Exigency for the Control and Upgradation of Indoor Air Quality—Forefront Advancements Using Nanomaterials
Abstract
:1. Introduction
2. Indoor Air Pollution: A Serious Threat to Human Health
2.1. Indoor Pollutants
2.2. Health Effects–Short and Long Term
3. Monitoring of Indoor Air Quality (IAQ)
3.1. Materials Based IAQ Sensors
3.2. Advanced Technologies for IAQ Monitoring IAQ—Internet of Things (IoT)-Based Systems
4. Control and Management of IAQ for Enhancing Air Value
4.1. Filtration
4.2. Adsorption Technologies
4.3. Non-Thermal Plasma (NTP) Technologies
4.4. UV Light Disinfection Systems
4.5. UV Photocatalytic Oxidation
4.6. Air-Conditioning (AC) Systems
4.7. Green Solution to IAQ
4.7.1. Green Plants
4.7.2. Microalgae in Air Purification
5. Use of Advanced Nanomaterials for Enhancing IAQ
5.1. In Monitoring Sensors
5.2. Filtration and Adsorption Media
5.3. UV Photocatalysts
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pluschke, P.; Schleibinger, H. Indoor Air Pollution; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Amegah, A.K.; Jaakkola, J.J. Household air pollution and the sustainable development goals. Bull. World Health Organ. 2016, 94, 215. [Google Scholar] [CrossRef]
- Mendoza, D.L.; Benney, T.M.; Bares, R.; Fasoli, B.; Anderson, C.; Gonzales, S.A.; Crosman, E.T.; Hoch, S. Investigation of Indoor and Outdoor Fine Particulate Matter Concentrations in Schools in Salt Lake City, Utah. Pollutants 2022, 2, 82–97. [Google Scholar] [CrossRef]
- Kraft, M.; Rauchfuss, K.; Fromme, H.; Grün, L.; Sievering, S.; Köllner, B.; Chovolou, Y. Inhalation exposure to PCB from contaminated indoor air—How much is absorbed into the blood? Pollutants 2021, 1, 181–193. [Google Scholar] [CrossRef]
- Keswani, A.; Akselrod, H.; Anenberg, S.C. Health and clinical impacts of air pollution and linkages with climate change. NEJM Evid. 2022, 1, EVIDra2200068. [Google Scholar] [CrossRef]
- Zeng, Y.; Laguerre, A.; Gall, E.T.; Heidarinejad, M.; Stephens, B. Experimental Evaluations of the Impact of an Additive Oxidizing Electronic Air Cleaner on Particles and Gases. Pollutants 2022, 2, 98–134. [Google Scholar] [CrossRef]
- Bain-Reguis, N.; Smith, A.; Martin, C.H.; Currie, J. Indoor CO2 and Thermal Conditions in Twenty Scottish Primary School Classrooms with Different Ventilation Systems during the COVID-19 Pandemic. Pollutants 2022, 2, 180–204. [Google Scholar] [CrossRef]
- Ciccioli, P.; Pallozzi, E.; Guerriero, E.; Iannelli, M.A.; Donati, E.; Lilla, L.; Rinaldi, C.; Svaldi, P.; Ciccioli, P.; Mabilia, R. A New Testing Facility to Investigate the Removal Processes of Indoor Air Contaminants with Different Cleaning Technologies and to Better Assess and Exploit Their Performances. Environments 2021, 9, 3. [Google Scholar] [CrossRef]
- Marć, M.; Śmiełowska, M.; Namieśnik, J.; Zabiegała, B. Indoor air quality of everyday use spaces dedicated to specific purposes—A review. Environmental Science and Pollut. Res. 2018, 25, 2065–2082. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Deng, W.; Tenorio, R. Investigation of indoor air quality and the identification of influential factors at primary schools in the North of China. Sustainability 2017, 9, 1180. [Google Scholar] [CrossRef]
- Liang, J. Chemical Modeling for Air Resources: Fundamentals, Applications, and Corroborative Analysis; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Gopalakrishnan, P.; Kavinraj, M.; Vivekanadhan; Jeevitha, N. Effect of indoor air quality on human health-A review. In Proceedings of the AIP Conference, Antalya, Turkey, 12–15 May 2021; AIP Publishing LLC: New York, NY, USA, 2021. [Google Scholar]
- Wang, M.; Li, L.; Hou, C.; Guo, X.; Fu, H. Building and health: Mapping the knowledge development of sick building syndrome. Buildings 2022, 12, 287. [Google Scholar] [CrossRef]
- Li, C.; Zhu, Q.; Jin, X.; Cohen, R.C. Elucidating Contributions of Anthropogenic Volatile Organic Compounds and Particulate Matter to Ozone Trends over China. Environ. Sci. Technol. 2022, 56, 12906–12916. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Xu, H.; Qi, B.; Du, R.; Gui, K.; Wang, H.; Jiang, W.; Liang, L.; Xu, W. Characterization of atmospheric trace gases and particulate matter in Hangzhou, China. Atmos. Chem. Phys. 2018, 18, 1705–1728. [Google Scholar] [CrossRef]
- Mata, T.M.; Felgueiras, F.; Martins, A.A.; Monteiro, H.; Ferraz, M.P.; Oliveira, G.M.; Gabriel, M.F.; Silva, G.V. Indoor air quality in elderly centers: Pollutants emission and health effects. Environments 2022, 9, 86. [Google Scholar] [CrossRef]
- Zhai, Y.; Li, X.; Wang, T.; Wang, B.; Li, C.; Zeng, G. A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors. Environ. Int. 2018, 113, 74–90. [Google Scholar] [CrossRef]
- Ubando, A.T.; Africa, A.D.M.; Maniquiz-Redillas, M.C.; Culaba, A.B.; Chen, W.-H. Reduction of particulate matter and volatile organic compounds in biorefineries: A state-of-the-art review. J. Hazard. Mater. 2021, 403, 123955. [Google Scholar] [CrossRef]
- Cheng, L.; Wei, W.; Guo, A.; Zhang, C.; Sha, K.; Wang, R.; Wang, K.; Cheng, S. Health risk assessment of hazardous VOCs and its associations with exposure duration and protection measures for coking industry workers. J. Clean. Prod. 2022, 379, 134919. [Google Scholar] [CrossRef]
- Andersen, C.; Omelekhina, Y.; Rasmussen, B.B.; Nygaard Bennekov, M.; Skov, S.N.; Køcks, M.; Wang, K.; Strandberg, B.; Mattsson, F.; Bilde, M. Emissions of soot, PAHs, ultrafine particles, NOx, and other health relevant compounds from stressed burning of candles in indoor air. Indoor Air 2021, 31, 2033–2048. [Google Scholar] [CrossRef] [PubMed]
- Paciência, I.; Cavaleiro Rufo, J.; Moreira, A. Environmental inequality: Air pollution and asthma in children. Pediatr. Allergy Immunol. 2022, 33, 1–21. [Google Scholar] [CrossRef]
- Kureshi, R.R.; Thakker, D.; Mishra, B.K.; Ahmed, B. Use Case of Building an Indoor Air Quality Monitoring System. In Proceedings of the 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 14–31 July 2021. [Google Scholar]
- Nair, A.N.; Anand, P.; George, A.; Mondal, N. A review of strategies and their effectiveness in reducing indoor airborne transmission and improving indoor air quality. Environ. Res. 2022, 213, 113579. [Google Scholar] [CrossRef]
- Sakai, H.; Yasuda, S.; Okuda, C.; Yamada, T.; Owaki, K.; Miwa, Y. Examination of central nervous system by functional observation battery after massive intravenous infusion of carbon monoxide-bound and oxygen-bound hemoglobin vesicles in rats. Curr. Res. Pharmacol. Drug Discov. 2022, 3, 100135. [Google Scholar] [CrossRef]
- Zhu, Y.; Wei, Z.; Yang, X.; Tao, S.; Zhang, Y.; Shangguan, W. Comprehensive control of PM 2.5 capture and ozone emission in two-stage electrostatic precipitators. Sci. Total Environ. 2022, 858, 159900. [Google Scholar] [CrossRef] [PubMed]
