cycles 2006, 20. [Google Scholar] [CrossRef]
- Ravindra, K.; Singh, T.; Sinha, V.; Sinha, B.; Paul, S.; Attri, S.D.; Mor, S. Appraisal of regional haze event and its relationship with PM2. 5 concentration, crop residue burning and meteorology in Chandigarh, India. Chemosphere 2021, 273, 128562. [Google Scholar] [CrossRef]
- Lalchandani, V.; Srivastava, D.; Dave, J.; Mishra, S.; Tripathi, N.; Shukla, A.K.; Tripathi, S.N. Effect of Biomass Burning on PM2.5 Composition and Secondary Aerosol Formation During Post-Monsoon and Winter Haze Episodes in Delhi. J. Geophys. Res. Atmos. 2022, 127, e2021JD035232. [Google Scholar] [CrossRef]
- Tiwari, S.; Pipal, A.S.; Srivastava, A.K.; Bisht, D.S.; Pandithurai, G. Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique. Environ. Sci. Pollut. Res. 2015, 22, 2846–2855. [Google Scholar] [CrossRef]
- Ojha, N.; Girach, I.; Sharma, K.; Nair, P.; Singh, J.; Sharma, N.; Subrahmanyam, K.V. Surface ozone in the Doon Valley of the Himalayan foothills during spring. Environ. Sci. Pollut. Res. 2019, 26, 19155–19170. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sarkar, C.; Sinha, V. Influence of post-harvest crop residue fires on surface ozone mixing ratios in the NW IGP analyzed using 2 years of continuous in situ trace gas measurements. J. Geophys. Res. Atmos. 2016, 121, 3619–3633. [Google Scholar] [CrossRef] [Green Version]
- Rana, A.D.; Parvez, S.; Ul-Haq, Z.; Batool, S.A.; Chaudhary, M.N.; Mahmood, K.; Tariq, S. Anthropogenic, biogenic and pyrogenic emission sources and atmospheric formaldehyde (Hcho) and Nitrogen Dioxide (NO2) columns over different landuse/landcovers of South Asia. Appl. Ecol. Environ. Res. 2019, 17, 10989–11015. [Google Scholar] [CrossRef]
- Kumari, S.; Lakhani, A.; Kumari, K.M. Variation of carbon monoxide at a suburban site in the Indo-Gangetic Plain: Influence of long-range transport from crop residue burning region. Atmos. Pollut. Res. 2021, 12, 101166. [Google Scholar] [CrossRef]
- Yadav, R.; Sahu, L.K.; Beig, G.; Jaaffrey, S.N.A. Role of long-range transport and local meteorology in seasonal variation of surface ozone and its precursors at an urban site in India. Atmos. Res. 2016, 176, 96–107. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Kumar, S.; Sharma, D.; Singh, R.P.; Kharol, S.K.; Sharma, M.; Singh, D. Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India. J. Geophys. Res. Atmos. 2014, 119, 5424–5444. [Google Scholar] [CrossRef]
- Badarinath, K.V.S.; Sharma, A.R.; Kharol, S.K.; Prasad, V.K. Variations in CO, O3 and black carbon aerosol mass concentrations associated with planetary boundary layer (PBL) over tropical urban environment in India. J. Atmos. Chem. 2009, 62, 73–86. [Google Scholar] [CrossRef]
- Roy, C.; Ayantika, D.C.; Girach, I.; Chakrabarty, C. Intense biomass burning over northern India and its impact on air quality, chemistry and climate. In Extremes in Atmospheric Processes and Phenomenon: Assessment, Impacts and Mitigation; Springer Nature: Singapore, 2022; pp. 169–204. Available online: https://link.springer.com/chapter/10.1007/978-981-16-7727-4_8 (accessed on 30 December 2022).
- Badarinath, K.V.S.; Chand, T.K.; Prasad, V.K. Agriculture crop residue burning in the Indo-Gangetic Plains–a study using IRS-P6 AWiFS satellite data. Curr. Sci. 2006, 91, 1085–1089. Available online: http://www.jstor.org/stable/24093988 (accessed on 30 December 2022).
- Reid, J.S.; Koppmann, R.; Eck, T.F.; Eleuterio, D.P. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 799–825. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baghel, N.; Singh, K.; Lakhani, A.; Kumari, K.M.; Satsangi, A. A Study of Real-Time and Satellite Data of Atmospheric Pollutants during Agricultural Crop Residue Burning at a Downwind Site in the Indo-Gangetic Plain. Pollutants 2023, 3, 166-180. https://doi.org/10.3390/pollutants3010013
Baghel N, Singh K, Lakhani A, Kumari KM, Satsangi A. A Study of Real-Time and Satellite Data of Atmospheric Pollutants during Agricultural Crop Residue Burning at a Downwind Site in the Indo-Gangetic Plain. Pollutants. 2023; 3(1):166-180. https://doi.org/10.3390/pollutants3010013
Chicago/Turabian StyleBaghel, Neelam, Kirti Singh, Anita Lakhani, K. Maharaj Kumari, and Aparna Satsangi. 2023. "A Study of Real-Time and Satellite Data of Atmospheric Pollutants during Agricultural Crop Residue Burning at a Downwind Site in the Indo-Gangetic Plain" Pollutants 3, no. 1: 166-180. https://doi.org/10.3390/pollutants3010013
APA StyleBaghel, N., Singh, K., Lakhani, A., Kumari, K. M., & Satsangi, A. (2023). A Study of Real-Time and Satellite Data of Atmospheric Pollutants during Agricultural Crop Residue Burning at a Downwind Site in the Indo-Gangetic Plain. Pollutants, 3(1), 166-180. https://doi.org/10.3390/pollutants3010013