Development of Complex Concentrated Alloys (CCAs) Utilizing Scrap to Preserve Critical Raw Materials †
Abstract
:1. Introduction
2. Complex Concentrated Alloys: Types and Trends
- High-entropy effect
- 2.
- Lattice distortion
- 3.
- Sluggish diffusion
- 4.
- Cocktail effect
3. Approach and Discussion
4. Conclusion-Outlook
- (1)
- Complex concentrated alloys (CCAs) present a relatively new category of metallic alloys, which are based on the concept of multi-component systems and elements being present on high proportions, similar to the previous high entropy alloys (HEAs) and multi-principal element alloys (MPEAs) concepts/definitions. In our case, where CCA was used, a lower number of elements, at lower concentrations and intermetallic compounds, is acceptable.
- (2)
- CCAs are competent of having equal or enhanced characteristics and properties for a comparable or lower raw materials selection cost.
- (3)
- Lower purity scrap utilization for the production of CCAs is a promising new strategy, which enables higher levels of sustainability and cost-efficiency.
- (4)
- Elimination of high-cost raw materials (i.e., master alloys) makes CCAs an even more appealing alternative.
- (5)
- Future research efforts should be shifted towards alloys that are either Al-rich or Mg-rich. Such alloys would contain large amounts of desirable solute elements, which might dissolve into the solid solution and additionally promote the formation of beneficial phases (i.e., precipitates, particles, secondary phases, etc.), while capitalizing the high-entropy concept, while offering lower density alternative alloys.
- (6)
- Initial designing and casting trials need to be carried out in order to examine the current concept’s feasibility from the scope of physical metallurgy.
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Treating Waste as a Resource for EU Industry: Analysis of Various Waste Streams and the Competitiveness of Their Client Industries|Internal Market, Industry, Entrepreneurship and SMEs. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi138n9h6L0AhWZ8LsIHT_XBAMQFnoECAIQAQ&url=https%25253A%252 (accessed on 31 July 2021).
- European Circular Economy Stakeholder Platform. Available online: https://circulareconomy.europa.eu/platform/en/knowledge/metal-recycling-factsheet-euric (accessed on 31 July 2021).
- Recycling Circular Economy. Available online: https://www.european-aluminium.eu/policy-areas/recycling-circular-economy/?fbclid=IwAR06hZXwWQOBLxufR7vYkBeoUHfBwCiA0DMqV_HObPq9phs-gi8leUqv-6Y (accessed on 31 July 2021).
- Hagelüken, C.; Lee-Shin, J.; Carpentier, A.; Heron, C. The EU Circular Economy and Its Relevance to Metal Recycling. Recycling 2016, 1, 242. [Google Scholar] [CrossRef]
- McKinsey. Available online: https://www.mckinsey.com/industries/chemicals/our-insights/the-european-recycling-landscape-the-quiet-before-the-storm?fbclid=IwAR1v8c60GlwA_66xIea0KLOUmGqzoFyzhzLwCP1sloU_ra_KV1dPtuG_ki8# (accessed on 31 July 2021).
- EURACTIV. Available online: https://www.euractiv.com/section/circular-materials/news/metals-recycling-in-eu-could-collapse-under-new-rules-companies-say/?fbclid=IwAR0NEJ9Xru7bAEAzlfUL3_t80b4SKxa5QJEXjamam-tYigs-AexktE6a3Hs (accessed on 31 July 2021).
- Cantor, B. Multicomponent and High Entropy Alloys. Entropy 2014, 16, 4749–4768. [Google Scholar] [CrossRef]
- Yeh, J.W. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mater. 2006, 31, 633–648. [Google Scholar] [CrossRef]
- Mukhopadhyay, N.K. MEETING REPORT: High entropy alloys: A renaissance in physical metallurgy. Curr. Sci. 2015, 109, 665–667. [Google Scholar]
- Otto, F.; Yang, Y.; Bei, H.; George, E.P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 2013, 61, 2628–2638. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Jensen, J.K.; Welk, B.A.; Williams, R.E.A.; Sosa, J.M.; Huber, D.E.; Senkov, O.N.; Viswanathan, G.B.; Fraser, H.L. Characterization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1. Scr. Mater. 2016, 121, 1–4. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Gorsse, S.; Couzinié, J.P.; Miracle, D.B. From high-entropy alloys to complex concentrated alloys. C. R. Phys. 2018, 19, 721–736. [Google Scholar] [CrossRef]
- Gorsse, S.; Miracle, D.B.; Senkov, O.N. Mapping the world of complex concentrated alloys. Acta Mater. 2017, 135, 177–187. [Google Scholar] [CrossRef]
- Birbilis, N.; Choudhary, S.; Scully, J.R.; Taheri, M.L. A perspective on corrosion of multi-principal element alloys. NPJ Mater. Degrad. 2021, 5, 14. [Google Scholar] [CrossRef]
- Gao, M.C.; Liaw, P.K.; Yeh, J.W.; Zhang, Y. High-Entropy Alloys: Fundamentals and Applications; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; ISBN 9783319270135. [Google Scholar]
- Kumar, A.; Gupta, M. An Insight into Evolution of Light Weight High Entropy Alloys: A Review. Metals 2016, 6, 199. [Google Scholar] [CrossRef]
- Jablonski, P.D.; Licavoli, J.J.; Gao, M.C.; Hawk, J.A. Manufacturing of High Entropy Alloys. JOM 2015, 67, 2278–2287. [Google Scholar] [CrossRef]
- Sanchez, J.M.; Vicario, I.; Albizuri, J.; Guraya, T.; Acuña, E.M. Design, Microstructure and Mechanical Properties of Cast Medium Entropy Aluminium Alloys. Sci. Rep. 2019, 9, 6792. [Google Scholar] [CrossRef] [PubMed]
- Srivatsan, T.S.; Gupta, M. High Entropy Alloys: Innovations, Advances, and Applications; CRC Press: Boca Raton, FL, USA, 2020; Available online: https://www.routledge.com/High-Entropy-Alloys-Innovations-Advances-and-Applications/Srivatsan-Gupta/p/book/9780367356330 (accessed on 29 July 2021).