- Sá, J.P.; Branco, P.T.; Alvim-Ferraz, M.C.; Martins, F.G.; Sousa, S.I. Radon in Indoor Air: Towards Continuous Monitoring. Sustainability 2022, 14, 1529. [Google Scholar] [CrossRef]
- Stanley, F. An Analysis of Human Exposure to Alpha Particle Radiation; University of Calgary: Calgary, Canada, 2018. [Google Scholar]
- Patocka, J. Human health and environmental uranium. Mil. Med. Sci. Lett. 2014, 83, 120–131. [Google Scholar] [CrossRef]
- Figueiredo, D.M.; Duyzer, J.; Huss, A.; Krop, E.J.; Gerritsen-Ebben, M.; Gooijer, Y.; Vermeulen, R.C. Spatio-temporal variation of outdoor and indoor pesticide air concentrations in homes near agricultural fields. Atmos. Environ. 2021, 262, 118612. [Google Scholar] [CrossRef]
- Mostafa, M.Y.A.; Khalaf, H.N.B.; Zhukovsky, M. Attachment rate characteristics of different wide used aerosol sources in indoor air. J. Environ. Health Sci. Eng. 2021, 19, 867–879. [Google Scholar] [CrossRef]
- López, A.; Yusà, V.; Villoldo, E.; Corpas-Burgos, F.; Coscollà, C. Indoor air pesticide in dwellings of breastfeeding mothers of the Valencian Region (Spain): Levels, exposure and risk assessment. Atmos. Environ. 2021, 248, 118231. [Google Scholar] [CrossRef]
- Błaszczyk, E.; Rogula-Kozłowska, W.; Klejnowski, K.; Kubiesa, P.; Fulara, I.; Mielżyńska-Švach, D. Indoor air quality in urban and rural kindergartens: Short-term studies in Silesia, Poland. Air Qual. Atmos. Health 2017, 10, 1207–1220. [Google Scholar] [CrossRef] [PubMed]
- Dales, R.E.; Cakmak, S.; Vidal, C.B. Air pollution and hospitalization for headache in Chile. Am. J. Epidemiol. 2009, 170, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zheng, X.; Villalba-Díez, J.; Ordieres-Meré, J. Indoor air-quality data-monitoring system: Long-term monitoring benefits. Sensors 2019, 19, 4157. [Google Scholar] [CrossRef] [PubMed]
- Maroni, M.; Seifert, B.; Lindvall, T. Indoor Air Quality: A Comprehensive Reference Book; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Sarkhosh, M.; Najafpoor, A.A.; Alidadi, H.; Shamsara, J.; Amiri, H.; Andrea, T.; Kariminejad, F. Indoor Air Quality associations with sick building syndrome: An application of decision tree technology. Build. Environ. 2021, 188, 107446. [Google Scholar] [CrossRef]
- Hou, J.; Sun, Y.; Dai, X.; Liu, J.; Shen, X.; Tan, H.; Yin, H.; Huang, K.; Gao, Y.; Lai, D. Associations of indoor carbon dioxide concentrations, air temperature, and humidity with perceived air quality and sick building syndrome symptoms in Chinese homes. Indoor Air 2021, 31, 1018–1028. [Google Scholar] [CrossRef]
- Fan, L.; Ding, Y. Research on risk scorecard of sick building syndrome based on machine learning. Build. Environ. 2022, 211, 108710. [Google Scholar] [CrossRef]
- Kalender-Smajlović, S.; Kukec, A.; Dovjak, M. The problem of indoor environmental quality at a general Slovenian hospital and its contribution to sick building syndrome. Build. Environ. 2022, 214, 108908. [Google Scholar] [CrossRef]
- Hansel, N.N.; Putcha, N.; Woo, H.; Peng, R.; Diette, G.B.; Fawzy, A.; Wise, R.A.; Romero, K.; Davis, M.F.; Rule, A.M. Randomized clinical trial of air cleaners to improve indoor air quality and chronic obstructive pulmonary disease health: Results of the CLEAN AIR study. Am. J. Respir. Crit. Care Med. 2022, 205, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Kamal, R.; Srivastava, A.K.; Kesavachandran, C.N.; Bihari, V.; Singh, A. Chronic obstructive pulmonary disease (COPD) in women due to indoor biomass burning: A meta analysis. Int. J. Environ. Health Res. 2022, 32, 1403–1417. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, P.M. An ecological alliance against air pollution and cardiovascular disease. Bleeding Thromb. Vasc. Biol. 2022, 1, 21. [Google Scholar] [CrossRef]
- Münzel, T.; Sørensen, M.; Daiber, A. Transportation noise pollution and cardiovascular disease. Nat. Rev. Cardiol. 2021, 18, 619–636. [Google Scholar] [CrossRef]
- Zheng, C.; Tang, H.; Wang, X.; Chen, Z.; Zhang, L.; Kang, Y.; Yang, Y.; Chen, L.; Zhou, H.; Cai, J. Left ventricular diastolic dysfunction and cardiovascular disease in different ambient air pollution conditions: A prospective cohort study. Sci. Total Environ. 2022, 831, 154872. [Google Scholar] [CrossRef]
- Miller, M.R.; Shaw, C.A.; Langrish, J.P. From particles to patients: Oxidative stress and the cardiovascular effects of air pollution. Future Cardiol. 2012, 8, 577–602. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., III; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [Green Version]
- Al-Kindi, S.G.; Brook, R.D.; Biswal, S.; Rajagopalan, S. Environmental determinants of cardiovascular disease: Lessons learned from air pollution. Nat. Rev. Cardiol. 2020, 17, 656–672. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.V.; Park, D.; Lee, Y.-C. Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef] [PubMed]
- Weschler, C.J.; Nazaroff, W.W. Dermal uptake of organic vapors commonly found in indoor air. Environ. Sci. Technol. 2014, 48, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, J.A.; Alexis, N.; Bacchus, H.; Bernstein, I.L.; Fritz, P.; Horner, E.; Li, N.; Mason, S.; Nel, A.; Oullette, J. The health effects of nonindustrial indoor air pollution. J. Allergy Clin. Immunol. 2008, 121, 585–591. [Google Scholar] [CrossRef]
- Ghaffarianhoseini, A.; AlWaer, H.; Omrany, H.; Ghaffarianhoseini, A.; Alalouch, C.; Clements-Croome, D.; Tookey, J. Sick building syndrome: Are we doing enough? Archit. Sci. Rev. 2018, 61, 99–121. [Google Scholar] [CrossRef]
- Salonen, H.; Salthammer, T.; Morawska, L. Human exposure to ozone in school and office indoor environments. Environ. Int. 2018, 119, 503–514. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, Z.; Gao, Z. Contributions of indoor and outdoor sources to ozone in residential buildings in nanjing. Int. J. Environ. Res. Public Health 2019, 16, 2587. [Google Scholar] [CrossRef]
- Seow, W.J.; Downward, G.S.; Wei, H.; Rothman, N.; Reiss, B.; Xu, J.; Bassig, B.A.; Li, J.; He, J.; Hosgood, H.D. Indoor concentrations of nitrogen dioxide and sulfur dioxide from burning solid fuels for cooking and heating in Yunnan Province, China. Indoor Air 2016, 26, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Li, X.; Chen, Y.; Shen, G. Household air pollution and personal exposure to air pollutants in rural China—A review. Environ. Pollut. 2018, 237, 625–638. [Google Scholar] [CrossRef]
- Mattiuzzi, C.; Lippi, G. Worldwide epidemiology of carbon monoxide poisoning. Hum. Exp. Toxicol. 2020, 39, 387–392. [Google Scholar] [CrossRef]
- Hampson, N.B.; Weaver, L. Carbon monoxide poisoning: A new incidence for an old disease. Undersea Hyperb. Med. 2007, 34, 163–168. [Google Scholar] [PubMed]
- Harper, A.; Croft-Baker, J. Carbon monoxide poisoning: Undetected by both patients and their doctors. Age Ageing 2004, 33, 105–109. [Google Scholar] [CrossRef]
- Oh, H.-J.; Jeong, N.-N.; Sohn, J.-R.; Kim, J. Personal exposure to indoor aerosols as actual concern: Perceived indoor and outdoor air quality, and health performances. Build. Environ. 2019, 165, 106403. [Google Scholar] [CrossRef]
- Cao, Q.; Li, F.; Zhang, T.T.; Wang, S. A ventilator that responds to outdoor conditions for ventilation and air filtration. Energy Build. 2020, 229, 110498. [Google Scholar] [CrossRef]
- Schabath, M.B.; Cote, M.L. Cancer progress and priorities: Lung cancer. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1563–1579. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.-M.; Park, E.-K.; Young, T.M.; Hammock, B.D. Occurrence of endocrine-disrupting chemicals in indoor dust. Sci. Total Environ. 2008, 404, 26–35. [Google Scholar] [CrossRef]
- Lucattini, L.; Poma, G.; Covaci, A.; de Boer, J.; Lamoree, M.H.; Leonards, P.E. A review of semi-volatile organic compounds (SVOCs) in the indoor environment: Occurrence in consumer products, indoor air and dust. Chemosphere 2018, 201, 466–482. [Google Scholar] [CrossRef] [PubMed]
- Baldacci, S.; Maio, S.; Cerrai, S.; Sarno, G.; Baïz, N.; Simoni, M.; Annesi-Maesano, I.; Viegi, G.; Study, H. Allergy and asthma: Effects of the exposure to particulate matter and biological allergens. Respir. Med. 2015, 109, 1089–1104. [Google Scholar] [CrossRef] [PubMed]
- Hospodsky, D.; Qian, J.; Nazaroff, W.W.; Yamamoto, N.; Bibby, K.; Rismani-Yazdi, H. Human occupancy as a source of indoor airborne bacteria. PLoS ONE 2012, 7, e34867. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.I.; Miletto, M.; Taylor, J.W.; Bruns, T.D. Dispersal in microbes: Fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME J. 2013, 7, 1262–1273. [Google Scholar] [CrossRef] [Green Version]
- Colbeck, I.; Nasir, Z.A.; Ali, Z. Characteristics of indoor/outdoor particulate pollution in urban and rural residential environment of Pakistan. Indoor Air 2010, 20, 40–51. [Google Scholar] [CrossRef]
- Junaid, M.; Syed, J.H.; Abbasi, N.A.; Hashmi, M.Z.; Malik, R.N.; Pei, D.-S. Status of indoor air pollution (IAP) through particulate matter (PM) emissions and associated health concerns in South Asia. Chemosphere 2018, 191, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Naeem, A.; Rafiq, L.; Nazar, R.; Kashif, M.; Naqvi, S.H.Z. An assessment of Risk Factors and Health Impacts Associated with Indoor Air Pollution and Tobacco Smoke in Lahore, Pakistan. J. Qual. Assur. Agric. Sci. 2022, 2, 37–45. [Google Scholar]
- Aslam, R.; Sharif, F.; Baqar, M.; Nizami, A.-S.; Ashraf, U. Role of ambient air pollution in asthma spread among various population groups of Lahore City: A case study. Environ. Sci. Pollut. Res. 2022, 30, 8682–8697. [Google Scholar] [CrossRef] [PubMed]
- Khalid, F.; Qadir, A.; Hashmi, M.Z.; Mehmood, A.; Aslam, I.; Zhang, G.; Ahmed, Z. Evaluation of ceiling fan dust as an indicator of indoor PCBs pollution in selected cities of Punjab, Pakistan: Implication on human health. Arab. J. Geosci. 2022, 15, 876. [Google Scholar] [CrossRef]
- Cao, Z.; Xu, F.; Covaci, A.; Wu, M.; Yu, G.; Wang, B.; Deng, S.; Huang, J. Differences in the seasonal variation of brominated and phosphorus flame retardants in office dust. Environ. Int. 2014, 65, 100–106. [Google Scholar] [CrossRef]
- Nasir, Z.A.; Colbeck, I.; Sultan, S.; Ahmed, S. Bioaerosols in residential micro-environments in low income countries: A case study from Pakistan. Environ. Pollut. 2012, 168, 15–22. [Google Scholar] [CrossRef]
- Sidra, S.; Ali, Z.; Sultan, S.; Ahmed, S.; Colbeck, I.; Nasir, Z.A. Assessment of airborne microflora in the indoor micro-environments of residential houses of Lahore, Pakistan. Aerosol Air Qual. Res. 2015, 15, 2385–2396. [Google Scholar] [CrossRef]
- Rajagopalan, P.; Goodman, N. Improving the indoor air quality of residential buildings during bushfire smoke events. Climate 2021, 9, 32. [Google Scholar] [CrossRef]
- Khwaja, M.A.; Shams, T. Pakistan National Ambient Air Quality Standards: A Comparative Assessment with Selected Asian Countries and World Health Organization (WHO); Sustainable Development Policy Institute: Islamabad, Pakistan, 2020. [Google Scholar]
- Yasmin, N.; Grundmann, P. Home-cooked energy transitions: Women empowerment and biogas-based cooking technology in Pakistan. Energy Policy 2020, 137, 111074. [Google Scholar] [CrossRef]
- Shams, Z.I.; Javed, T.; Zubair, A.; Waqas, M.; Ali, S.; Ahmed, A. Carbon Monoxide Concentrations in Kitchens of Gas-fired Burners, Karachi, Pakistan: Carbon Monoxide in Karachi Bungalow and Apartment Kitchens. Pak. J. Sci. Ind. Res. Ser. A Phys. Sci. 2022, 65, 25–32. [Google Scholar] [CrossRef]
- Qayyum, F.; Mehmood, U.; Tariq, S.; Nawaz, H. Particulate matter (PM2.5) and diseases: An autoregressive distributed lag (ARDL) technique. Environ. Sci. Pollut. Res. 2021, 28, 67511–67518. [Google Scholar] [CrossRef]
- Argunhan, Z.; Avci, A.S. Statistical evaluation of indoor air quality parameters in classrooms of a university. Adv. Meteorol. 2018, 2018, 4391579. [Google Scholar] [CrossRef]
- Wolkoff, P. Indoor air humidity, air quality, and health—An overview. Int. J. Hyg. Environ. Health 2018, 221, 376–390. [Google Scholar] [CrossRef]
- Chojer, H.; Branco, P.; Martins, F.; Alvim-Ferraz, M.; Sousa, S. Development of low-cost indoor air quality monitoring devices: Recent advancements. Sci. Total Environ. 2020, 727, 138385. [Google Scholar] [CrossRef]
- Bag, A.; Lee, N.-E. Gas sensing with heterostructures based on two-dimensional nanostructured materials: A review. J. Mater. Chem. C 2019, 7, 13367–13383. [Google Scholar] [CrossRef]
- Hapsari, A.A.; Hajamydeen, A.I.; Abdullah, M.I. A review on indoor air quality monitoring using iot at campus environment. Int. J. Eng. Technol. 2018, 7, 55–60. [Google Scholar]
- Saini, J.; Dutta, M.; Marques, G. A comprehensive review on indoor air quality monitoring systems for enhanced public health. Sustain. Environ. Res. 2020, 30, 6. [Google Scholar] [CrossRef]
- Saini, J.; Dutta, M.; Marques, G. Indoor air quality monitoring systems based on internet of things: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 4942. [Google Scholar] [CrossRef] [PubMed]
- Pitarma, R.; Marques, G.; Caetano, F. Monitoring indoor air quality to improve occupational health. In New Advances in Information Systems and Technologies; Springer: Berlin/Heidelberg, Germany, 2016; pp. 13–21. [Google Scholar]
- Kim, J.-J.; Jung, S.K.; Kim, J.T. Wireless monitoring of indoor air quality by a sensor network. Indoor Built Environ. 2010, 19, 145–150. [Google Scholar] [CrossRef]