- Tsai, M.-H. Three Strategies for the Design of Advanced High-Entropy Alloys. Entropy 2016, 18, 252. [Google Scholar] [CrossRef]
- Barnett, M.R.; Senadeera, M.; Fabijanic, D.; Shamlaye, K.F.; Joseph, J.; Kada, S.R.; Rana, S.; Gupta, S.; Venkatesh, S. A scrap-tolerant alloying concept based on high entropy alloys. Acta Mater. 2020, 200, 735–744. [Google Scholar] [CrossRef]
- Mukherjee, S. Complex Concentrated Alloys (CCAs)—Current Understanding and Future Opportunities. Metals 2020, 10, 1253. [Google Scholar] [CrossRef]
- Mitrica, D.; Badea, I.C.; Serban, B.A.; Olaru, M.T.; Vonica, D.; Burada, M.; Piticescu, R.-R.; Popov, V. V. Complex Concentrated Alloys for Substitution of Critical Raw Materials in Applications for Extreme Conditions. Materials 2021, 14, 1197. [Google Scholar] [CrossRef]
- Yeh, J.W. Alloy design strategies and future trends in high-entropy alloys. JOM 2013, 65, 1759–1771. [Google Scholar] [CrossRef]
- Amiri, A.; Shahbazian-Yassar, R. Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A 2021, 9, 782–823. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, Y.L.; Lin, S.J.; Chen, S.K. High-Entropy Alloys—A New Era of Exploitation. Mater. Sci. Forum 2007, 560, 1–9. [Google Scholar] [CrossRef]
- Maulik, O.; Kumar, D.; Kumar, S.; Dewangan, S.K.; Kumar, V. Structure and properties of lightweight high entropy alloys: A brief review. Mater. Res. Express 2018, 5, 052001. [Google Scholar] [CrossRef]
- Pickering, E.J.; Jones, N.G. High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 2016, 61, 183–202. [Google Scholar] [CrossRef]
- Ranganathan, S. Alloyed pleasures: Multimetallic cocktails. Curr. Sci. 2003, 85, 1404–1406. [Google Scholar]
- Tsai, K.Y.; Tsai, M.H.; Yeh, J.W. Reply to Comments on “Sluggish Diffusion in Co-Cr-Fe-Mn-Ni High-Entropy Alloys” by K.Y. Tsai, M.H. Tsai and J.W. Yeh, Acta Materialia 61 (2013) 4887-4897. Scr. Mater. 2017, 135, 158–159. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Feng, R.; Gao, M.; Lee, C.; Mathes, M.; Zuo, T.; Chen, S.; Hawk, J.; Zhang, Y.; Liaw, P. Design of Light-Weight High-Entropy Alloys. Entropy 2016, 18, 333. [Google Scholar] [CrossRef]
- Yang, X.; Chen, S.Y.; Cotton, J.D.; Zhang, Y. Phase Stability of Low-Density, Multiprincipal Component Alloys Containing Aluminum, Magnesium, and Lithium. JOM 2014, 66, 2009–2020. [Google Scholar] [CrossRef]
- Laws, K.J.; Crosby, C.; Sridhar, A.; Conway, P.; Koloadin, L.S.; Zhao, M.; Aron-Dine, S.; Bassman, L.C. High entropy brasses and bronzes-Microstructure, phase evolution and properties. J. Alloys Compd. 2015, 650, 949–961. [Google Scholar] [CrossRef]
- Qiu, Y.; Hu, Y.J.; Taylor, A.; Styles, M.J.; Marceau, R.K.W.; Ceguerra, A. V.; Gibson, M.A.; Liu, Z.K.; Fraser, H.L.; Birbilis, N. A lightweight single-phase AlTiVCr compositionally complex alloy. Acta Mater. 2017, 123, 115–124. [Google Scholar] [CrossRef]
- Huang, X.; Miao, J.; Luo, A.A. Lightweight AlCrTiV high-entropy alloys with dual-phase microstructure via microalloying. J. Mater. Sci. 2019, 54, 2271–2277. [Google Scholar] [CrossRef]
- Mitrica, D.; Badea, I.C.; Olaru, M.T.; Serban, B.A.; Vonica, D.; Burada, M.; Geanta, V.; Rotariu, A.N.; Stoiciu, F.; Badilita, V.; et al. Modeling and Experimental Results of Selected Lightweight Complex Concentrated Alloys, before and after Heat Treatment. Materials 2020, 13, 4330. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Available online: https://cordis.europa.eu/article/id/406955-multi-material-lightweight-components-for-use-in-cars-and-aircraft (accessed on 30 July 2021).