- Li, Z.; Askim, J.R.; Suslick, K.S. The optoelectronic nose: Colorimetric and fluorometric sensor arrays. Chem. Rev. 2018, 119, 231–292. [Google Scholar] [CrossRef] [PubMed]
- Taştan, M.; Gökozan, H. Real-time monitoring of indoor air quality with internet of things-based E-nose. Appl. Sci. 2019, 9, 3435. [Google Scholar] [CrossRef]
- Chen, K.; Gao, W.; Emaminejad, S.; Kiriya, D.; Ota, H.; Nyein, H.Y.Y.; Takei, K.; Javey, A. Printed carbon nanotube electronics and sensor systems. Adv. Mater. 2016, 28, 4397–4414. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wang, C.; Zhang, Y.; Wei, F. Air filtration in the free molecular flow regime: A review of high-efficiency particulate air filters based on carbon nanotubes. Small 2014, 10, 4543–4561. [Google Scholar] [CrossRef]
- Liu, G.; Xiao, M.; Zhang, X.; Gal, C.; Chen, X.; Liu, L.; Pan, S.; Wu, J.; Tang, L.; Clements-Croome, D. A review of air filtration technologies for sustainable and healthy building ventilation. Sustain. Cities Soc. 2017, 32, 375–396. [Google Scholar] [CrossRef]
- Nazarenko, Y. Air filtration and severe acute respiratory syndrome Coronavirus 2. Epidemiol. Health 2020, 42, e2020049. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.A.; Mata, T.M.; Callheiros, C.; Ventura, G.; Gabriel, M.; Alonso-Cuevilla, N.; Villanueva, F. Indoor Air Quality: A Review of Cleaning Technologies. Environments 2022, 9, 118. [Google Scholar]
- Cao, J.; Cheng, Z.; Kang, L.; Lin, M.; Han, L. Patterned nanofiber air filters with high optical transparency, robust mechanical strength, and effective PM 2.5 capture capability. RSC Adv. 2020, 10, 20155–20161. [Google Scholar] [CrossRef]
- Gao, Y.; Tian, E.; Zhang, Y.; Mo, J. Utilizing electrostatic effect in fibrous filters for efficient airborne particles removal: Principles, fabrication, and material properties. Appl. Mater. Today 2022, 26, 101369. [Google Scholar] [CrossRef]
- Bliss, S. Best Practices Guide to Residential Construction: Materials; Finishes and Details; John Willey & Sons: New York, NY, USA, 2006. [Google Scholar]
- Liu, S.; Huang, Q.; Wu, Y.; Song, Y.; Dong, W.; Chu, M.; Yang, D.; Zhang, X.; Zhang, J.; Chen, C. Metabolic linkages between indoor negative air ions, particulate matter and cardiorespiratory function: A randomized, double-blind crossover study among children. Environ. Int. 2020, 138, 105663. [Google Scholar] [CrossRef]
- Tian, E.; Xia, F.; Wu, J.; Zhang, Y.; Li, J.; Wang, H.; Mo, J. Electrostatic air filtration by multifunctional dielectric heterocaking filters with ultralow pressure drop. ACS Appl. Mater. Interfaces 2020, 12, 29383–29392. [Google Scholar] [CrossRef]
- Yue, X.; Ma, N.L.; Sonne, C.; Guan, R.; Lam, S.S.; Van Le, Q.; Chen, X.; Yang, Y.; Gu, H.; Rinklebe, J. Mitigation of indoor air pollution: A review of recent advances in adsorption materials and catalytic oxidation. J. Hazard. Mater. 2021, 405, 124138. [Google Scholar] [CrossRef]
- Mobasser, S.; Wager, Y.; Dittrich, T.M. Indoor Air Purification of Volatile Organic Compounds (VOCs) Using Activated Carbon, Zeolite, and Organosilica Sorbents. Ind. Eng. Chem. Res. 2022, 61, 6791–6801. [Google Scholar] [CrossRef]
- Luengas, A.; Barona, A.; Hort, C.; Gallastegui, G.; Platel, V.; Elias, A. A review of indoor air treatment technologies. Rev. Environ. Sci. Bio/Technol. 2015, 14, 499–522. [Google Scholar] [CrossRef]
- Xie, T. Indoor air pollution and control technology. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Banda Aceh, Indonesia, 26–27 September 2018; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Liang, X. Research on the Causes and Prevention Strategies of Air Environmental Pollution. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Jakarta, Indonesia, 25–26 September 2021; IOP Publishing: Bristol, UK, 2021. [Google Scholar]
- Darling, E.; Morrison, G.C.; Corsi, R.L. Passive removal materials for indoor ozone control. Build. Environ. 2016, 106, 33–44. [Google Scholar] [CrossRef]
- Gall, E.T.; Corsi, R.L.; Siegel, J.A. Barriers and opportunities for passive removal of indoor ozone. Atmos. Environ. 2011, 45, 3338–3341. [Google Scholar] [CrossRef]
- Bahri, M.; Schleibinger, H.; Render, W.; Naboka, O. Removal performance of formaldehyde by ceiling tiles as sorptive passive panels. Build. Environ. 2019, 160, 106172. [Google Scholar] [CrossRef]
- Zuraimi, M.; Magee, R.; Won, D.; Nong, G.; Arsenault, C.; Yang, W.; So, S.; Nilsson, G.; Abebe, L.; Alliston, C. Performance of sorption-and photocatalytic oxidation-based indoor passive panel technologies. Build. Environ. 2018, 135, 85–93. [Google Scholar] [CrossRef]
- Jing, L.; Wang, J. Study on indoor ozone removal by PRM under the influence of typical factors. In Proceedings of the E3S Web of Conferences, Xi’an, China, 31 August 2022; EDP Sciences: Les Ulis, France, 2022. [Google Scholar]
- Hossaini, H.; Pirsaheb, M.; Hossini, H.; Derakhshan, A.A.; Asadi, F. Improving the purification of aqueous solutions by controlling the production of reactive oxygen species in non-thermal plasma; a systematic review. Rev. Environ. Health, 2022; ahead of print. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, X.; Song, C.; Lu, W.; Li, H.; Wang, P. The effect of dual dielectric barrier discharge non-thermal plasma on the emission characteristics of diesel engine. Environ. Chall. 2022, 9, 100652. [Google Scholar] [CrossRef]
- Kim, H.H. Nonthermal plasma processing for air-pollution control: A historical review, current issues, and future prospects. Plasma Process. Polym. 2004, 1, 91–110. [Google Scholar] [CrossRef]
- Vandenbroucke, A.M.; Morent, R.; De Geyter, N.; Leys, C. Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J. Hazard. Mater. 2011, 195, 30–54. [Google Scholar] [CrossRef] [PubMed]
- Bahri, M.; Haghighat, F. Plasma-B ased Indoor Air Cleaning Technologies: The State of the Art-R eview. CLEAN—Soil Air Water 2014, 42, 1667–1680. [Google Scholar] [CrossRef]
- Kowalski, W.; Moeller, R.; Walsh, T.J.; Petraitis, V.; Passman, F.J. Ultraviolet disinfection efficacy test method using bacteria monolayers. J. Microbiol. Methods 2022, 200, 106541. [Google Scholar] [CrossRef] [PubMed]
- Bern, Z.; Davies, S.; Dennen, T. Enhanced ultraviolet cancellations in N = 5 supergravity at four loops. Phys. Rev. D 2014, 90, 105011. [Google Scholar] [CrossRef]
- Lee, L.D.; Delclos, G.; Berkheiser, M.L.; Barakat, M.T.; Jensen, P.A. Evaluation of multiple fixed in-room air cleaners with ultraviolet germicidal irradiation, in high-occupancy areas of selected commercial indoor environments. J. Occup. Environ. Hyg. 2022, 19, 67–77. [Google Scholar] [CrossRef]
- Atci, F.; Cetin, Y.E.; Avci, M.; Aydin, O. Evaluation of in-duct UV-C lamp array on air disinfection: A numerical analysis. Sci. Technol. Built Environ. 2020, 27, 98–108. [Google Scholar] [CrossRef]
- Luo, H.; Zhong, L. Ultraviolet germicidal irradiation (UVGI) for in-duct airborne bioaerosol disinfection: Review and analysis of design factors. Build. Environ. 2021, 197, 107852. [Google Scholar] [CrossRef]
- Weon, S.; He, F.; Choi, W. Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: Visible light utilization and catalyst deactivation. Environ. Sci. Nano 2019, 6, 3185–3214. [Google Scholar] [CrossRef]
- Nassehinia, H.; Rahmani, A.; Ghaieny, G.; Mehdinia, S.M. Application of novel methods in environmental and health hazardous pollutants removal using nanophotocatalysts. Koomesh 2016, 18, 309–316. [Google Scholar]
- Rafique, M.S.; Tahir, M.B.; Rafique, M.; Shakil, M. Photocatalytic nanomaterials for air purification and self-cleaning. In Nanotechnology and Photocatalysis for Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 203–219. [Google Scholar]
- Tai, X.H.; Lai, C.W.; Juan, J.C.; Lee, K.M. Nano-photocatalyst in photocatalytic oxidation processes. In Nanomaterials for Air Remediation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 151–165. [Google Scholar]
- Wang, H.; Li, X.; Zhao, X.; Li, C.; Song, X.; Zhang, P.; Huo, P. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. Chin. J. Catal. 2022, 43, 178–214. [Google Scholar] [CrossRef]
- Ren, H.; Koshy, P.; Chen, W.-F.; Qi, S.; Sorrell, C.C. Photocatalytic materials and technologies for air purification. J. Hazard. Mater. 2017, 325, 340–366. [Google Scholar] [CrossRef]
- Yu, C.W.; Kim, J.T. Photocatalytic oxidation for maintenance of indoor environmental quality. Indoor Built Environ. 2013, 22, 39–51. [Google Scholar] [CrossRef]
- Park, D.Y.; Chang, S. Effects of combined central air conditioning diffusers and window-integrated ventilation system on indoor air quality and thermal comfort in an office. Sustain. Cities Soc. 2020, 61, 102292. [Google Scholar] [CrossRef]
- Daghigh, R. Assessing the thermal comfort and ventilation in Malaysia and the surrounding regions. Renew. Sustain. Energy Rev. 2015, 48, 681–691. [Google Scholar] [CrossRef]
- Liu, S.; Cao, Q.; Zhao, X.; Lu, Z.; Deng, Z.; Dong, J.; Lin, X.; Qing, K.; Zhang, W.; Chen, Q. Improving indoor air quality and thermal comfort in residential kitchens with a new ventilation system. Build. Environ. 2020, 180, 107016. [Google Scholar] [CrossRef]
- Purwanto, F.H.; Utami, E.; Pramono, E. Design of server room temperature and humidity control system using fuzzy logic based on microcontroller. In Proceedings of the 2018 International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 6–7 March 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Kaewwiset, T.; Yodkhad, P. Automatic temperature and humidity control system by using Fuzzy Logic algorithm for mushroom nursery. In Proceedings of the 2017 International Conference on Digital Arts, Media and Technology (ICDAMT), Chiang Mai, Thailand, 1–4 March 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Yang, S.; Wan, M.P.; Ng, B.F.; Dubey, S.; Henze, G.P.; Chen, W.; Baskaran, K. Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system. Appl. Energy 2020, 257, 113920. [Google Scholar] [CrossRef]
- Cheon, S.-Y.; Cho, H.-J.; Jeong, J.-W. Energy saving potential of a vacuum-based membrane dehumidifier in a dedicated outdoor air system. Energy Convers. Manag. 2021, 227, 113618. [Google Scholar] [CrossRef]
- Schiavon, S.; Bauman, F.; Tully, B.; Rimmer, J. Room air stratification in combined chilled ceiling and displacement ventilation systems. HVACR Res. 2012, 18, 147–159. [Google Scholar]
- Liu, Z.; Zhang, L.; Gong, G. Experimental evaluation of a solar thermoelectric cooled ceiling combined with displacement ventilation system. Energy Convers. Manag. 2014, 87, 559–565. [Google Scholar] [CrossRef]
- Moya, T.A.; van den Dobbelsteen, A.; Ottele, M.; Bluyssen, P.M. A review of green systems within the indoor environment. Indoor Built Environ. 2019, 28, 298–309. [Google Scholar] [CrossRef]
- Irga, P.; Pettit, T.; Torpy, F. The phytoremediation of indoor air pollution: A review on the technology development from the potted plant through to functional green wall biofilters. Rev. Environ. Sci. Bio/Technol. 2018, 17, 395–415. [Google Scholar] [CrossRef]
- Bandehali, S.; Miri, T.; Onyeaka, H.; Kumar, P. Current state of indoor air phytoremediation using potted plants and green walls. Atmosphere 2021, 12, 473. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef]
- Branco-Vieira, M.; San Martin, S.; Agurto, C.; Santos, M.A.d.; Freitas, M.A.; Mata, T.M.; Martins, A.A.; Caetano, N.S. Potential of Phaeodactylum tricornutum for biodiesel production under natural conditions in Chile. Energies 2017, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Salehizadeh, H.; Yan, N.; Farnood, R. Recent advances in microbial CO2 fixation and conversion to value-added products. Chem. Eng. J. 2020, 390, 124584. [Google Scholar] [CrossRef]
- Acién Fernández, F.G.; González-López, C.; Fernández Sevilla, J.; Molina Grima, E. Conversion of CO2 into biomass by microalgae: How realistic a contribution may it be to significant CO2 removal? Appl. Microbiol. Biotechnol. 2012, 96, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Mata, T.M.; Oliveira, G.M.; Monteiro, H.; Silva, G.V.; Caetano, N.S.; Martins, A.A. Indoor Air Quality Improvement Using Nature-Based Solutions: Design Proposals to Greener Cities. Int. J. Environ. Res. Public Health 2021, 18, 8472. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Dewan, A. Implementation of the Right to Healthy Environment: Regulations for running air conditioners in public buildings and recognition of biological pollutants. Authorea Prepr. 2022. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Zhang, X.; Zhang, Y.; Gao, W.; Wang, R.; He, D. Air conditioner filters become sinks and sources of indoor microplastics fibers. Environ. Pollut. 2022, 292, 118465. [Google Scholar] [CrossRef]
- Yang, Z.; Xiao, H.; Sun, H.; Wang, B.; Lin, B.; Shi, W.; Huang, W. Performance analysis of room air conditioners via questionnaire and integrated field test. Appl. Therm. Eng. 2021, 196, 117243. [Google Scholar] [CrossRef]
- AlMulla, A.A.; Berekaa, M.; Dahlawi, S. Human Exposure Assessment to Air Pollutants in AC Filters from Agricultural, Industrial, and Residential Areas. Atmosphere 2022, 13, 1899. [Google Scholar] [CrossRef]
- Aslam, I.; Mumtaz, M.; Qadir, A.; Jamil, N.; Baqar, M.; Mahmood, A.; Ahmad, S.R.; Zhang, G. Organochlorine pesticides (OCPs) in air-conditioner filter dust of indoor urban setting: Implication for health risk in a developing country. Indoor Air 2021, 31, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Arif, S.; Tabusum, S.; Gul, N. Pesticides residues in the human breast milk of primiparous and multiparous women of karachi, pakistan. Feb-Fresenius Environ. Bull. 2022, 31, 9494–9498. [Google Scholar]