- European Commission. Available online: https://cordis.europa.eu/article/id/169500-highperformance-lightweight-nanoreinforced-alloys (accessed on 30 July 2021).
- European Commission. Available online: https://cordis.europa.eu/article/id/423150-integrated-lightweight-and-sustainable-aircraft-components (accessed on 30 July 2021).
- European Commission. Available online: https://cordis.europa.eu/article/id/150459-lightweight-alloys-forging-future-flight (accessed on 30 July 2021).
- European Commission. Available online: https://cordis.europa.eu/project/id/606156 (accessed on 30 July 2021).
- LIGHTME. Available online: https://www.lightme-ecosystem.eu/about.html (accessed on 30 July 2021).
- London Metal Exchange: Non-ferrous. Available online: https://www.lme.com/Metals/Non-ferrous#tabIndex=0 (accessed on 30 July 2021).
- Chromium Price Chart, China Chromium Price Today-Shanghai Metals Market. Available online: https://price.metal.com/Chromium (accessed on 30 July 2021).
- Roskill. Available online: https://roskill.com/news/titanium-prices-continue-strong-performance-in-2021/ (accessed on 30 July 2021).
- INN. Available online: https://investingnews.com/daily/resource-investing/battery-metals-investing/vanadium-investing/vanadium-outlook/ (accessed on 31 July 2021).
- Daily Silicon Price, Lme Comex Shfe Price of Silicon Live|SMM-China Metal Market. Available online: https://www.metal.com/Silicon (accessed on 31 July 2021).
- Higher Demand, Firm Costs Lift China’s Magnesium Prices. Available online: https://www.argusmedia.com/en/news/2231091-higher-demand-firm-costs-lift-chinas-magnesium-prices (accessed on 31 July 2021).
- Silicon Price Rises Boost European Producers. Available online: https://www.argusmedia.com/en/news/2187058-silicon-price-rises-boost-european-producers (accessed on 31 July 2021).
Alloy/Elements | A-CCA 1 | B-CCA 1 |
---|---|---|
Al | (25) 15.18 | (20) 12.95 |
Mg | - | (20) 11.67 |
Zn | - | (20) 31.39 |
Si | - | (20)13.48 |
Cu | - | (20) 30.51 |
Cr | (25) 29.25 | - |
Ti | (25) 26.92 | - |
V | (25) 28.65 | - |
Alloy/Elements (wt.%) and Cost (USD/Ton) | AH-CCA | AL-CCA | BH-CCA | BL-CCA |
---|---|---|---|---|
Al | 398.32 | 258.91 | 339.8 | 220.88 |
Mg | - | - | 178.73 | 116.17 |
Zn | - | - | 953.94 | 620.06 |
Si | - | - | 312.93 | 203.4 |
Cu | - | - | 2973.96 | 1933.08 |
Cr | 2636.68 | 1713.96 | - | - |
Ti | 2366.3 | 1538.07 | - | - |
V | 4295.05 | 2791.78 | - | - |
Total | 9696.35 | 6302.72 | 4759.36 | 3093.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaskis, S.; Bouzouni, M.; Gavalas, E.; Loukadakis, V.; Papaefthymiou, S. Development of Complex Concentrated Alloys (CCAs) Utilizing Scrap to Preserve Critical Raw Materials. Mater. Proc. 2021, 5, 109. https://doi.org/10.3390/materproc2021005109
Chaskis S, Bouzouni M, Gavalas E, Loukadakis V, Papaefthymiou S. Development of Complex Concentrated Alloys (CCAs) Utilizing Scrap to Preserve Critical Raw Materials. Materials Proceedings. 2021; 5(1):109. https://doi.org/10.3390/materproc2021005109
Chicago/Turabian StyleChaskis, Spyridon, Marianthi Bouzouni, Evangelos Gavalas, Vasilis Loukadakis, and Spyros Papaefthymiou. 2021. "Development of Complex Concentrated Alloys (CCAs) Utilizing Scrap to Preserve Critical Raw Materials" Materials Proceedings 5, no. 1: 109. https://doi.org/10.3390/materproc2021005109
APA StyleChaskis, S., Bouzouni, M., Gavalas, E., Loukadakis, V., & Papaefthymiou, S. (2021). Development of Complex Concentrated Alloys (CCAs) Utilizing Scrap to Preserve Critical Raw Materials. Materials Proceedings, 5(1), 109. https://doi.org/10.3390/materproc2021005109