- Wang, Y.; Sun, M.; Yang, X.; Yuan, X. Public awareness and willingness to pay for tackling smog pollution in China: A case study. J. Clean. Prod. 2016, 112, 1627–1634. [Google Scholar] [CrossRef]
- Loewy, S.A.; Kelly, G.W.; Nathanson, M.D. Indoor Pollution in Commercial Buildings: Legal Requirements and Emerging Trends. Temp. Environ. Law Technol. J. 1992, 11, 239. [Google Scholar]
- Kankaria, A.; Nongkynrih, B.; Gupta, S.K. Indoor air pollution in India: Implications on health and its control. Indian J. Community Med. Off. Publ. Indian Assoc. Prev. Soc. Med. 2014, 39, 203. [Google Scholar]
- Shahid, M.A.K.; Ahmad, N.; Hussain, K.; Ahmad, N. Indoor, Out Door Air Pollution (Ioap), Cost Effective Methodologies And Potential Intervention Strategies. Int. J. Core Eng. Manag. 2015, 1, 11–25. [Google Scholar]
- McKercher, G.R.; Salmond, J.A.; Vanos, J.K. Characteristics and applications of small, portable gaseous air pollution monitors. Environ. Pollut. 2017, 223, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef]
- Fuller, G. The Invisible Killer: The Rising Global Threat of Air Pollution-and How We Can Fight Back; Melville House: New York, NY, USA, 2019. [Google Scholar]
- Ródenas García, M.; Spinazzé, A.; Branco, P.T.; Borghi, F.; Villena, G.; Cattaneo, A.; Di Gilio, A.; Mihucz, V.G.; Gómez Álvarez, E.; Lopes, S.I. Review of low-cost sensors for indoor air quality: Features and applications. Appl. Spectrosc. Rev. 2022, 57, 747–779. [Google Scholar] [CrossRef]
- Robin, Y.; Amann, J.; Baur, T.; Goodarzi, P.; Schultealbert, C.; Schneider, T.; Schütze, A. High-Performance VOC Quantification for IAQ Monitoring Using Advanced Sensor Systems and Deep Learning. Atmosphere 2021, 12, 1487. [Google Scholar] [CrossRef]
- Chaudhary, V.; Ashraf, N.; Khalid, M.; Walvekar, R.; Yang, Y.; Kaushik, A.; Mishra, Y.K. Emergence of MXene–polymer hybrid nanocomposites as high-performance next-generation chemiresistors for efficient air quality monitoring. Adv. Funct. Mater. 2022, 32, 2112913. [Google Scholar] [CrossRef]
- Onthath, H.; Maurya, M.R.; Bykkam, S.; Morsy, H.; Ibrahim, M.; Ahmed, A.E.; Riyaz, N.U.S.; Abuznad, R.; Alruwaili, A.; Kumar, B. Development and Fabrication of Carbon Nanotube (CNT)/CuO Nanocomposite for Volatile Organic Compounds (VOCs) Gas Sensor Application. In Macromolecular Symposia; Wiley Online Library: New York, NY, USA, 2021. [Google Scholar]
- Chougule, M.; Dalavi, D.; Mali, S.; Patil, P.; Moholkar, A.; Agawane, G.; Kim, J.; Sen, S.; Patil, V. Novel method for fabrication of room temperature polypyrrole–ZnO nanocomposite NO2 sensor. Measurement 2012, 45, 1989–1996. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, D.; Li, P.; Zhou, X.; Zong, X.; Dong, G. Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sens. Actuators B Chem. 2018, 255, 1869–1877. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, Z.; Zong, X. Flexible and highly sensitive H2S gas sensor based on in-situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sens. Actuators B Chem. 2019, 289, 32–41. [Google Scholar] [CrossRef]
- Tiwari, D.C.; Atri, P.; Sharma, R. Sensitive detection of ammonia by reduced graphene oxide/polypyrrole nanocomposites. Synth. Met. 2015, 203, 228–234. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, H.; Huang, P.; Xiang, C.; Zou, Y.; Xu, F.; Sun, L. Inducement of nanoscale Cu–BTC on nanocomposite of PPy–rGO and its performance in ammonia sensing. Mater. Res. Bull. 2018, 99, 152–160. [Google Scholar] [CrossRef]
- Yang, Y.; Li, S.; Yang, W.; Yuan, W.; Xu, J.; Jiang, Y. In situ polymerization deposition of porous conducting polymer on reduced graphene oxide for gas sensor. ACS Appl. Mater. Interfaces 2014, 6, 13807–13814. [Google Scholar] [CrossRef]
- Hasani, A.; Sharifi Dehsari, H.; Asghari Lafmejani, M.; Salehi, A.; Afshar Taromi, F.; Asadi, K.; Kim, S.Y. Ammonia-Sensing Using a Composite of Graphene Oxide and Conducting Polymer. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2018, 12, 1800037. [Google Scholar] [CrossRef]
- Zhang, D.; Tong, J.; Xia, B.; Xue, Q. Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film. Sens. Actuators B Chem. 2014, 203, 263–270. [Google Scholar] [CrossRef]
- De Castro, B.J.C.; Sartim, R.; Guerra, V.G.; Aguiar, M.L. Hybrid air filters: A review of the main equipment configurations and results. Process Saf. Environ. Prot. 2020, 144, 193–207. [Google Scholar] [CrossRef]
- Henning, L.M.; Abdullayev, A.; Vakifahmetoglu, C.; Simon, U.; Bensalah, H.; Gurlo, A.; Bekheet, M.F. Review on polymeric, inorganic, and composite materials for air filters: From processing to properties. Adv. Energy Sustain. Res. 2021, 2, 2100005. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Gong, H.; Zhang, X.; Wang, Y.; Jin, X. Polyethylene/polypropylene bicomponent spunbond air filtration materials containing magnesium stearate for efficient fine particle capture. ACS Appl. Mater. Interfaces 2019, 11, 40592–40601. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Choi, W.S. 2d and 3d bulk materials for environmental remediation: Air filtration and oil/water separation. Materials 2020, 13, 5714. [Google Scholar] [CrossRef]
- Bortolassi, A.C.C.; Nagarajan, S.; de Araújo Lima, B.; Guerra, V.G.; Aguiar, M.L.; Huon, V.; Soussan, L.; Cornu, D.; Miele, P.; Bechelany, M. Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration. Mater. Sci. Eng. C 2019, 102, 718–729. [Google Scholar] [CrossRef]
- Han, N.; Lee, Y.S.; Kaang, B.K.; Jang, W.; Koo, H.Y.; San Choi, W. A lottery draw machine-inspired movable air filter with high removal efficiency and low pressure drop at a high flow rate. J. Mater. Chem. A 2019, 7, 6001–6011. [Google Scholar] [CrossRef]
- Gong, G.; Zhou, C.; Wu, J.; Jin, X.; Jiang, L. Nanofibrous adhesion: The twin of gecko adhesion. ACS Nano 2015, 9, 3721–3727. [Google Scholar] [CrossRef]
- Jeong, S.; Cho, H.; Han, S.; Won, P.; Lee, H.; Hong, S.; Yeo, J.; Kwon, J.; Ko, S.H. High efficiency, transparent, reusable, and active PM2. 5 filters by hierarchical Ag nanowire percolation network. Nano Lett. 2017, 17, 4339–4346. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yan, F.; Pei, H.; Li, J.; Cui, Z.; He, B. Antibacterial and environmentally friendly chitosan/polyvinyl alcohol blend membranes for air filtration. Carbohydr. Polym. 2018, 198, 241–248. [Google Scholar] [CrossRef]
- Liu, H.; Cao, C.; Huang, J.; Chen, Z.; Chen, G.; Lai, Y. Progress on particulate matter filtration technology: Basic concepts, advanced materials, and performances. Nanoscale 2020, 12, 437–453. [Google Scholar] [CrossRef]
- Li, J.; Wei, L.; Leng, W.; Hunt, J.F.; Cai, Z. Fabrication and characterization of cellulose nanofibrils/epoxy nanocomposite foam. J. Mater. Sci. 2018, 53, 4949–4960. [Google Scholar] [CrossRef]
- Qian, Y.; Ismail, I.M.; Stein, A. Ultralight, high-surface-area, multifunctional graphene-based aerogels from self-assembly of graphene oxide and resol. Carbon 2014, 68, 221–231. [Google Scholar] [CrossRef]
- Zhao, K.; Huang, J.; Mao, J.; Bao, Z.; Chen, Z.; Lai, Y. Charged graphene aerogel filter enabled superior particulate matter removal efficiency in harsh environment. Chem. Eng. J. 2020, 395, 125086. [Google Scholar] [CrossRef]
- Yu, X.; Li, C.; Tian, H.; Yuan, L.; Xiang, A.; Li, J.; Wang, C.; Rajulu, A.V. Hydrophobic cross-linked zein-based nanofibers with efficient air filtration and improved moisture stability. Chem. Eng. J. 2020, 396, 125373. [Google Scholar] [CrossRef]
- Yoon, J.; Yang, H.S.; Lee, B.S.; Yu, W.R. Recent progress in coaxial electrospinning: New parameters, various structures, and wide applications. Adv. Mater. 2018, 30, 1704765. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Cui, J.; Qu, Q.; Wang, Y.; Zhang, J.; Xiong, R.; Ma, W.; Huang, C. Multistructured electrospun nanofibers for air filtration: A review. ACS Appl. Mater. Interfaces 2021, 13, 23293–23313. [Google Scholar] [CrossRef]
- Wang, N.; Si, Y.; Wang, N.; Sun, G.; El-Newehy, M.; Al-Deyab, S.S.; Ding, B. Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration. Sep. Purif. Technol. 2014, 126, 44–51. [Google Scholar] [CrossRef]
- Lv, S.; Zhao, X.; Shi, L.; Zhang, G.; Wang, S.; Kang, W.; Zhuang, X. Preparation and properties of sc-PLA/PMMA transparent nanofiber air filter. Polymers 2018, 10, 996. [Google Scholar] [CrossRef] [Green Version]
- Melike, G.; Calisir, M.D.; Akgul, Y.; Selcuk, S.; Ali, D.; Kilic, A. Submicron aerosol filtration performance of centrifugally spun nanofibrous polyvinylpyrrolidone media. J. Ind. Text. 2021, 50, 1545–1558. [Google Scholar] [CrossRef]
- Wang, L.-Y.; Liya, E.Y.; Lai, J.-Y.; Chung, T.-S. Developing ultra-high gas permeance PVDF hollow fibers for air filtration applications. Sep. Purif. Technol. 2018, 205, 184–195. [Google Scholar] [CrossRef]
- Shi, L.; Zhuang, X.; Tao, X.; Cheng, B.; Kang, W. Solution blowing nylon 6 nanofiber mats for air filtration. Fibers Polym. 2013, 14, 1485–1490. [Google Scholar] [CrossRef]
- Li, D.; Shen, Y.; Wang, L.; Liu, F.; Deng, B.; Liu, Q. Hierarchical structured polyimide–silica hybrid nano/microfiber filters welded by solvent vapor for air filtration. Polymers 2020, 12, 2494. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Zhang, H.; Pan, Z. Nanoporous PLA/(chitosan nanoparticle) composite fibrous membranes with excellent air filtration and antibacterial performance. Polymers 2018, 10, 1085. [Google Scholar] [CrossRef] [PubMed]
- Lippi, M.; Riva, L.; Caruso, M.; Punta, C. Cellulose for the Production of Air-Filtering Systems: A Critical Review. Materials 2022, 15, 976. [Google Scholar] [CrossRef]
- Rojas-Taboada, M.; García Betancourt, M.L. Nanocellulose Membranes for Air Filtration. In Handbook of Nanocelluloses: Classification, Properties, Fabrication, and Emerging Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–32. [Google Scholar]
- Kaang, B.K.; Lee, H.B.; Koo, H.Y.; Choi, W.S. Wastepaper-Based Cylindrical Hollow Air Filter Module for the Removal of Particulate Matter (PM10 and PM2.5) and HCHO. ACS Sustain. Chem. Eng. 2020, 8, 13984–13996. [Google Scholar] [CrossRef]
- Borojeni, I.A.; Gajewski, G.; Riahi, R.A. Application of Electrospun Nonwoven Fibers in Air Filters. Fibers 2022, 10, 15. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, F.; Pei, H.; Yan, K.; Cui, Z.; He, B.; Fang, K.; Li, J. Environmentally-friendly halloysite nanotubes@ chitosan/polyvinyl alcohol/non-woven fabric hybrid membranes with a uniform hierarchical porous structure for air filtration. J. Membr. Sci. 2020, 594, 117445. [Google Scholar] [CrossRef]
- Kim, H.-J.; Park, S.J.; Park, C.S.; Le, T.-H.; Lee, S.H.; Ha, T.H.; Kim, H.-i.; Kim, J.; Lee, C.-S.; Yoon, H. Surface-modified polymer nanofiber membrane for high-efficiency microdust capturing. Chem. Eng. J. 2018, 339, 204–213. [Google Scholar] [CrossRef]
- Huang, J.J.; Tian, Y.; Wang, R.; Tian, M.; Liao, Y. Fabrication of bead-on-string polyacrylonitrile nanofibrous air filters with superior filtration efficiency and ultralow pressure drop. Sep. Purif. Technol. 2020, 237, 116377. [Google Scholar] [CrossRef]
- Agarwal, N.; Meena, C.S.; Raj, B.P.; Saini, L.; Kumar, A.; Gopalakrishnan, N.; Kumar, A.; Balam, N.B.; Alam, T.; Kapoor, N.R. Indoor air quality improvement in COVID-19 pandemic. Sustain. Cities Soc. 2021, 70, 102942. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Yang, G.; Cheng, C.; Huang, C.; Xu, H.; Ke, Q. Hierarchically structured TiO2/PAN nanofibrous membranes for high-efficiency air filtration and toluene degradation. J. Colloid Interface Sci. 2017, 507, 386–396. [Google Scholar] [CrossRef]
- Branco, P.; Alvim-Ferraz, M.; Martins, F.; Sousa, S. Indoor air quality in urban nurseries at Porto city: Particulate matter assessment. Atmos. Environ. 2014, 84, 133–143. [Google Scholar] [CrossRef]
- Aydin-Aytekin, D.; Gezmis-Yavuz, E.; Buyukada-Kesici, E.; Cansoy, C.E.; Alp, K.; Koseoglu-Imer, D.Y. Fabrication and characterization of multifunctional nanoclay and TiO2 embedded polyamide electrospun nanofibers and their applications at indoor air filtration. Mater. Sci. Eng. B 2022, 279, 115675. [Google Scholar] [CrossRef]
- Sheng, Y.; Fang, L.; Nie, J. Experimental analysis of indoor air quality improvement achieved by using a Clean-Air Heat Pump (CAHP) air-cleaner in a ventilation system. Build. Environ. 2017, 122, 343–353. [Google Scholar] [CrossRef]
- Purwar, R.; Sai Goutham, K.; Srivastava, C.M. Electrospun Sericin/PVA/Clay nanofibrous mats for antimicrobial air filtration mask. Fibers Polym. 2016, 17, 1206–1216. [Google Scholar] [CrossRef]
- Wang, M.; Lu, T.; Li, Y. Optimizing air purification for household particulate matters using sensor-based and time-based intervention strategies. Particuology 2023, 79, 78–84. [Google Scholar] [CrossRef]
- Li, S.; Zhang, R.; Xie, J.; Sameen, D.E.; Ahmed, S.; Dai, J.; Qin, W.; Li, S.; Liu, Y. Electrospun antibacterial poly (vinyl alcohol)/Ag nanoparticles membrane grafted with 3, 3′, 4, 4′-benzophenone tetracarboxylic acid for efficient air filtration. Appl. Surf. Sci. 2020, 533, 147516. [Google Scholar] [CrossRef] [PubMed]
- Bonfim, D.P.; Cruz, F.G.; Bretas, R.E.; Guerra, V.G.; Aguiar, M.L. A sustainable recycling alternative: Electrospun PET-membranes for air nanofiltration. Polymers 2021, 13, 1166. [Google Scholar] [CrossRef] [PubMed]
- Sidheswaran, M.A.; Destaillats, H.; Sullivan, D.P.; Cohn, S.; Fisk, W.J. Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters. Build. Environ. 2012, 47, 357–367. [Google Scholar] [CrossRef]
- Ligotski, R.; Sager, U.; Schneiderwind, U.; Asbach, C.; Schmidt, F. Prediction of VOC adsorption performance for estimation of service life of activated carbon based filter media for indoor air purification. Build. Environ. 2019, 149, 146–156. [Google Scholar] [CrossRef]
- Swamy, G. Development of an indoor air purification system to improve ventilation and air quality. Heliyon 2021, 7, e08153. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, D.S.; Martins, L.D.; Aguiar, M.L. Air pollution control for indoor environments using nanofiber filters: A brief review and post-pandemic perspectives. Chem. Eng. J. Adv. 2022, 11, 100330. [Google Scholar] [CrossRef]
- Buyukada-Kesici, E.; Gezmis-Yavuz, E.; Aydin, D.; Cansoy, C.E.; Alp, K.; Koseoglu-Imer, D.Y. Design and fabrication of nano-engineered electrospun filter media with cellulose nanocrystal for toluene adsorption from indoor air. Mater. Sci. Eng. B 2021, 264, 114953. [Google Scholar] [CrossRef]
- Kadam, V.; Truong, Y.B.; Schutz, J.; Kyratzis, I.L.; Padhye, R.; Wang, L. Gelatin/β–cyclodextrin bio–nanofibers as respiratory filter media for filtration of aerosols and volatile organic compounds at low air resistance. J. Hazard. Mater. 2021, 403, 123841. [Google Scholar] [CrossRef]
- Hodgson, A.; Destaillats, H.; Sullivan, D.; Fisk, W. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications. Indoor Air 2007, 17, 305–316. [Google Scholar] [CrossRef]
- Mo, J.; Zhang, Y.; Xu, Q.; Lamson, J.J.; Zhao, R. Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmos. Environ. 2009, 43, 2229–2246. [Google Scholar] [CrossRef]
- Zhong, L.; Haghighat, F. Modeling and validation of a photocatalytic oxidation reactor for indoor environment applications. Chem. Eng. Sci. 2011, 66, 5945–5954. [Google Scholar] [CrossRef]
- Soni, V.; Singh, P.; Shree, V.; Goel, V. Effects of VOCs on Human Health, in Air Pollution and Control; Springer: Berlin/Heidelberg, Germany, 2018; pp. 119–142. [Google Scholar]
- Maung, T.Z.; Bishop, J.E.; Holt, E.; Turner, A.M.; Pfrang, C. Indoor air pollution and the health of vulnerable groups: A systematic review focused on particulate matter (PM), volatile organic compounds (VOCs) and their effects on children and people with pre-existing lung disease. Int. J. Environ. Res. Public Health 2022, 19, 8752. [Google Scholar] [CrossRef] [PubMed]
- Boyjoo, Y.; Sun, H.; Liu, J.; Pareek, V.K.; Wang, S. A review on photocatalysis for air treatment: From catalyst development to reactor design. Chem. Eng. J. 2017, 310, 537–559. [Google Scholar] [CrossRef]
- Arnawtee, W.H.; Jaleh, B.; Nasrollahzadeh, M.; Bakhshali-Dehkordi, R.; Nasri, A.; Orooji, Y. Lignin valorization: Facile synthesis, characterization and catalytic activity of multiwalled carbon nanotubes/kraft lignin/Pd nanocomposite for environmental remediation. Sep. Purif. Technol. 2022, 290, 120793. [Google Scholar] [CrossRef]
- Zan, L.; Wang, S.; Fa, W.; Hu, Y.; Tian, L.; Deng, K. Solid-phase photocatalytic degradation of polystyrene with modified nano-TiO2 catalyst. Polymer 2006, 47, 8155–8162. [Google Scholar] [CrossRef]
- Almaie, S.; Vatanpour, V.; Rasoulifard, M.H.; Koyuncu, I. Volatile organic compounds (VOCs) removal by photocatalysts: A review. Chemosphere. 2022, 306, 135655. [Google Scholar] [CrossRef]
- Boaretti, C.; Vitiello, G.; Luciani, G.; Lorenzetti, A.; Modesti, M.; Roso, M. Electrospun Active Media Based on Polyvinylidene Fluoride (PVDF)-Graphene-TiO2 Nanocomposite Materials for Methanol and Acetaldehyde Gas-Phase Abatement. Catalysts 2020, 10, 1017. [Google Scholar] [CrossRef]
- Rajendran, S.; Hoang, T.K.; Trudeau, M.L.; Jalil, A.; Naushad, M.; Awual, M.R. Generation of novel npn (CeO2-PPy-ZnO) heterojunction for photocatalytic degradation of micro-organic pollutants. Environ. Pollut. 2022, 292, 118375. [Google Scholar] [CrossRef] [PubMed]
Pollutant | Source | Health Influence | Ref |
---|---|---|---|
Particulate matter |
|
| [45,46,47] |
VOCs |
|
| [48,49] |
NO2 |
|
| [50,51] |
O3 |
|
| [52,53] |
SO2 |
|
| [54,55] |
COx |
|
| [56,57,58] |
Aerosol |
|
| [59,60] |
Radon |
|
| [61] |
Pesticides |
|
| [62,63] |
Biological allergens |
|
| [64] |
Microorganism |
|
| [65,66] |
Materials for Sensors | Synthesis Methods | Target Gases | Concentration Range | Sensitivity | Ref. |
---|---|---|---|---|---|
Polyaniline/graphene oxide nanocomposite | Layer by layer method | RH | ~0–97% RH | ~20.0% | [163] |
Polyaniline/graphene oxide/tin oxide nanocomposite | In situ polymerization | H2S | ~50 ppb to 10 ppm | ~76.3% | [164] |
Polypyrrole/reduced graphene oxide nanocomposite | In situ oxidative polymerization | NH3 | ~3–500 ppm | ~34.7% | [165] |
Polypyrrole/reduced graphene oxide/copper nanoparticle nanocomposite | In situ chemical polymerization | NH3 | ~10–150 ppm | ~12.4% | [166] |
Poly(3,4-ethylenedioxythiophene)/reduced graphene oxide nanocomposite | In situ polymerization | NO2 | ~500 ppb—20 ppm | ~41.7% | [167] |
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate/graphene oxide nanocomposite | Solution processing | NH3 | ~1–1000 ppm | ~100 | [168] |
Poly(diallyldimethyl-ammonium chloride)/graphene nanocomposite | Layer by layer method; self-assembly | RH | ~11–97% RH | ~97% | [169] |
Material | Two-Dimensional Material | Three-Dimensional Material |
---|---|---|
| Papers | Foam or sponges |
| Fabrics | Hydrogels |
| Fiber nets | Sponge-polymer networks |
| Meshes | Sponge-paper layered structure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kausar, A.; Ahmad, I.; Zhu, T.; Shahzad, H.; Eisa, M.H. Exigency for the Control and Upgradation of Indoor Air Quality—Forefront Advancements Using Nanomaterials. Pollutants 2023, 3, 123-149. https://doi.org/10.3390/pollutants3010011
Kausar A, Ahmad I, Zhu T, Shahzad H, Eisa MH. Exigency for the Control and Upgradation of Indoor Air Quality—Forefront Advancements Using Nanomaterials. Pollutants. 2023; 3(1):123-149. https://doi.org/10.3390/pollutants3010011
Chicago/Turabian StyleKausar, Ayesha, Ishaq Ahmad, Tianle Zhu, Hassan Shahzad, and M. H. Eisa. 2023. "Exigency for the Control and Upgradation of Indoor Air Quality—Forefront Advancements Using Nanomaterials" Pollutants 3, no. 1: 123-149. https://doi.org/10.3390/pollutants3010011
APA StyleKausar, A., Ahmad, I., Zhu, T., Shahzad, H., & Eisa, M. H. (2023). Exigency for the Control and Upgradation of Indoor Air Quality—Forefront Advancements Using Nanomaterials. Pollutants, 3(1), 123-149. https://doi.org/10.3390/pollutants3010011